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AXIOMS FOR STIEFEL-WHITNEY HOMOLOGY CLASSES

OF SOME SINGULAR SPACES1

BY

DARKO VELJAN

Abstract. A system of axioms for the Stiefel-Whitney classes of certain type of

singular spaces is established. The main examples of these singular spaces are Euler

manifolds mod 2 and homology manifolds mod 2. As a consequence, it is shown that

on homology manifolds mod 2 the generalized Stiefel conjecture holds.

The purpose of this paper is to set up a system of axioms which describe in a

unique way the Stiefel-Whitney (S.W.) homology classes of some class of singular

spaces, called in this paper allowable class. The main examples include Euler

manifolds mod 2 and homology manifolds mod 2. This axiomatic characterization of

S.W. homology classes then gives as corollaries affirmative answers to generalized

Stiefel conjectures. The classical Stiefel conjecture says that on a smooth manifold

M", the Poincaré dual of the z'th cohomology S.W. class is represented by the cycle

mod 2 which is equal to the sum (mod 2) of all (n — z')-simplices in the first

barycentric subdivision of some triangulation of M [21]. In the generalized Stiefel

conjecture we deal with Steenrod squares of Wu classes instead of ordinary

cohomology S.W. classes.

The question about a possible axiomatic description of S.W. classes for Euler

manifolds or for more general spaces was posed by Blanton and Schweitzer [4]. Our

corollary on homology manifolds mod 2 was also obtained by Taylor [19], but from

a completely different viewpoint.

The main tools in proving that our axioms determine a unique class are block

bundle transversality and a description of cohomology classes as morphisms on

bordism groups. These techniques then provide the "transversality classes" t(<p) of

an embedding <p of our singular space X into the interior of a PL manifold M. r(<p)

lies in H*(M, oM; Z2) and determines characteristics (mod 2) of transversal intersec-

tions of A with singular manifolds in M. These ideas are based on the work of

Latour [13]. In §1 we give some basic facts about Euler manifolds mod 2 and their

S.W. homology classes, which then motivates §§2 and 3 where we introduce

allowable classes of spaces and introduce axioms for their S.W. classes. In §4 we

prove that the axioms determine unique classes and derive the above-mentioned

consequences.
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1. Geometry of Euler manifolds. By a "polyhedron" we shall understand a

compact polyhedron, but the whole theory makes sense for locally finite polyhedra

(and then appropriate homology based upon infinite, but locally finite chains). First,

we recall some basic definitions, facts and examples.

A geometric cycle of dimension « is an «-dimensional polyhedron X with a

triangulation in which (« — l)-simplices have as links just two points and lower

dimensional simphces have nonempty and connected links.

An «-dimensional geometric cycle with boundary (X, 3A") is an «-polyhedron A

with a triangulation in which (n — l)-simplices have as links one or two points,

lower dimensional simplices have nonempty and connected links and all the faces of

(« — l)-simplices with one point links constitute an (n — l)-geometric cycle, called

the boundary 3 A of A. We always assume 3 X is locally collared and hence collared

in y.

Note that an «-geometric cycle is an «-pseudomanifold (circuit), and is "purely

«-dimensional".

If A is an «-dimensional geometric cycle, then its singular set S(X) = {x E X\

dx(x) < «} has dimension *£ « — 3, where dx(x) is the intrinsic dimension of x in

X. For every connected «-dimensional geometric cycle with boundary (A", 3A"), we

have a canonical isomorphism 77„( A, 3 A"; Z2) « Z2. The generator of this group is

denoted by [A, 3X] or simply by [X].

1.1. Definition. An «-dimensional geometric cycle A is called n-Euler manifold

mod2 (or Z2-Euler manifold) if it is an Euler space, i.e. xix, x\{x}) —~1 f°r aU

x E X, or equivalently if x(Lk(x, X)) = 0, for all x E X, or equivalently if there is a

triangulation K of X such that for all o E K, x(Lk(a, K)) = 0. Here, Lk(a, K) is

the boundary of the simphcial neighborhood of o in K, x is the Euler characteristic,

and = means = (mod 2) throughout this paper. More generally, n-Euler manifold

mod2 with boundary is an «-dimensional geometric cycle with boundary (A, 3A)

such that x(A", X\{x}) = 1, for all x E A\3A"and

x(X,X\{x})=0,   x(3A,3A\{x}) = l,

for all x E 3A. Equivalently, there is a triangulation (K, L) of (X, 3A") such that

x(Lk(a, K )) = 0 for all o E K - L and x(Lk(a, K)) = \, x(Lk(a, L)) = 0 for all

o EL.

That all these definitions are equivalent follows from the following facts:

HsiLk{x,X))~Hs+xiX,X\{x}),

Lk(x, A) «PL3a * Lk(o, K) ~PLI,k-xLk{o, K),

where x E à, o E K, | K \ = X, and for any compact polyhedron P, xiP) — X(2P).

Note that there is an appropriate notion of (integral) Euler manifolds (x(X, X\{x})

— (_i)dim * for ai\x £ x), but we will not discuss them in this paper.
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Examples of Z2-Euler manifolds include all mod 2 (polyhedral) homology mani-

folds, and suspensions of connected mod 2 homology manifolds with even Euler

characteristics, since the only two bad points have connected links with x(unk) — 0.

Further, let M" be a connected closed mod 2 homology manifold, and £* a (disk or

block) bundle over M whose sphere bundle is connected. Then the Thom space

P(£) — T is an in + &)-Euler manifold mod 2. For, let E — £(£) be the total space

of £. Then P = E/oE and let * be the base point (the only "suspicious" point), and

X(P, P\{*}) = x(cone(3P),3£) = 1 - X(3P) = I,

since x(Doundary of mod 2 homology manifold) = 0. Further, as Sulhvan [17]

pointed out, compact connected real analytic spaces as well as complex projective

varieties are Euler spaces. Sometimes they are not Euler manifolds, i.e. hnks of " bad

points" are not connected, as the "pinched torus" x3 + y3 = xyz in homogeneous

coordinates [x, y, z] in CP2 shows, but sometimes they are. For example the

quadratic cone A"4: x2 + y2 + z2 = 0 in CP3 with homogeneous coordinates

[x, y, z, w]. The only singular point is p = [0,0,0,1] and Lk(p, A") « (tangent circle

bundle of S2) « RP3. Note that X is homeomorphic to the Thom space of the

tangent bundle of S2. Finally, King and Akbulut [12] showed recently that 2-dimen-

sional real algebraic sets are topologically characterized as 2-dimensional Euler

spaces.

Let us mention only that if A is a Z2-Euler manifold (or just a geometric cycle)

with isolated singularities which is also a Z2-Euler-Poincaré complex, then A is, in

fact, a Z2-homology manifold. This follows from McCrory [15].

Note that if A is an «-Euler manifold mod 2, K a triangulation of X and ok E K,

then Lkiok, K) is an (« — k — 1)-Euler manifold mod2.

An appropriate class of maps relating mod 2 Euler manifolds are mod 2 Euler

resolutions. Let/: X ~> Y be a map between two polyhedra. We say that/is a mod 2

Euler resolution if / is a PL map, and f~\y) is a nonempty, connected set with

x(/"'(y)) = 1, for all y E Y. It is easy to see that if /: X -> Y is a mod2 Euler

resolution between two «-polyhedra and X is a mod 2 Euler manifold, then Y is too,

and x(^) =x(X). In particular, being a mod 2 Euler manifold is a PL property.

Goldstein and Turner [9] showed that being a mod 2 Euler space is a topological

property.

1.2. Proposition. Let f: X -» Y be a mod 2 Euler resolution between two n-dimen-

sional mod 2 Euler manifolds; then C¡, the simphcial mapping cylinder, is a mod 2

Euler manifold of dimension (n + 1) with boundary XTLY. The converse is also true.

For a proof see [20].    G

Let us denote by Ej¡(2) the class of all «-dimensional Euler manifolds mod 2 with

boundary and by E"(2) the class of those with empty boundary. E9(2) = Un>0Ei|(2),

E(2) = Un5,0En(2). Note that (X, 3A) G E|¡(2) imphes 3A G E"-'(2).

1.3. Proposition, (a) Gluing and cutting: Let (Xj,dXj) E Eg(2), Yj C 3Ay,

j = 0,1, be components of the boundaries andf: Y0 -» Yx be a PL homeomorphism. Let
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Aj = dXJ\Yj and X=X0UfXx.   Then  (A, A0 U Ax) E Eg(2).  If (X,A0UAX),

iXj, dXj) G E5(2), then also (*,_,, oXx_j) E Eg(2).

(b) Product: Le? (A, 3A") G E£(2), (y, 87) G Eg(2). P«e« (A", 3 A") X (7, 37) =

(A" X 7, 3X X 7 U A X 37) G K¡+\2). Conversely, i/ (AT, 3 A") and (7, 37) are

geometric cycles of dimension p iresp. q) such that (A", 3 A") X (7, 37) G E£+<?(2),

then (A, 3A) G E>(2), (7, 37) G EJ(2).

(c) Joins, suspensions, cones: Let X E E/,(2), 7 G E9(2), A", 7 connected and

X(A) = x(7) = 0. Then X*Y E W+«+x(2). Furthermore, let X E E'(2), X con-

nected andxix) = 0. Then 2X E W+x(2) andicone X, X) E E£+1(2).

(d) Bicollarity: Let X" E Eg(2) and Y"~x C X be a subpolyhedron, and Y C

A"\3Aa«if Yilocally) bicollaredin X\oX. Then Y E Eg- '(2).

(e) Regular neighborhoods and complements: Let X E Eg(2) and P C A"\3A*

6e a subpolyhedron of X. Let N be a regular neighborhood of P in X and oN its

boundary. Then (/V, oN), (X\N, 37V U 3A") G EJ(2).

(f) Block bundle: Leí E be the total space of a k-bundle ¿* (fibre : Dk) over an

n-polyhedron X, and oE the total space of the associated sphere bundle. Then X E

E3,(2)«(£,3P)GE3I+*(2).

Proof. The analogous properties for geometric cycles are proved in [13], so we

only examine local Euler numbers.

(a) Since links are PL invariants, we may assume that YQ = Yx — Y and / = id.

Let y G 7 Then Lk(y, A") = Lk(y, A"0) U Lk(y, A",) with intersection Lk(y, 7) =

Lk(y, 3A0) = Lk(y, 3A",). Hence x(Lk(y, X)) = 1 + 1 - 0 s 0. It is clear that

other points in A have appropriate local Euler numbers.

The cutting property can be proved similarly.

(b) It follows at once, using the fact that for x E X, y E 7, Lk((x, y), X X 7)

~PLLk(x,X)*Lk(y,Y) and X(A * B) = X(A) + X(B) ~ x(^)xW The con-

verse is true because for a, b G Z, a + b = ab <=> a = 0 &b = 0 (mod 2).

(c) One can use the following precise formula for the link of a point in the join:

Forx G A", y G 7, / G [0,1],

Lk{tx + (1 -t)y,X*Y) =

A"*Lk(y,y), r = 0,

(2Lk(x, A))*Lk(y,y),     (6(0,1),

Lk{x,X)*Y, t=l.

Then one uses the formula for x(A * 77) and the fact x(^Z) = x(Z)- The cone and

suspension are clear. In fact, the join-case follows from (a), (b) and the cone-case,

using the fact that A * 7 ~PL cA X 7 U^x Y A X cY.

(d) The point here is that if (AT, L) triangulates (X, Y), then for a G L, dim o < «

— 2, bicollarity implies (Lk(a, t£), Lk(a, L)) =«PL(2Lk(a, L), Lk(a, L)).

(e) Follows from (d).

(f) It is not hard to show that all local homology is getting shifted in E for

k = dim £; see [20] for details.    D
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1.4. Definition. Let A" be an «-polyhedron, AT its triangulation, K' the barycentric

subdivision of K. For every p, 0 < p < n, let

*„-,(*') = 2 {o_0---o_p)ECp{K';Z2),
ob< ••■ <opeK

where a, is the barycenter of a,.

More generally, let (A", 7"_1) be a polyhedral pair, (AT, L) its triangulation, and

iK', L') the barycentric subdivision. We define

s„_p(K',L')= 2 (o_0---op)ECp{K',L';Z2).
o0<-- <op<EK;op0:L

These chains mod 2 are called Stiefel chains mod 2.

It is known that if K triangulates an «-Euler manifold mod 2 then sqiK') is a cycle

mod 2 for all q < n, and in the relative case that dsq{K', L') = sa[L') G

C„_?_1(L';Z2)forall?<«(cf.[10]).
Note that instead of barycentric, we can take any derived subdivision K* of K by

starring the simphces at any interior point a* G à, and then the simphcial isomor-

phism o -» o* carries sA[K') to sqiK*), and since it is isotopic to the identity, if one

of them is a cycle, the other one is too. So we can write sA[K) instead of sA[K'), etc.

1.5. Definition. Let X" be an Euler manifold mod 2. Then the homology class of

sqiK) is denoted by WqiX) E 77„_?(X; Z2), for every q, 0 < q < « - 1, and for

q = n, let WA\X) E 770( A; Z2) be the class otsn(K) = 2aeK(o)E C0iK'; Z2).

Similarly, if (A", 3A") is an «-Euler manifold mod2 then the homology class of

sqiK,L) is denoted by Wq{X, 3A") G H„_qiX, oX; Z2). The class WqiX,oX) =

Wq{ X) is called the qth Stiefel-Whitney homology class (S.W. class) of (A, 3 A), and
n

W{X,dX)= W{X)= W0{X) + WxiX) + ■ ■ ■ +W„iX) E ©77,(A,3A-;Z2)
/=o

is called the total S.W. class.

1.6. Remarks, (a) WqidX) = 3H;(A,3A) G 77n_9_,(3A";Z2), where (A,3A) G

E9(2) and 3 is the boundary operator. This follows from the above formula on the

chain level.

(b) Let (A,3A") G E^(2) and let e: 770(A", 3A; Z2) -* Z2 be the augmentation.

Then eWn( X, 3 A) = x( X, 3X). Further, since the diagram

770(3A;Z2)      ^     770(A;Z2)

z2

commutes, it follows that

X(3A) = eiWn_x{dX)) = dAVn_x{dX) = a, dWH_x(X) = 0,

since („, 3 = 0.

(c) Note that W0iX) E 77„(A,3A;Z2) is the mod2 fundamental class [A"] for

every (A", 3A") G E^).
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(d) Using 1.2 it follows easily that if /: A-> 7 is an Euler resolution mod 2

between two «-Euler manifolds mod2, then fJVqiX) = Wq{Y) for all q, 0 *£ q < «.

In particular, S.W. homology classes are PL invariants. This justifies the notation

WqiX) (instead of WqiK)).
The definition of Euler cobordism mod 2 is the usual one. Denote by CX^'2 the « th

cobordism group based on the class E3(2). Denote by x the Euler characteristics

reduced mod 2.

1.7. Proposition, x: 9lf2 -* Z2 is an isomorphism for « ¥= 1 and 9lf2 = 0.

Proof. Since a circle bounds, 9lf2 = 0. That x is a well-defined homomorphism

follows from 1.6(b). Let n > 1, A G E"(2) connected with x( A) = 0. Then by 1.3(c)

(cone X, X) E Eg + '(2) and A is a boundary. If A is not connected, take a cone over

each component. So x is a monomorphism. To see that <5l^'2 7e 0, for n 3= 2, we have

in dimension 2, x(RP2) — 1 and for « > 3,

X" = SX X£>n~' U cone{Sx X S"'2) G E"(2)   withx( A") = 1.    D

The Euler bordism mod 2 is also defined in a standard way. So, denote by

%*'2(A, B) the «th Euler bordism group mod2 of the polyhedral pair (A, B).

%^'2( ) is clearly a homology theory.

Next, denote by Hf-2(A,B)= ®JikX Hn_t(A, B;Z2). Now, 77^2( ) is also a

homology theory and there is a natural transformation w: 9l*'2( ) -> 77^,2( ) defined

by

"a.b([X, f]) = 2fMx)-
¡#i

(Here one uses 1.6(a).)

1.8. Proposition. The natural transformation «: 9l*'2( ) -» 77*'2( ) » a« equiva-

lence.

This follows from the fact that wpoint: 9L^,2(point) -» 77Jf'2(point) is an isomor-

phism (cf. 1.7 and 1.6(b)).    D

1.9. Corollary. The Hurewicz map p: %*,2(A, B) -* Hn(A, B; Z2) is an epimor-

phism, whose kernel is generated by decomposable elements [XX Y, f ° pxx] —

[x, f] ' [7], where Y is without boundary.

Proof. The epi part follows from Proposition 1.8 and 1.6(c), and the result about

the kernel from degeneracy of the spectral sequence of the homology theory <3l*,2( )

as in [7] (cf. [13]).    D

2. Allowable classes.

2.1. Definition. For any « > 0, let L\ be a subclass of «-dimensional geometric

cycles with boundary, closed under PL isomorphisms, (D", S"~x) E L"d and let L"

be the subclass of L"d consisting of those with empty boundary. Then an L"d-manifold

is an «-dimensional geometric cycle with boundary (A, 3X), such that Vx G A\3A

|Lk(x, A)|GL"-'; Vx G 3 A | Lk(x, A) |G L"fx and | Lk(x, 3 A) | G L"~2. If 3 A

= 0 we will call ( X, 0 ) = A a (closed) L"-manifold.
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An allowable class A consists in each dimension « > 0 of a class A", each member

of which is an Lg-manifold and such that the following global properties hold:

(a) Gluing and cutting. Let ( Ay, 3Ay) G A", Y}• C oXj,j — 0,1, be a component of

the boundary (or several components) and /: 70 -» 7, a PL homeomorphism. Denote

Aj = 3Ay\y;. and A" = A"0 U, A,. Then iX,A0U Ax) G A". Conversely, if iX,A0U

Ax), iXj, oXj) E A", then (*,_,, 3A,_,) G A".

(b) Boundary. If ( A, 3 A") G A", then 3X E A"~ ' and x(3A) = 0 (mod 2).

(c) Product. Let (A, 3A") G A', (7, 37) G A'. Then (A-, oX) X (7, 37) G A'+<?.

(d) 77/oeÄ: bundle. Let P = P(£) be the total space of a &-block bundle ¿''(fibre : Dk)

over an «-geometric cycle A. Then (A, 3X) E A" <=> (P, 3P) G A"+*, where 3P =

P(£/3A) U (the total space of the associated sphere bundle).

(e) Steenrod representability. Denote by %*iA, B) the appropriate notion of

unoriented bordism groups based on the class A, n > 0. Then for any pair i A, B) of

polyhedra, the "Hurewicz map" p„: %^(A, B) - H„(A, B; Z2), p„([X, /]) = /JA]

is an epimorphism and the kernel of p„ is generated by the decomposable elements in

the image of the natural pairing %*(A, B) <S 9l*(pt) -» 9l*(^, 77); that is by

elements [X, f]-[Y] = [X X 7, /° pr,], where/: (A, 3A") -* (y4, P), 37 = 0,

dim 7 > 0.

2.2. Remarks. (1) If (A,3A)GA" and 7 C A\3A is a subpolyhedron and

(N, 3tV) is a regular neighborhood of 7 in A, C = A"\/V, 3C = 3W U 3A, then

clearly from local properties it follows that (N,dN) E A" and by (a), (C, 3C) G A"

(cf. [6]).

(2) Examples of allowable classes include smooth and PL manifolds.

Now, by 1.3, 1.6(b) and 1.9 it follows:

2.3. Proposition. The class Ea(2) of Euler manifolds mod 2 is an allowable class.

□

2.4. Proposition. The class H9(2) of i polyhedral) Z2-homology manifolds is an

allowable class.

Proof. Local properties and the gluing-cutting property follow easily using

Mayer-Vietoris arguments; the boundary property follows by Z2-Poincaré duality.

The product and the block bundle property can be easily checked; cf. [6]. The

Steenrod representabihty follows as in 1.9.    D

3. Stiefel-Whitney homology classes of allowable pairs.

3.1. Definition. Let A be an allowable class. For every « > 0, we assign to every

(A, 3A) G A" a homology class

W(X,dX)= W{X) = W0iX)+ WX{X) + ■ ■ ■ +Wn{X) E 77*(A\3A;Z2)

such that the following axioms hold:

(1) For each integer q,0<q<n, WqiX) E Hn ¿X, oX; Z2), and W0iX) = [X],

the fundamental class of A, and t{W„i X)) = x( X, oX), where e: 770( X, dX; Z2) -> Z2

is the augmentation.
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(2) Restriction. Let ( XJt dXj) E A" and Yj C aXj be one (or several) component of

the boundary, j = 0,1, f: YQ^> Yx a PL homeomorphism. Let X = X0L)f Xx and

3A = (3A0\y0) U (3A,\y,). Then (A, 3A) G A" and rfWqiX) = WqiXf) for every
q,0 < q <n, where

Hn-q(X,oX)->Hm.,(Xj,dXj)

^77„^(A,3AUA,_7)

iij — inclusion).

(3) Boundary. oWqiX, 3A) = WqioX), for (A", 3X) E A", 0 < q =£ « - 1.

(4)Proifwcr.Let(A,3A') G An,(T,3y) G Am.Then WiXX Y) = WiX) X WiY),

i.e. WqiX X Y) = 2(+J=qWtiX) X WjiY).
(5) Normalization. Wq(RPn) = i"qx)xn_q, where x„_q is the unique nonzero

element in Hn_qiRP"; Z2).

WiX) is called the oth, and WiX) the total Stiefel-Whitney homology class of the

allowable pair (A", 3A).

Now we prove existence of these elements for A = E3(2) and A = H3(2).

3.2. Theorem. On the class E3(2) of Euler manifolds mod2 (with boundary), there

exist Stiefel- Whitney homology classes. They are given as homology classes of mod 2

Stiefel chains.

To prove this theorem, we have to check that combinatorially defined homology

classes W( ) of Stiefel chains mod 2 satisfy properties (l)-(5) in 3.1. We do it in the

next lemmas.

First note that axioms (1) and (3) are satisfied by 1.6.

3.3. Lemma. W( ) satisfies axiom (2) on E3(2).

Proof. To prove the restriction property, let us assume first that ( Xj, 3Xj) G E3(2),

j = 0,1, y C dXj a boundary component, A} = oXf\Y, X = A0 Uy A„ i.e. 70 = 7,

= 7,/= id. Then (A", A0 U Ax) E Eg(2). We want to prove that in the diagram

77„_9(A-,3A)->- Hn_q{Xj,dXj)

Hm-,(X,dXUXl_J)(~HH-,(x,X\XJ))

we get i0,WqiX) = eJVq(X0) E 77„_9(A", 3A" U A,), where e is the inclusion which

gives excision. Triangulate X by K, such that K0, Kx, L0, Lx, L axe subcomplexes

which triangulate X0, XX,A0,AX, 7, respectively. Consider the difference

S„_qiK',L'0UL\)-sn_qiK'Q,L'0UL').

It is carried by A, C 3A U A",. Indeed, a simplex (o0 ■ ■ ■ q^) in this difference which

actually occurs is in [K' - (L„ U L')] - [K'0 - (L¿ U L')] = K[- L\. But (o0

• ■ • o?) G K'x — L\ implies oq E Kx — Lx, and hence (o0 ••■•qq) is in A,\^,. Thus
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on the homology level, this difference is zero in Ht(X, 3X U A,). The general case is

similar.    G

It is worth mentioning a few corollaries.

3.4. Corollary (Additivity). Let(Xj, 3A;) G Eg(2),y = 0,1. Then

W{X0UXX) = wix0) + wixx).

Proof. Here Y = Y0 = Yx = 0.    D

3.5. Corollary. Let (Xj, 3 A}) G E"a(2),j = 0,1, A0 n A", = 3A"0 = 3At = Y and

X=X0UyXx. Then ^Wq(X) = WqiY), where A is the Mayer-Vietoris boundary

given by:

Hn_q{X)      'S     H„_qiX,Xx)

M U

Hn.q_,{Y)     r     Hn_q(X0,Y)

Proof. By Axiom (3) and 3.3:

AWq{X) = dr0WqiX) = WqiX0, Y) = Wq{Y).    G

3.6. Corollary. Let (A", 3A") G Eg(2), A C A\3A a subpolyhedron of X and N a

regular neighborhood of A in X with boundary 3/v". Let q: (A", 3 X) -» (TV/BtV, *) be the

natural collapsing map. Then qJViX) = WiN).

Proof. Let C = X\N. Then (C, 3/VH3A) G Eg(2) (cf. 1.3(e)). Then X is the

union of (tV, 3tV) and (C, 37VH3A) and we apply 3.3 using the fact that 77",.(tV, 37V)

~77,.(/vy3/V,*)(cf. 4.6).    D

3.7. Corollary (Suspension). Let A G E"(2), x(A) = 0, A connected. Then

sJVq(X) = WqÇLX), where s„: 77„_?(A) -» Hn_q+x(I.X) is the suspension isomor-

phism.

Proof. SA" E E"+1(2) by 1.3(c). Write SA = c0X U c, A with intersection X. By

3.5 AWq(2X) = Wq(X), where:

77,(SA)     t     77,(SA,c,A)

77,.,(A)      -      77+(c0A, A)

Since A"1 = s+, the claim follows.    G

As a corollary of 1.2, Axiom (3) and 3.4 we get

3.8. Corollary. Let f: X -» Y be an Euler resolution (mod 2) between Z2-Euler

manifolds X, Y. Then fJVqiX) = Wq{Y). In particular, the classes W are PL in-

variants.

3.9. Lemma. Wi ) satisfies the product axiom (4) on E3(2).

Proof of this fact is given in [11] and [13].
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3.10. Lemma. Wn^p(RP") = i"pt\)xp, for all p, 0<p<«, where O^^Ë

HpiRP";Z2).

Proof. Let S" = {(x,,...,xn+1) G Rn+11 2"=,' |x,|= 1). Consider the standard

triangulation on S" with vertices of ' given by

of1 = (0,...,0, ±1,0,...,0)    (/th spot),       /= 1,...,«+ 1.

We order these vertices by v*  < vr  <=> i <j.

Let nn = 2"/~ » where x-x. Then an (ordered) p-simplex of the regular cell

complex IT = n" is of the form op = t?f° ■ ■ ■ v-?, 1 < z'0 < • • • < ip < « + 1, e, G

{-1,1} together with the identifications

u«o ... v'p = «7«o ... v-tPt
'0 'p '0 'p

Let K = n' be the first barycentric subdivision of n. Although 1^, (RPB) is

represented by the sum of all p-simphces of K', it is not hard to prove that it is, in

fact, represented by the sum of all p-simplices of K. (E.g., define a map /: tY' -> A" on

a vertex s of K' as fis) — qp, where s = (a0 • • ■ o^,) G A" and extend it linearly. Then

/ is simplicial, induces identity on homology, xif ~Xy) — I f°r all y E\K\ , and

hence Wn_piK') = W„_piK).)

Now let x E HX(RP"; Z2) be the generator. We prove that

M (**'*-¿*))=(HpX\).
This formula clearly imphes Lemma 3.10. We shah prove (*) on the cochain level,

constructing a cochain cp on K representing xp, such that (*) holds. First let dp be a

cochain on n defined by

/ \      Í1,    if en, e, ,..., e„ alternate,
(dp,v^---vtA = \ °    ' '
v ° ''     (0,    otherwise.

It follows easily that dp represents the generator in cohomology and dp U dq = dp+q.

Now a simplex in K is of the form (o0 ■ ■ ■ q^), where o0< a, < • • • < a G n. For

k = 0, l,...,plet

»* = »^(«j • • • ogjpft >        I ok I = dim ok.

Define

[0,    otherwise.

Since W^_ ( A" ) is represented by 2„o<... <0 en ( °o ' ' ' %> )> we wiH £et as many units

in the sum 20o<...<0 ^n(cp, (fJ0 • - - <^,)) as there are increasing sequences /'0 < i,

< •••</. between 1 and « + 1, i.e. (£+',). This proves (*) and hence Lemma 3.10.

G

For a different proof of this lemma see [3] or [9]. So, 3.2 is proved.

Now we turn to the subclass H3(2) of E3(2) of homology manifolds mod 2. We

prove the existence of S.W. classes on a bit more general class PE3(2) of Euler

manifolds mod 2 which are also Poincaré duality spaces with Z2 coefficients. Note
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that PE3(2) is not an allowable class. On this class of spaces, the Wu class t>, is

defined by

(Sq'x,[X])= (v,U x,[X]),    forallxG77"-'(A,3A;Z2),

so that viX) = v = 1 + », + • • •, x>i G T7'(A; Z2), « = dim A.

3.11. Theorem. On the class PE3(2), and hence on the class H3(2), there exist

Stiefel-Whitney homology classes. They are given by WiX) = Sq u(A) n [A"].

Proof. Let us check that Sq u( A) n [A] satisfies axioms (l)-(5) in 3.1.

Axiom {I). Clearly

Wk(X)=    2   {SqiVjiX)n[X])EHn_k{X,dX;Z2),
i+j=k

W0iX) = Sq° 1 n [A] = [A"], for (A, 3A) G PEj¡(2). Let us prove that eW„iX) =

XÍX). If n is odd, then x(A) = 0, and since Sq'x = 0 for i <p, x E HP(X) and

v¡ = v¡(X) — 0 for /' > «/2, it follows that eWniX) — 0. Now let n be even, say

« = 2p. Then

Wn(X) = J     Sq2"l + ■ • ■ + Sq'+'•>,-< + Sq% + Sq'" V< + ' ' ' + *!%>     n t*l

' o o 0 0 '

= e(v¿n[X])=(ví,[X]).

Now recall that a Z2-Poincaré complex X" has a unique "diagonal" cohomology

class U E H"(X X X) s.t. Un([X]X[X]) = dJ[X], where d: X -» A X A is the

diagonal mapping.

Claim 1. Let {e,,... ,er} be a basis for the Z2-vector space H^(X) and {e*,... ,e*}

the dual basis, i.e., (ef, c,)= o¡j. Then for a G Hn(X),

d.{a) = 2 (e? U e*, a)-e,. X e; = 2(ef n a) X ey.
'.7 7

Proof of Claim 1. Let ¿»(a) = 2c,ye, X ej. Then

c,7 = (e* X ef, dm(a))= (d*(e* X e*), a)= (e* Ue*,a).

Also, (ef U ej, a)= (ef, e* n a) and henced*(a) = 2/e* n a) X e¡.

Claim 2. (UU U,[X]X[X])= (U, d„[*"]>= x(^)-

Proof of Claim 2. Let {e,},= | ^ be a homogeneous basis for the graded vector

space H^(X) and {e*} its dual basis. For / < s, let u¡ E H*(X) be the homogeneous

element with m, n [ A] = e¿. Then t7 = 2ef X u¡ and

un ([A] X [A]) = 2(e* n [A]) x («,. n[A])

= 2(e,*n[A])Xe, = ifjA].

Hence

(UU U, [A] X[A]>= ([/, if #[ A]) = Euler characteristic of (77*( X) n [A"])

= Euler characteristic of A.
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Now recall that vp n [A] =Sq/, A, where Sq is the adjoint operator of Sq, i.e.,

<j8,Sqa) = (Sq ß, a). So we have

(v2,[X])= (d*(vp X vp),[X])= (vp X vp, d.[X])

= (vpxvp,un([x]x[x]))

= (u,(vpn[x])x{vpn[x]))

= (i/,Sq~[AXA]) = (Sqc/,[A]X[A]>

= (UU U,[X] X[X])= (u,d,[X])sx{X).

Axiom (2) iRestriction). Let X= (X0, 3A0) Uy(A"„ 3A",), where Y C 3Ay. is a

component of the boundaries, ,4, = 3Ay\7, dX — A0U Ax. Let e: (A0, 3A"0)->

(X,XXUA0), i: (A,3A")->(A, A, U^0) be inclusions. Clearly, (Ay,3A})G

PE¡¡(2) =>(A", dX) E PE"di2) and 3[A-]/^ = o[Xj\/Aj (see 2.3). We want to prove

that in the diagram

77„(A,3A) * Hm(X0,dX0)

77,(A-,A-,U/10)

i+(Squ(AT) n [A]) = e+(Sqü(A"0) n [A0]). To do this, we need a different descrip-

tion of Stiefel-Whitney cohomology classes w of Z2-Poincaré space. Namely, if

(Z, 3Z) is such a space, w(Z) = w(f¿1), where »<z is a normal fibre space over Z,

and i»¿' its stable inverse (a fibre of vz is a Z2-homology sphere; w(£) for such a

"spherical fibration" £k is defined as 4>"'Sq(7£, where t/{ G HkiTi£); Z2) is the

Thorn class of £). As Adams proved in [1], the Wu theorem still holds for

Z2-Poincaré spaces (in fact, for every Z2-Poincaré duality algebra). Therefore in our

situation (assuming A0, Xx connected),

w{vx) U Squ(A7) = 1,       w{vx) U Squ(A) = 1.

Now starting with vx, we may assume that e pulls back vx to vx and that

i*px = vx. So, e*w(j'^) U Sqt)(A0) = 1. Taking Poincaré duals (n[A0]) on both

sides and applying en, by naturahty of n-product, we get

(1) wivx) n e,(Sqt;(A-0) n [X0]) = ejA0].

Similarly, we get

(2) wivx) n im(SqviX) n[x]) = iJ[X].

Now, e%[ A"0] = / J A"] so that the left-hand sides of (1) and (2) are equal, and then

multiplying by wivx) and using wivx) U wiv'x) = 1, we get the desired equality.

Axiom (3) iBoundary). Let;': 3A" =» A"be inclusion. Let v - u( A, 3A") G 77*(X; Z2)

be the Wu class of A.
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oWpi X, 3A) = 31    2   SqV n [ A"] ]    by stability of n
^ k + l=p I

= (j*2Sqkv,)n[X]

= 2 Sq* j*v, n [3A"]    by (*) below

=    2   Sqkv,_x(dX)n[dX]   by definition
k + l=p

= Wp_x(dX).

(*) j*v,iX) = v,_xioX).

To prove (*), by definition of r/s, it is enough to prove that for any x E H"~'~ '(3 A),

the following holds:

(**) (Sq'x,[dX])= (xUj*v„[dX]).

But the right-hand side is

(x Uj*v„d[X]) = (Six Uj*v,),[X])    bystabihtyof U-product

= (ôx U v,, [A])    by definition of v

= (Sq'(5x),[A])= (SSq'x,[A]) = (Sq'x, [3A"]>.

This proves (**), so (*) and hence Axiom (3).

Axiom (4) iProduct). This follows by the Cartan formula, multiplicativity of the

n-product and the fact that u( A X 7) = i>( A) X u(7). The last fact can be proved

as follows. Since A, 7 are compact and the coefficients are Z2, by Künneth

H\XX Y) ~ H*X® H*Yviax ®y r+ x Xy. Writez G77*(AX 7)asz = xXy,

x G 77* A, y G 77*7 and (assuming A, 7 connected)

Sqx = u(A)Ux,     Sqy = u(7)Uy.

Multiplying these relations we get

Sq(xXy) = (u(A)Xt;(7))U(xXy),

or

Sqz = («(A") X t>(7)) Uz    for all z G77*(AX 7).

Axiom (5) {Normalization). On smooth manifolds X, Sqt;(A) is the S.W.

cohomology class w(X) (Wu theorem), and since we know w(RP") = (1 + x)"+x, it

follows that

WpiRP") = Poincaré dual of wp{RP") = (" + l \x„_p,

where 0 ¥* x„_p €= H„_p(RPn).

Theorem 3.11 is proved.    Q

4. Uniqueness of Stiefel-Whitney homology classes on allowable classes. In this

section we prove the axiomatic characterization of Stiefel-Whitney homology classes

on any allowable class.
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4.1. Theorem. On any allowable class A there is at most one class W( ) satisfying

axioms (l)-(5) in 3.1.

In proving the uniqueness, the main ingredients are block bundle transversality

and a Thom-Sulhvan interpretation of cohomology as certain morphisms from

PL-bordism into Z2, associated to a given cohomology characteristic class of PL

manifolds, a construction often used in surgery. We use some ideas from [13].

If | = (P D B) is a <7-block bundle and/: (P, 3P) -» (P, 3P) a map transverse to

|, we write/ -L £. For a treatment of transversahty see [13] or [14].

Denote by %lLiA, B) the «th nonoriented bordism group based on PL manifolds

of the polyhedral pair iA, B), and let w( ) denote Stiefel-Whitney cohomology

classes of PL manifolds. Then there is a bijection (Thom-Sulhvan)

{a E Hoxn(%lh{A, B),Z2) \ a[V0 X Vx, /, ° pr2]

= x(V0)a[Vl,fx],dV0= 0,dimFo>O} ~ {z E H*iA, B;Z2)}.

The correspondence is given by a[V, f] = (f*z U wiV),[V]); cf. [13] or [5, Ap-

pendix].

4.2. Lemma. Let A be an allowable class, X E A", (M, dM)"+p a PL manifold, and

<p: I^IntM a PL embedding. Then there is a unique homomorphism Xx:

%p+iiM, dM) -> Z2 with the following property: if f: (F, dV)p+l -* (A7, dM) is a

map from a PL manifold (V, dV) with f±X and transverse intersection T, then

XxlV,f] = XiT)imod2).

Proof. Every element in 9lJ+,(A7, dM) can be represented by /: (V, dV)p+i -*

(M,dM) transverse on X. Then the transverse intersection PG A', by 2.1(c), (d).

Now, let /': (V, dV) -* (M, dM) be bordant to (V, /), i.e. determines the same

element in 9lJ^,(M, dM), f J. A. Then the associated transverse intersection T is

equal to P in 9l,A. It is easy to see that 2.1(b) imphes xiP) — XÍT')- So Xx ls we"l

defined, clearly unique, and it is easy to check that it is a homomorphism of groups.

G

Furthermore, by the transversality theorem it follows that x x nas me property

Xx[^XF1./1°Pr2]=x('/o)x;,[F,,/,],   where dV0 = 0

and

Pr2 /l

Now, applying the above 1-1 correspondence on a = Xx, tne following definition

is justified.

4.3. Definition. Let A G A", iMn+p, dM) a PL manifold and <p: X =» M a fixed

PL embedding of X into the interior of M. Denote by T,(<p) e Hp+\M, dM; Z2) the

unique class such that for any map /: (F, dV) -* (M, dM) from a PL manifold

iV, dV) we have

Xx[V,f]=(f*T(<p)Uw(V),[V\),
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where t(<¡p) = T0(<p) + T,(<p) + • • • G 77*(A7, 3Af; Z2) is called (total) transversality

class of the embedding tp, and w( ) is the Stiefel-Whitney cohomology class on PL

manifolds.

Now we begin with the proof of 4.1—the uniqueness of the classes Wi ) on the

fixed allowable class A. The idea is to show axiomatically that S.W. classes

determine and are determined by the transversahty classes. Then by the uniqueness

of the transversahty classes, the uniqueness of the S.W. classes follows.

More precisely, we shall show (axiomatically) that whenever Wi ) satisfies axioms

(l)-(5) on A, the following relationship between S.W. classes and transversality

classes hold: Let A G A" and embed X in some R"+p, and let N be a regular

neighborhood with boundary 3 TV, <p: X °» N an embedding into the interior of TV. Let

DN= n[NV- Hp+*iN,dN)^H¿N)be the Poincaré duality for N (Z2 coeffi-

cients). Then

for all singular manifolds/: (F, dV) -» (tV, 3tV).

We now start proving this relationship. Let ¿* = (P D B) be a PL block bundle,

and g: 7 -> B a map from 7 G A". Let V = P(g*£)- Then by 2.1(d), (F, dV) E Ap+k,

and by definition of pull-back this construction gives rise to a homomorphism ^:

%piB) -> %p+kiE, 3P) defined by fy[Y, g] = [V, /], where/is a natural extension

of g. By ^-transversahty theorem [13], it follows that ^ is an isomorphism.

4.4. Lemma. Suppose W satisfies axioms in 3.1. Let ik be a block bundle over B.

Then there is a unique class f(£) = i0(£) + t,(£) + • ■ •, t,({) G Hk+i{E, dE), such

that for any map f: (K, dV) -» (P, 3P), / transverse on & (V, dV) E A, X(f~lB) =

(r(è), fMV)) holds.

Proof. We shall construct tj(£)'s inductively on i. First note that x ° '/'j ':

9l£(P, 3P) -> Z2 is zero on decomposable elements, and this is because ^ is an

isomorphism of 9lA-modules, and so is t^-1. Now one apphes 2.1(e), ¿-transversality

theorem and Axiom (1) to get f0(£).

Now suppose we have constructed t^(£) for ally < p. Consider the homomorphism

a: ?lp+kiE, dE) -» Z2 defined by

<*[v,f] = x°4>(l[v, f]+2 (rjU),f*wk+J{vj).
j<p

(It is, indeed, a homomorphism by additivity—special case of Axiom (2).) By

Axioms (4) and (1) and by inductive hypothesis it follows that a is zero on

decomposable elements and hence it defines a homomorphism Hp+kiE, dE) -» Z2

which determines rpi£). Applying the above construction to the family (F,, /) of

"singular A-manifolds", such that {/• [F¡]} generates 77#(P, 3P) (which exist by

2.1(e)), we get the uniqueness of t.    Q
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Let |* = (P D B) be a block bundle and denote by d>*: 77*(P) -» 77*+ *(P, 3P)

the Thom isomorphism for £. Define vv(£) G H*(B) by t(£) = <f>*(iv(£)), or on

components *>,(£) G 7P(P) by ij(£) = </>*(*,(£)) G 77*+'(P, 3P).

Then it is a matter of checking that w( ) satisfies the following properties:

(a) If g: B' - B,ihen iv(£') = g*w(Z), where £' = g*(£).

(b) w(£ © tj) = iv(£) U vv(tj), where £ © t/ is the Whitney sum of block bundles

£, tj over B.

(c) If y,¡ is the canonical hne bundle over RP", then w(yxn) = 1 + x + • • • +x",

whereO^xGTí'íRP").

To prove (a), let P' = P(£'), and let g: (P', 3P') -» (P, 3P) be the canonical

extension of g. If/: (F, 3F) -» (P', 3P') is transverse to £', then g ° fis transverse to

£. Now two classes g*r(¿) and f(£') both satisfy Lemma 4.4, and then by the

uniqueness of f it follows that g*T(£) = t(£') and hence (by naturahty of Thom

isomorphism) we get (a).

To prove (b) it suffices to show the following: if £ and £' are block bundles over B

and B', respectively, and £ X £' their (external) product over B X B', then h>(£ X £')

= vv(£) X vv(£')- To show this, it is enough to check that t(£) X f(£') satisfies the

formula in Lemma 4.4 for "singular A-manifolds" of the form {Vt, f¡) X (Vf, ff)

where {/JF,]} generates 77^(P) and {fft[VJ]} generates H^(B'). But this follows at

once by multiplicativity of x and Axiom (4).

To prove (c) consider the Thom space T(yxn)^RPn+x. Then {jJRPq]}q gener-

ates 77+(RP"+1), where/: RP? =» RP"+1 are canonical inclusions. Note that/ - Tj',

where Tj' is an induced map on the Thom space-level off: RPq~x ■=* RP"+1 and

Tj' ± y¡,. Now (c) follows from the uniqueness of f, the fact that x = £Li (= Thom

class of y^) G 771(RP"+1) and

(*) x(RPq~X) = (x + x2 + • • • +xn+xJJViRPi)).

To prove (*), observe that x(RPi_x) = q (mod2). The right-hand side of (*) is

(j*x+ ■■■ +j*xq +j*xq+x + ■■■ +j*x"+x, WiRPi))

= 2 (xq-i,Wi{RPq))=  2 lq+l)=2i+x-2-q = q    (mod2)
i = 0 ( = 0 ^       '       '

by Axiom (5). So (a)-(c) are proved.

Note that if £ is a vector bundle, then iv(£) = (w(£))_1 = dual cohomology

Stiefel-Whitney classes of £, because (a)-(c) characterize (w(£))"' for vector bundles

£ (cf. [16, p. 86]). So we have proved

4.5. Lemma. 7/£ is a vector bundle over B, then vv(£) agrees with (w(£))_1 in H*(B).

G

4.6. Lemma. Let (X, 3A), (7, 37) G A" such that 7 C A\3X Let Z be the

complement of the interior of 7,3Z = 3ATI37 and q: (A, 3A) -» (7/37, *) the

collapsing map. Then (Z, dZ) G A" and qJV(X) = IF(7).
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Proof. By the cutting property 2.1(a) it follows that (Z, 3Z) G A". Since (7, 37)

is a polyhedral pair we have the natural isomorphism HJJÍ, 37) — 77,(7/37, *), so

that by the Restriction Axiom 3.1(1), and by commutativity of the diagram

f ; *
77,(A,3A)-^77,(7, 37) ~ 77,(7/37,*)

kri,(l,3JiU Y)'

Lemma 4.6 follows.    G

4.7. Lemma. Let W( ) satisfy Axioms 3.1 on A. Let £k be a vector bundle on a

polyhedron B, f: (A, 3A) -+ (P(£), 3P(£)) transverse on £, where (X, dX) E A". Let

Y"~k = f'x(B), g = f/Y and N a regular neighborhood of Y in X such that N is the

total space oft] = g*£. Then (N, 37V) G A" and

X(7)=(<,*(w(r,)-1),IF(7V)).

Proof. (A/, dN) E A follows from the transversality theorem and 2.2(1). By

Lemma 4.4

x(7)=(/*f(£),IF(A)>.

Now let q: (A, 3A) -* (tV/9tV, *) be the natural collapsing map. Since £ is a vector

bundle, it follows by Lemma 4.5 that t(£) = ¿>*(h'(£)"1) and hence

/*t (£) = /*<#>*( w(£)~ )    by the commutative diagram below

= ?*<>*( g*(vv(£)~'))    by naturality of w( )"'

= q*4$(w(it)-1).

Now Lemma 4.7 follows from Lemma 4.6: qJViX) = WiN). The diagram

,77*(A\3A)>

V                     /*"
H*iÑ, dN)<-77*(P, 3P)

</>; î î *?

77*(7) <-^77*(P)

commutes.    Q
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4.8. Proposition. Let Wi ) satisfy Axioms 3.1 on an allowable class A. Let A E A"

be embedded in a euclidean space R"+p (p big enough). Let TV be its regular

neighborhood and tp: X ** TV a PL embedding. Then

r(q>) = D-Nx<pJViX) E H*{N, 3TV),

where DN: Hp+ *(TV, 3TV) -» 77,(7V) is the Poincaré duality and t(<¡p) the transversality

class.

Proof. We prove first t,(<¡p) = Dt^fpiAViiX), for i < «/2. It suffices to prove

xx[v, f] = (f*(D-Nx<vMx)) u *(V),[V})

for all (F,/) for which {/JF]} generates ®J<n/2Hp+JiN,dN). Let xG

Hp+l(N, 3TV) » H--'(N) * H"-\X), i < n/2 and denote k = n - i. Since « < 2k,

x can be represented by fx: X ^ Tyk, where yA is the universal vector bundle over Gk

and/, -L yk. Let 7' = fx'xiGk) and let tj be a normal bundle on 7in A, P(tj) its total

space. Let qx: A-» P(ï})/3P(tj) be the collapsing map and choose a deformation

retraction r: TV — A such that ç, °r TV -» P(r/)/3P(rj) is transverse to tj on a

neighborhood of 7. This gives rise to a PL manifold iV,dV)p+i and an embedding

/: (V, dV) -* (TV, 37V), /-LA, with the transverse intersection 7 and /,[F] = x G

Hp+i(N,dN).

Let £ be a normal (disk) bundle of /, P(£) its total space, and 3P(£) the total

space of the associated sphere bundle. Let /: (P(£), 3P(£) H TV) <=* (TV, 3TV) be

inclusion and q: N -> P(£)/3P(£) Thorn's map for £. Note that on homology #, acts

as DE{i)j*Dñx (i.e. like "Umkehrung"). Since TV is parallelizible, for the tangent

bundles we have Tv © £ = TN/Vand so w(F) = w(£)_l; hence

/*(p>^V^(^"))uw(F),[F]/

= (f(DM^)|u»(ir'^n[£(i)])),

where t/j is the Thom class of £, p its projection.

Now the following diagram commutes (up to homotopy):

P(£)/3P(£) <-

?TV <- X<-

P(t,)/3P(t,)

'EM
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where unnamed arrows are natural projections, and \p is induced by inclusion

(P(tj), 3P(t/)) ■» (P(£), 3P(£)). Let us continue our computations:

(/*(7)^«p^(^))uH;(£r1,p,([/în[P(£)]))

= (p*[f*(D¿q>MX))uw(i)-1] U t/£,[P(£)])

= (j*DNx<pMx) Up*w(£)-' U i/t, [£(€)])

= (${»{*)-'), J*(D-N\pM*)) n[£(€)])

= ( <i>* ( w( £ )~ ), qjpJViX))    by the diagram above

= (*t{Ht)~l),*4i,W{X))    by Lemma 4.6

= (<Í'*<í>|(m'(£)   ),W(E(-q)))   by naturality of Thorn isomorphism

= {<t>*{Hv)'l),W(EM))    by 4.7 (v™(f/Y)*yk is a vector bundle)

= x(Y)=Xx[V,fl
So by the uniqueness of the classes t((¡p), it follows that

rfo) = DjfoMiX)    for/<«/2.

Now the general case follows replacing X" X SK (A" big enough) and using Axioms

(1) and (4): W(Xn X SK) =WiX)X [SK]. Now we prove uniqueness. Let A be a

closed A-space, i.e. 3 A = 0. If Wi ) and W'i ) satisfy our axioms then by the above

construction,

D^pJViX) = DNx<p,W'{X) ^W{X)= W'iX).

If (A, 3A) G A", we form the double 2A G A" and then by (iterated) Axiom (2):

rWi2X)=W(X,dX), rW'(2X) = W\X, dX) and since for closed A-spaces,

W(2X) = W'(2X), we get finally IF(A", 3A) = W'iX, 3A). So the uniqueness, and

hence Theorem 4.1, is proved.    Q

4.9. Remarks. (1) Instead of Axiom (3) as stated, we only need the following

weaker

Axiom (3'). Let (A, 3 A) G A" and P C 3 A be a subpolyhedron. Let

3A^(3A,P)^(A,P)
7 k

be inclusions. Then (kj)JV(dX) = 0 G 77,( A, P). Clearly, Axiom (3) => Axiom (3').

(2) Let 77, denote simplicial homology based on locally finite, possibly infinite

chains. Then all the results can be carried over to the corresponding theory using 77,

instead of 77,.

Now there are several Stiefel conjecture-type consequences of our axioms. On

smooth manifolds the first detailed proof of it appears in [10], considering smooth

vector fields on a manifold. Since then some other proofs are known; e.g. [3] and

[13]. From our considerations the proof of the Stiefel conjecture for allowable classes
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of smooth or PL manifolds goes as follows: Let Af " be such a manifold, <p: M •=•* TV

the zero section of the normal disk bundle

v= {N"+p,r,M),   tf:H*iM) -» 77"+ *(TV, 3TV)

the Thorn isomorphism. Then by the uniqueness of t(<p), t(<¡p) = </>*(>*>( A/)) and

hence

WiM) = r*DNTi<p) = r,DNtfiw{M)) = DM(w(M)).

Another proof of the Stiefel conjecture for smooth (or PL) manifolds is to show

first that our axioms imply Blanton and Schweitzer's axioms [4] on smooth mani-

folds. Then by their uniqueness and by our existence part (i.e. that combinatorially

defined classes satisfy our axiom, see §3) the Stiefel conjecture follows.

To prove that our axioms imply Blanton and Schweitzer's, we just have to check

Axiom (2) of Blanton and Schweitzer. But this follows as Theorem 1 in [3] from

Propositions 1 and 2 and Lemma 1. The role of Lemma 1 plays our Axiom (3).

Taking for allowable class the class H3(2), we finally get the following

4.10. Corollary. On the class of Z2-homology manifolds, combinatorially defined

homology Stiefel-Whitney classes agree with Poincarè duals of Stiefel-Wu classes (i.e.

W(X) — Sq v(X) n [A]). 7« particular, W(X) is a homotopy invariant.

It can be shown (McCrory, unpubhshed) that Halperin's conjecture (cf. [8, p. 112])

implies also our Corollary 4.10. The same result was obtained by L. Taylor [19] by

using some techniques of Quinn.

We conjecture that the analogue of Corollary 4.10 is true for the class PE(2) of

Euler manifolds mod 2 which are Poincarè duality spaces with Z coefficients. (One

problem is that we do not know anything about regular neighborhoods of subpoly-

hedra in these spaces.)

At the end we mention only that by analogy with "tangential" S.W. classes, we

can define normal (or dual) S.W. homology classes W(X) E 77,( A; Z2) for X E A",

where A is an allowable class as follows.

Let <p: X" ■* N"+p be an embedding into a euclidean regular neighborhood (p big

enough) and r: TV -> X a deformation retraction. Define IF,(A) = r^DN Sq' rQ(q>) E

Hn_i(X; Z2). Since r0(<p) = D^x<pJV0i A), it follows that

Wi{X) = r,DNSqiDNx^[X].

In case Ais a smooth manifold, W\\X) = Dxw,iX), i.e. Poincarè dual of the normal

Steifel-Whitney cohomology class. A combinatorial formula for these normal classes

is given in [2].
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