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SEMISTABILITY AT THE END

OF A GROUP EXTENSION

BY

MICHAEL L. MIHALIK

Abstract. A 1-ended CW-complex, Q, is semistable at oo if all proper maps r.

[0, oo ) -» Q are properly homotopic. If Xt and X2 are finite CW-complexes with

isomorphic fundamental groups, then the universal cover of X¡ is semistable at oo if

and only if the universal cover of X2 is semistable at oo. Hence, the notion of a

finitely presented group being semistable at oo is well defined. We prove

Main Theorem. Let 1 —»//—*G-*AT—» 1 be a short exact sequence of finitely

generated infinite groups. If G is finitely presented, then G is semistable at oo.

Theorem. // A and B are locally compact, connected noncompact C W-complexes,

then A X B is semistable at oo.

THEOREM, (x, y: xybx~x = yc\ b and c nonzero integers) is semistable at oo.

The proofs are geometrical in nature and the main tool is covering space theory.

I. Introduction. The theory of ends of groups was begun by Freudenthal [2] and

Hopf [6]. In this paper we begin the study of a (possibly) more delicate notion: the

semistability at oo of a group.

If G is a finitely presented group and X is a finite CW-complex with 77,( X) = G,

let X represent the universal cover of X. An equivalence relation <w is put on the set,

A, of all proper maps [0, oo) -» X as follows: r » s if for each compact set C C X

there is an integer N(C) such that r([ N(C), oo)) and s([N(C), oo)) are in the same

unbounded path component of X — C. (A path component of X — C is unbounded

if it is contained in no compact subset of X.) The set of ends of G can be defined to

be A/** . We note that A/** is the set of weak proper homotopy classes of proper

maps [0, oo) -» A^as introduced by Chapman [l].1

If G, X, and A are as above we say G is semistable at oo if for each e G A/^ and

any two proper maps r, s: [ 0, oo) -» X of e, r and s are properly homotopic. If G is a

finitely presented group the semistability at oo of G is independent of the choice of

X[Z,9\.
The above named authors proved that the number of ends of a finitely generated

group G is either 0, 1, 2 or oo. Moreover they classified 0-ended groups ( = finite

groups), and 2-ended groups (= those having an infinite cyclic subgroup of finite

index). In [11] Stallings classifies oo-ended groups (certain kinds of amalgamated

free products and HNN extensions). Naturally one wonders whether the ends of a
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finitely presented group are all semistable. The answer is trivially yes for 0-ended

groups, and yes for 2-ended groups (Theorem 3.3). For oo-ended we have no

information. Here our main concern is the 1-ended case:

Conjecture. A 1-ended group is semistable at oo.

For any locally compact space, S, we can define its ends and the semistability at

oo of S as in the case of X above. There are many spaces which are not semistable at

oo. In fact by [3] if S is 1-ended and r: [0, oo) -» S is a base ray (i.e. a proper map),

then there is a bijection between the proper homotopy classes of maps [0, oo) -» S

and lim'c^compac, {^(S — C), r}. Hence (Theorem 2.1) S is semistable at oo if and

only if the inverse sequence of groups {tt,(5 — C,), r) is semistable for some

(equivalently any) exhausting sequence {C,} of compact sets.

Theorem 2.1 shows that Whitehead's Contractible 3-Manifold (see [12]) and

3-manifolds of similar construction [10] are not semistable at oo. Hence, if our

conjecture is true, then such manifolds are not universal covers of closed 3-mani-

folds. This would solve a long standing problem.

Now we state our results.

Theorem 3.2. Let \^*H->G-*K^>\ be a short exact sequence of finitely

generated infinite groups. If G is finitely presented then G is semistable at oo.

We remark that the weaker conclusion "G has one end" was proved by Stallings in

[11]. Furthermore, Theorem 3.1 implies that if Whitehead's Contractible 3-Manifold

is the universal cover of a closed 3-manifold, M, then w,(M) is not a group extension

of an infinite finitely generated group by an infinite finitely generated group, a result

that can be easily proved by earlier theorems of Hempel and Jaco [5] and Lee and

Raymond [9].

Theorem 2.2. // K and L are locally compact, connected, noncompact CW-com-

plexes, then K X L is \-ended and semistable at oo.

The conclusion "K X L has one end" is straightforward.

Theorem 2.2 can be used to prove that various classes of 1-ended groups have one

strong end. In particular, there is a well-known class of finitely presented groups

which are not 3-manifold groups: (x, y: xybx~x = yc; b and c nonzero integers)

which can be shown, using Theorem 2.2, to be semistable at oo.

I learned of the conjecture that all 1-ended finitely presented groups are semista-

ble at oo and in particular of equivalent algebraic and geometrical formations of this

conjecture from R. Geoghegan, though he believes the conjecture may be known to

others.

II. Products and preliminaries to the Main Theorem. We begin this section by

proving the equivalence of a geometric and an algebraic formulation of the question:

Are all 1-ended finitely presented groups semistable at oo? (See §1.)

Theorem 2.1. If X is a finite CW-complex and X, the universal cover of X, is

l-ended then all proper maps of [ 0, oo) -» X are properly homotopic if and only if the

inverse sequence of groups {n^X — C¡), r} is semistable (S-S): An inverse sequence of
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groups G, <-/lG2 <-'2 is S-S if for each positive integer, n, there is an integer, M(n),

such that the images of all groups, Gk,k>M{n), in Gn are equal.

Proof of if. {■ïï](X — C,), r} being S-S means that for any compact set C C X

there is a compact set, D(C) C X, such that for any compact E D D and loop, a, in

X — D (a is based at r), a is homotopic rel(r) to a loop in X — E by a homotopy

whose image lies in X — C. Without loss of generality assume that D(C¡) is C,+1. I.e.,

a loop in X — C¡, based at r, is homotopic to a loop in X — C,+ , rel(r), with the

homotopy taking place in X — C,_i. Let s: ([0, oo),0) -> (X, *) be a proper map.

(Here * = r(0).) It suffices to show r and s are properly homotopic. X — C, has one

unbounded path component, Lt. Choose a, G [0, oo) such that s([a¡, oo)) C L, and

r([a¡, oo)) C L,. Without loss assume that a, < a,+1 for all f. Let y,: [0,1] -» L, such

that y,(0) = s(ai) and y,(l) = r(at) = x,. Let ft and «,: [0,1] -» * by j8,(0 =

r(a, + r(fl/+I - a,)) and a,(t) = s(ai + i(a,+ 1 - a,)).

Figure A

Define y0: [0,1] -» {*} -» X to be the constant path. Let <5, be the loop /?,~ lyictiy¡l\.

(The convention here is to read from right to left, i.e. fifly¡aly¡~] is the loop

determined by the path y~\ followed by the paths at, y¡ and ß~x in that order.) It is

easy to show that s, which we represent by (a,, a2,...) is properly homotopic to the

map of [0, oo) -> X represented by (ô,, /?,, S2, ß2,...). Since X is simply connected,

S, is trivial rel{0,1}. Using the fact that {(X - C,), r¡) is S-S we define proper maps

[0,1] X [0, oo) -» X that "slide" the loops, 5,, arbitrarily far out along r for / > 2.

Choose //,: [0,1] -» [0, oo) - X for i > 2 such that /Í, | [0,1] X {0} = 5„ H,(0, t) =

#,(1, 0 = /-(a, + i) for t G [0, oo), //¿ | [0,1] X {/} has image in X - CJ+¡■_, for

/ G {0,1,2,...} and finally i/, is chosen such that H¡ \ [0,1] X [j, j + 1] has image

in X — Cy+,_2 (take C0 to be 0). We have only used the fact that a loop in X - C,

at r is homotopic, rel(r), to a loop in X— Ci+l, with the homotopy taking place in

X - C,_,. Define AT,: [0,1] X [0,1] -» X such that K¡(a, b) = ßt(b) and define ff,:

[0,1] X [0,1] -» X so that i/,(i, 0) = 50(i) and ^({0,1} X [0,1] U [0,1] X {1}) =

{*} fitting these homotopies together as described in Figure B defines a proper

homotopy of r to (5,, /?,, ô2, ß2,...) and thus r and s are properly homotopic.

Only if. Let {G, <-'iplG2 <^'f2 ■ ■ ■ } = {G„} be an inverse sequence of groups.

lim'{Gn} is the pointed set of equivalent classes under the equivalence relation on

n„>0Gn defined by (xn)~ (yn) if there is (g„) such that {yn)= (gnxny„(g-l¿).
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Figure B

Here <p„: Gn+1 -» G„ is the «th bond. To say that lim'{G„} is trivial is to say that the

function d: IIn>0 G„ -» n„>0 G„ which takes <g„) to (gn<pn{g~lx)) is onto. lim'{G„} is

trivial if and only if {G„} is S-S (see [3]). (Although the definition of lim1 is misstated

in [3] only the fact that d is onto is used there.) Hence it suffices to show, if all

proper maps [0, oo) ^ X are properly homotopic, then lim1 is trivial. Since r:

[0, oo) -» X is proper we may assume r([n, oo)) C X — Cn for n > 0. Represent r by

(et, e2,...) where <?„: [0,1] -» X and e„(t) = r(n + t). (Hence lm(ek) C X - Cn for

all k > n.) Assume that the base point, * , of itx(X — Cn, *) is e„(l). Choose (mn)

and </„> in II „>,,(",(* " Cn), *) (see Figure C). We show (mn)~ (/„>.

Figure C

Since all proper maps [0, <x>)-> X are properly homotopic choose a proper

homotopy F: [0, oo) X [0,1] -» X, of (e,, m„ e2,...) to (ex, /,, e2, /2,...). Choose

n(j) so that F([2(n(/)), oo) X [0,1])CÎ- C,. Let g,: [0,1] -» f be defined by
gi(t) = F(n(i),t) and let

h¡ = /-V+1,/,"+1ie,-+12 • ■ • C(!)g,wn(,) • • • el+2mi+iei+im,

(see Figure D representing [0, oo) X [0,1]).

By definition, the bonding maps rp( of {trx{X - C,), /•} are such that <p,-(A/+1) =

*i+iA/+i*i+i- It remains to show that w, is homotopic rel{0,1} to {f>i(hi+x))~xlihi in
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Figure D

X-C¡. We show mx~<px(h2)~xlxhx rel{0,1} in X - Cx. The general case is

completely analogous.

<px(h2)~llxhx = e2xm2xe^m-^ ■ ■ ■ w;(2)g2_1/„(2) • • • l3e3l2e2lxlx~xe2ll2x

■••lñ(\)Z\mn(\ym2e2m\-

Eliminate edges and their inverses, and the loop, e~JX)+xm~xX)+x • • • m^2)g2xln(2)

■ ■ ■ /„(,)+,/„(i)+igi, which is homotopically trivial in X - C, (see Figure D). What

remains is mx, and Figure D shows the induced homotopy takes place in X — Cx.

In [8] B. Jackson shows that if 1 -» H -» G -» K -» 1 is a short exact sequence of

infinite, finitely presented groups and either H or K is 1-ended then given any finite

complex X with irx(X) = G and any compact set C C X, there is a compact set

A(C) C X such that any loop in X — A(C) is homotopically trivial in X — C. In

particular G is semistable at oo. (This result is also proved in [7].)

Given a presentation P = (g,,...,g„; rx,...,rb) for G, one builds the standard

2-complex, XP, with irx(XP) = G, as follows: There is only one vertex, * . For each

generator, g,, attach a loop at * . Now attach 2-cells to these loops according to the

relations rt. The universal cover of XP, XP, can be constructed as follows: The

1-skeleton of XP is the graph of G with respect to <g,, g2,... ,g„) where the graph of

a finitely generated group, G, with respect to generators (g,, g2,.. . ,g„) is a

1-complex with one vertex for each element of G and an edge between vertices, vx

and v2, if v\~lv2 G {g,, g2,...,g„}- This complex is denoted L(gx, g2,...,g„>. The

vertex corresponding to the identity of G will be denoted * , as will all base points.

Attach 2-cells to this 1-skeleton according to the relations r, (see [8]). Hence the

edges of XP correspond to the groups elements gx±l,... ,g^] and the vertices of XP

correspond to the elements of G. Any edge path (e,,...,ek) of XP corresponds to

(e[,e'2,...,e'k) where e\ G {gx~\...,g^1}; but to obtain a direct correspondence

between edge paths and the corresponding list of generators, it is necessary to

specify the initial point of (ex,...,ek), when referring to (e[,...,e'k), since at any

vertex v, (e'x,...,e'k) determines an edge path (that differs from (e\,... ,e'k) at the

vertex w by a covering transformation). Any proper map r. ([0, oo), {0}) -> (XP, *)

is properly homotopic to a map r'\ ([0, oo), {0}) -* (XP, *), where r' is a proper edge

path to oo. Hence r' can be represen ted as (ax, a 2,...> at * where af G {g,,...,g„}.
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If v is a vertex of XP and S C XP let S ■ v be the image of S under the covering

transformation taking * to v.

If A is a subset of a finite complex X then St(^) consists of A along with

F(/4) = the set of all vertices of X that can be reached by edge paths with initial

point in ,4, of length 1. Also the vertices of A are in V(A). Finally St(A) contains the

«-cell (n s* 1) C if the vertices of C are a subset of V(A). StN(A) is defined

inductively as St(Stw_l(i4)).

Theorem 2.2. // L and K are locally compact, connected, noncompact CW-com-

plexes then K X L is semistable at oo.

Proof. We may assume that L and K are 1-dimensional since each proper map

[0, oo) -> L X K is properly homotopic to a map of [0, oo] into the 1-skeleton of

L X K, which is contained in the product of the 1-skeletons of L and K.

Remark 2.3. If C is a compact subset of a locally finite connected CW-complex,

L, then the union of C and all bounded path components of L - C, is compact in L.

If a is an edge path in K with initial point x, and v is a vertex of L then there is an

edge path associated to a in K X L with initial point (x, y). We call this edge path a

at (x, y). Let * denote the base point of both spaces K and L, and q: ([0, oo),

{0}) -+ (K, {*}) be a proper edge path to oo such that a is a homeomorphism onto

its image, q at (*, *) will be our base ray in K X L.

Let K0 and LQ be compact subsets of K and L respectively such that K — K0 and

L - L0 are unions of unbounded path components. If x G K — K0 let rx: ([0, oo),

{0}) -» (K - K0, {x}) be a proper edge path to oo such that rx is a homeomorphism

onto its image. If x G K0 then let rx: ([0, oo), {0}) -* (K, {x}) be any proper edge

path to oo such that rx is a homeomorphism onto its image. If v G L - L0 let sy:

([0, oo), {0}) -> (L - L0, {y}) be a proper edge path to oo such that sy is a

homomorphism onto its image. If e is an edge of L and rx is an edge path of K then

<? * rx at (x, é>(0)) is an edge path in K X L with initial edge {x} X e followed by the

edges of rx at (x, e(\)).

Lemma 2.2.1. Let e be an edge of L and x G K. If e is an edge of L - L0 or

x G K - K0 then rx at (x, e(0)) is properly homotopic to e * rx at (x, e(0)), by a

homotopy with image in K X L — K0X L0.

Proof. The homotopy is constructed by using the product of the edge e with each

edge of rx. If rx = (r„ r2,...) then r¡ X e has image in K X L - K0 X L0 for all i,

since either e misses L0 or r, misses K0 for all / (see Figure E).

frtciU    'í'fr'*.    r>xíece)\

ff

(X,eo))       r>x\eii)}     r,x[etol

Figure E
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Lemma 2.2.2. If(x, y) G K X L - K0 X L0 then rx at (x, v) is properly homotopic

to syat(x,y)bya proper homotopy with image in KX L — K0X L0.

Proof. Either x G K - K0 or v G L - L0, hence either rx has image in K - K0 or

sy has image in L - L0 and therefore any edge of rx cross product with any edge of

sy has image in K X L - K0 X L0. Since rx and sy are homeomorphisms onto their

respective images the map of Figure F defines a homeomorphism of [ 0, oo) X [ 0, oo)

onto its image in K X L — K0 X L0 and therefore a proper homotopy of rx at (x, y).

(Here we use rx = (r„r2,...>, sy = (sx, s2,...).)

IrfxS,

VI xS,

r. x S.

r, x s,

r,*Sa

^S,

(*,>*)    r.xfyj    r>xSyJ

Figure F

Recall ö: ([0, oo), {0}) -* (Ä", {*}) is a proper edge path to oo such that o is a

homeomorphism onto its image and q at (*, *) is our base ray. Choose m G

{0,1,2,...} such that q([ m, oo)) C K — K0. Choose a compact set Kx C K contain-

ing K0 and q([0, m]). If k G («i + 1, m + 2,...} we assume without loss that

rqik){t) — q(k + t). Let (a0, ax,.. .,a„) be an edge loop in K X L — Kx X L0 based

at q, i.e., a0(0) = an{\) = o(A:) for some A: G {w + 1, w + 2,...}. By Theorem 2.1,

it suffices to define a proper map H: [0,1] X [0, oo) -* K X L — K0 X LQ such that

H:   [0, 1] X {0}   is   the   edge   path   (a0, ax.an)   and   H(0, t) = H(l, t) =

q(k + t) for all t G [0, oo). Each edge of (a0, ax,...,an) is either an edge of K

cross product a point of L or a point of K cross product an edge of L.

(a0, ax,...,an): [0,1] -» Ä" X L is defined by a linear map of [i/(n + 1),

(/ + !)/(« + 1)] to the edge a¡ for each /' G (0,1,...,«}. Let the initial point of a, be

(x¡, y¡). The terminal point of a„ is (x0, y0) and we define (x„+1, yn+x) = (x0, y0).

Define

H(i/(n+l),t)=(rXi(t),yi)    for/G {0,1,...,«}  andiG[0,oo),

and 7/(1, /) = //(0, í ) for t G [ 0, oo). If a, is the point x, of AT cross product the edge,

e, of L then define H on [/'/(« + l),(j + l)/(« + 1)] X [0, oo) to be the proper

homotopy of rx to e * rx of Lemma 2.2.1. If a, is the edge, e, of K cross product the

point j, of L then as in Lemma 2.2.1 sy¡ at (x¡, y¡) and e * sy at (x¡, yt) are properly

homotopic in K X L - K0 X L0 by say the homotopy G,. sy¡ at (x„ y¡) and i^. at
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(xi+x, y¡) are respectively properly homotopic to rx at (x¡, y¡) say by the homotopy

G2 and rx at (xi+x, v,) by say the homotopy G3, as in Lemma 2.2.2. (Since a¡ is an

edge of K cross {y¡}, we have y¡ — yi+x.) Joining these homotopies as in Figure G

defines H on [/'/(« + l),(i + l)/(« + 1)] X [0,oo) for i G {0,1,...,«}. A finite

number of proper homotopies have been used in the construction of H, each with

image in K X L — K0 X L0, giving the desired H.

0U,ft} %    ai   CX*>Y*1_....

«i

Figure G

III. The Main Theorem. If G is a finitely generated group with generators

(g,,...,g„) and g G G, then the length of g,/(g), with respect to (g,,.. .,g„> is the

minimal integer k such that g = ax ■ • ■ ak where af G {g,,... ,g„}. The length of the

identity is 0.

If (ex, e2,...) is an edge path to oo let (ex, e2,...) * a = (a, ex, e2,...).

Theorem 3.1. Let l->H->G->K->\bea short exact sequence of infinite finitely

presented groups. If e = (ex, e2,. ■.) is a proper edge path to oo, at * G X , that

projects to a proper edge path to oo at * G Xp/H ( here P is a presentation for G) and

a = (ax, a2,...) is a proper edge path to oo, at * G Xp, that projects into a compact

subset of Xp/H then a and e are properly homotopic in Xp.

Lemma 3.1.1. // « is a generator of H then e * h is properly homotopic to e.

Proof. Let {gi,...,g„} be generators for G, {«,,...,hm) generators of H and

without loss of generality assume that {«,,...,«„,} C {g,,...,g„}. For each x G

{g^',...,g,^1} and v G {A,*1,...,«*'} choose an edge path, a(x, v) from * to

xyx~x such that each edge of a(x, v) is in the set {Af ,... ,A^'} (xyx~x G H since

H is normal in G). Choose N(x, y) such that xyx'x — a(x, y) rel{0,1} in StN(-x,y\*).

Let

M = max{/V(*, v)|*G {gf \... ,g,f'}, v G {Af',... ,A^}}.

In X /H, e * A is the proper edge path to oo determined by the loop A at * followed

by e. We prove e * A — e in X /H by "sliding" the loop A along e to oo, in a proper

fashion. In Xp/H the edge loop {e\~x, A,e,> at the end point of ex,ex(l), is

homotopic to a(e,, A) at ex(\) rel{0,1}. a(ex, A) at e,(l) corresponds to a product of

loops A1(„(1)) ■ ■ • A1(2)A|(1) at ex(\), where Af,1, is in {A,,...,Am}. Furthermore the
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above homotopy takes place in St (e,(l)) and is obtained by projecting the

previously defined homotopy, in X , of exhex~ ' to a(ex, A). Hence A is slid along e,

to ni(n(i»' ' " Ai(2)A|(1). Similarly each A1(I) can be slid along e2 in StM(e2(l)) to a

product of loops corresponding to generators of H. Continuing, this defines a proper

homotopy, K(h), of e * A to e in X /H (see Figure A representing the domain of

AT A)).

H(hy\C) where C C X„, then

Figure A

Let H(h) be the lift of K(h) to  * G Xp. If >

H{h)(x) G C, m(H(h){x)) G 77(C),  where tt:   ^ -» A^/i/ is projection.  Hence

K(h)(x) E viC) and x & K(hyx(ir(C)) mdv/ehave H(hy\C) C K(h)-x(Tr(C)).

Since K(h) is proper, //(A) is a proper homotopy of e * A to e in A^.

Lemma 3.1.2. Let b = (6,, b2,...) a?   *   Ae a proper edge path to 00 wAere

A~ ' G {A,,...,hm), then e is properly homotopic to b.

Proof. We show the map of Figure B is proper and hence defines a proper

homotopy of e to b. If this map is not proper then there exists a compact set C C. X

such that for an infinite number of positive integers, i, the image of H(b¡),

Im(//(A,)), meets C. Since each Af' G {A,,.. .,hm), there are an infinite number of

integers i{\), i(2),... such that Im(i/(A,( })) meets C and as elements of H, bj•U) Ji0)

for all /', i.e. all H(biU)) are lifts of the proper homotopy, K(h), for a fixed

A G {Af1,. ..,A*'}. (They all differ by covering transformations.) Let x be an

element of [0, 00) X [0,1] such that H(biuy(Xj)) G C. Since A is a proper edge path

to 00, {xx,x2,...} is contained in no compact subset of [0, 00) X [0,1], but

■n(H(bi(J))) = K{h) for every j. Thus ÄT(A)(x-) G tj-(C), a compact set, for all j.

Contradicting the fact K(h) is proper.

H(Ü

4fc,
£

U(0
1C a

*.
::

Figure B
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To finish the proof of Theorem 3.1, in view of Lemma 3.1.2, it suffices to prove

Lemma 3.1.3. If a = (ax, a2,...) is a proper edge path to oo in Xp that projects into

a compact set in X/H, then a is properly homotopic to an edge path with edges in

{Af\...,A:'}.

Proof. Say tr(a) C St^*) C Xp/H. Then each vertex of a can be joined to a

vertex of H by an edge path of length < N. There are only a finite number of

elements of G of length < IN + 1. Choose M such that each of these elements that

are also elements of H have length *£ M with respect to {hx,...,hm}. Choose L such

that any edge loop at * in X of length *£ 2/Y + M + 1 is homotopically trivial in

StL(*). For each positive integer i, choose an edge path /, of length < N from

(aj ■ ■ ■ a,)(l) to r, G H. Let /0 be the trivial edge path and r0 = * . Let m¡ be an edge

path of length =£ M from /-,_, to ri such that the edges of m(i) are in Af ',... ,A*'.

Since the edge loop l¡2xmjxl¡a¡ at (a,-_i • • • er 1 )( 1 ) is homotopically trivial in

StL((a,_, • • • ̂ (1))), a is properly homotopic to (m„ m2,...).

Theorem 3.1 implies if s and / are proper maps of [0, oo)-> À' and if the

projections of s and t have image in a compact subset of X/H then s and / are

properly homotopic. There is a generalization of this to 1-ended groups and

subgroups that are not necessarily normal.

Corollary 3.1.4. // G is a \-ended finitely presented group, H is a finitely

generated subgroup of infinite index in G and X is a finite complex such that

•nx(X) — G, then all proper maps of [0, oo) ^ X whose images lie in a compact subset

of X/H are properly homotopic if the group of covering transformations, C, of X/H

contains a finitely generated infinite subgroup.

Proof. This follows from the fact that if N is the normalizer of H, then the

following sequence is exact: 1 -» H -» N -*'C -» 1 [4]. Hence if A" is a finitely

generated infinite subgroup of C then 1 -» H -» f~l(K) -> K -» 1 is an exact se-

quence of finitely generated infinite groups and the techniques of Theorem 3.1 apply

in X -> X/H.

Now we prove the main theorem.

Theorem 3.2. Let l-*H^>G->K->lbea short exact sequence of infinite finitely

generated groups. If G is finitely presented, then G is semistable at oo.

Proof. Let P be a presentation of G with generators (A,, A2,...,A„,

kx, k2,...,km) where (A,, A2,...,A„) generate H.

Lemma 3.2.1. Given a compact set E in X there exists a compact set, E* in X such

that for each vertex, v, in Xp — E* there is an edge path to oo, rv, at v such that if

a G {Af',... ,A*'} is an edge at v, then rv is properly homotopic to rv * a with image

in Xp — E. Furthermore, if s is any edge path to oo at v, with edges in {Af',.. .,A,f'}

and image in Xp — E*, then rv and s are properly homotopic in Xp — E.

Proof. Let it: Xp -» Xp/H be the natural projection. Choose M such that if

k G {A:*1,...,A:*1} and A G {Af ',...,Af'} then in Xp/H, A can be slid along k in

StM(A:(0)) (see Lemma 3.1.1). Let W be a compact subset of Xp/H containing
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StM(ir(E)) s.t. X/H — W is a union of unbounded path components. Choose N

such that W C St7^*) C Xp/H. Finally if v is a vertex in Xp and U is an edge path at

v of length IN + 1 or less then choose Q(N) > 0 such that the homotopy defined

by sliding A G {Af \...,Af '} along [/has image in Stß(Ar)(t>) (see Figure C).

Figure C

We show E* = StQ(N\E) is the desired compact set. Let v be a vertex of

Xp - E*. There exists an edge path (ev(X), ev(2),...,ev(2N+X)) in Xp/H with initial

point 7t(ü) and end point in Xp/H - StN{*). By choice of W there exists an edge

path to oo at ev(2N+X)(l) with image in Xp/H - W. Signify this edge path to oo by

<e»(2iV+2)>*«,(2iV+3).-">- We sh°W the Uft °f (evO)>ev(2)> . ) to v in X gives the

desired rv. If A G {Af ',... ,A * '} is an edge at v, then the homotopy given by sliding

A along the first 2N + 1 edges of rv has image in Ste(/vr)(t>), and hence in Xp - (£).

In * /# the homotopy defined by sliding any product of loops in {Af ,...,hn }

along <eo(2„+2), ee(2„+3),.. .> has image in Xp/H - m{E) (since the slide along each

edge ev(2N+t), t ^ 2, has image in StM(ev(2N+l)(0)) and each edge ev(2N+t), t > 2, is

in X/H- StM(ir(E))). The lifting of this slide must miss E since its projection

misses tt(E) and we have proven the first part of the lemma.

If two vertices vx and v2 of Xp - Ste(A0 differ by an element of H, then under w

they project to the same point. Since rv is defined by taking an edge path to oo at

ir{v) and lifting to Xp, with initial point v, we observe that rC| and rVj can be defined

to differ by the covering transformation that takes t;, toe2. Hence if s is an edge

path to oo at v with edges in {Af ',... ,Af'} and image in Xp - E*, then we may

construct a proper homotopy from rv to s as in Lemma 3.1.2 and the above argument

(along with the fact that at any two vertices vx and v2 of s, rV] and rVi differ by a

covering transformation) shows this homotopy takes place in Xp — E.

Lemma 3.2.2. There is a compact E containing E* such that at each vertex

v G X - É there is an edge path to oo, sv, with each edge in {Af ',... ,Af '} such that

sv has its image in Xp — E*.

Proof. Since H C G, the graph of H with respect to (A,, A2,...,A„>, denoted

L<A,,A2,...,A„>, sits naturally in Xp with base point, * , corresponding to the

identity of G. Call this our base copy of L. For each x, a vertex of E*, let the image

of L under the covering transformation taking * to x be denoted by Lx. Lx n E* is

compact, hence there is a compact set Wx containing Lx n E* with Lx - Wx a

union of unbounded path components and each vertex, v, of Lx - Wx has the

desired edge path to oo, v Since Wx contains only a finite number of vertices of
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X — E* and there are only a finite number of vertices, x, in E*, E can be defined to

be E* union a finite number of vertices of Xp — E*.

Now, Theorem 3.2 follows. Let r be any edge path to oo at * G Xp with edges in

Af ',...,Af ' and E a compact subset of Xp. Let D be a compact set containing

StM(£) (M defined as in Lemma 3.2.1) such that the bounded path components of

[0, oo) - r~x(StM(E)) are mapped by r into D.

We show any edge loop based at r in Xp — D can be slid to oo along r in Xp — E.

Let the unbounded path component of [0, oo) — rx(D) be (t, oo) and assume our

edge loop e = (ex, e2,... ,eb) is based at r(c) where c is the first integer greater than

t. Let r' denote the edge path to oo, r restricted to [c, oo). r' = (dx, d2,...). Let

e,(0) = «o and e,(l) = «,.. If e, G {Af ', Af\...,Af '} it can be slid off to oo

between r' and rv with a proper homotopy given by Lemma 3.2.1 (see Figure D(i)

and note that each edge of r' * e\~x is in {Af',...,Af1}).

rv,

(i)

V,   e..

u

(ii)
Figure D

If e, G fjfcf \... ,&*'} then exdxe\~x is homotopic to an edge path with edges in

Af',.. .,Af ' since H is normal in G, and this homotopy takes place in St^u,) and

hence in X — E. Similarly for exdle\~x, defining a proper homotopy of r' * e\x to

an edge path to oo with edges in{Af',A2t,,...,Af1} (see Figure D(ii)) and image in

X — E. By Lemma 3.2.1 r' * e\~ ' is properly homotopic to rC| by a proper homotopy

with image in Xp — E (see Figure D(ii)). If e2 G {Af , Af',...,Af1} then Lemma

3.2.1 defines a proper homotopy between rv¡ * e2x and rVi with image in Xp — E.

(Recall in this case rv and rv differ by a covering transformation taking vx to v2.) If

{*,: ,k^ } first define a proper homotopy between rv   and sv   (sv is

defined in Lemma 3.2.2) with image in X — E (again given by Lemma 3.2.1) and

then proceed as in Figure D(ii) to define a proper homotopy between sD * e2 ' and

rv . At the last stage of this process vb = v0, and rv is properly homotopic to r' by a

homotopy in Xp — E. Combining these homotopies defines a proper map sliding e

off to oo.

In conclusion we prove 2-ended groups are semistable at oo and a class of 1-ended

groups that are not 3-manifold groups are semistable at oo.

Theorem 3.3. // G is 2-ended, then G is semistable at oo.
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Proof. Let x generate an infinite cyclic subgroup, Zx, of finite index in G. And

assume that P = (g,,... ,g„, x; rx,...,rm) is a presentation of G. Let  *  represent

the base point of Xp. The edge paths to oo (x, x,...) at * and (x  ', x~ ',...) at *

are homeomorphic to [ 0, oo).

Lemma 3.1.3 shows that any proper edge path to oo, a, in Xp is properly

homotopic to a proper edge path to oo at * with edges in {x, x'y), and hence must

be either properly homotopic to (x, x,...) at * or (x~x, x~x,...) at * . Since

(x, x,...) at * and (x~l, x~',...) at * determine different ends of XP, XP (and

hence G) is semistable at oo.

Theorem 3.4. G = (x, y: xybx~ ' = vc; A and c nonzero integers) is one-ended and

semistable at oo.

Proof. We first consider the case b — 1 and c = 2, and exhibit a subset of the

universal cover, X, of the standard 2-complex, X, with itx(X) — G (see Figure E).

^x

*x

y

*x

y

A *

/

y

**

tx ** t x *x *x

y   y

+x AX

Figure E

A 2-cell is attached to any edge loop labeled (x, y, x~ y   ', v   ') and the subset

of X of Figure E is homeomorphic to R2. At each vertexy2J+xx', where /' and/ are

integers, there is no edge labeled x. Since in X, each vertex is the initial point of

edges labeled x, x~x, y and y~x, Figure E describes only a subset of X. Let R2+

denote the CW-complex of Figure E above (and including) the real line through *

defined by the edges labeled v. For each vertex x', where /' is an integer and x° = * ,

attach a copy of R2+ to the real line through x' defined by the edges labeled v. The

attaching is done so that the vertex Z of Figure F is attached to x'.

y Y y

y
4-

X*

r Y y

x*

±-+

ICA

Figure F

K*

-ML X-
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To complete the construction of X, in each of the newly attached copies R2+ we

attach a copy of R2+ to each vertical line of edges labeled y, and continue this

process for each of these copies of R2+ . We now see that X is homeomorphic to R

cross a 1-complex, F2, which has a construction similar to that of the universal cover

of the wedge of two circles. F2 is obtained by attaching to each integer point of

( — oo, oo) a copy of [ 0, oo) and to each of these copies of [ 0, oo) attaching a copy of

[0, oo) at each positive integer point, etc. By Theorem 2.2 (x, y: xyx~x = y~2) has

one strong end. It should be noted that if b = 1 and c = — 2, then topologically the

same space, R X F2 is obtained, but the directions of the vertical lines labeled v

alternate direction (see Figure G).

Y Y J y

A x

Y Y

Ax A x A*

Figure G

Let Fn be the 1-complex constructed in the same fashion as F2, but with analogue

the universal cover of the wedge of «-circles. I.e. attach to each point of R « — 1

copies of [0, oo) and to each positive integer of these copies of [0, oo) attach « — 1

copies of [0, oo), etc. By an argument completely analogous to that for (x, y:

xyx~x — y2) one shows the universal cover of the standard 2-complex with funda-

mental group (x, v: xybx~x = vc> is R X iv, (see Figure H for b — 3, c — —4).

**
y y Y

Ax

Ax
y      v y      v

■>   •  >

Ax
y       y        y-»—■   *    •   >

+ *

Figure H
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