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REAL-ANALYTIC SUBMANIFOLDS

WHICH ARE LOCAL UNIQUENESS SETS

FOR HOLOMORPFflC FUNCTIONS OF C3

BY

GARY A. HARRIS1

Abstract. The following problem is considered. Given a real-analytic two-dimen-

sional submanifold, M, of complex Euclidean three-space, are ambient holomorphic

functions determined by their values on Ml For a large class of submanifolds a

necessary and sufficient condition is found for M to be a local uniqueness set for

holomorphic functions on complex three-space. Finally, the general problem is

shown to be related to two-dimensional Nevanlinna theory.

0. We are interested in the problem of determining if a given real w-dimensional

real-analytic submanifold, Mm, of complex Euclidean «-space, C", is a local unique-

ness set for holomorphic functions of C".

Definition 0.1. A connected real-analytic submanifold Mm C C is a local

uniqueness set for C at a point p G Mm provided, for any connected open subset

U C C" such that p G U, and any holomorphic function /: U -> C, if f\Mnu = 0

then/=0on U.

If Mm is a real-analytic C.R. submanifold of C it follows that M is a local

uniqueness set for C" at p G M if and only if M is generic in C". A proof of this

well-known result is given in §1, Proposition 1.4. If Mm is not C.R., one can still

define "generic": Mm is generic if Mm is generic away from its C.R. singular set.

Because the C.R. singular set is nowhere dense in Mm it follows that Mm generic

implies Mm is a local uniqueness set for C" at each point of Mm. Again a simple

direct proof is given in Proposition 1.4. However, in the non-C.R. case the converse

is not true. That is, a nongeneric submanifold can still be a local uniqueness set for

C" at some point on it. Indeed, as observed in [H-l and H-2], the nongeneric

submanifold M2 given as Example 0.2 is a local uniqueness set for C3 at the origin.

Example 0.2. M2 = {(x + iy, (x + iy)y, (x + iy)yey): (x, y) G R2} C C3.

It is easy to see that any real-analytic real (2n — 2)-dimensional non-C.R. sub-

manifold of C" must be generic in C" and hence is a local uniqueness set at each of

its points. Therefore, Example 0.2 demonstrates the first possible situation in which

a nongeneric submanifold can be a local uniqueness set for C, namely, M2 C C3. It

is this situation we will discuss.
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Our first step is to place the problem in a more algebraic setting by a process

which is valid for general m and n. We effectively begin where [H-2] ends and apply

the results and techniques of [H-2] to produce a canonical form, (1.10), for the

special case m = 2 and n — 3. We are then able to apply a standard trick (see

Remark 2.3) from Algebraic Geometry to construct a tool, Lemma 1.11, with which

to study our problem. We then present several results and relevant examples which

explain the problem in many cases. Indeed, the phenomenon as it occurs in Example

0.2 is completely characterized by our main result, Theorem 2.12, and by Remark

2.13. While Theorem 2.12 is not surprising, the remaining examples and results, in

particular Theorem 2.23 and Remark 2.25, illustrate the subtle and difficult nature

of the problem in the most general situation.

I am most grateful to Professor Reese Harvey for his helpful comments. I am also

grateful to the referee for reminding me of the relevance of several nice general

results from local analytic ring theory. Of particular relevance is the following result

of Pierre Milman.

Theorem (P. Milman [M]). Let g: A -» B — K{x}/I be a polynomial homomor-

phism, where K = C or K = R and I is a prime ideal generated by polynomials. Then

rk g = dim A/kexg.

This Theorem immediately yields Remark 2.3(1). The referee further points out

that using Chevalley's theorem and the proof of Milman's theorem one can obtain

the analogous result for g an algebraic homomorphism. In this manner one can

obtain one direction of our Theorem 2.12, as well as Proposition 2.1 and Examples

2.4, 2.6 and 2.8.

In the following discussion we need not appeal to these more general algebraic

results because we are able to reduce our problem to a consideration of the

particularly simple form </> in (1.10). Thus, applying a simple and direct technique,

we are able to study the properties of ker <f>* and obtain stronger results than those

obtained from the general results indicated above.

1. Henceforth Mm will denote a real m-dimensional real-analytic non-C.R. sub-

manifold of C". Without loss of generality we will assume the origin, 0, belongs to

the C.R. singular set of Mm, and we wish to determine if Mm is a local uniqueness

set for C" at 0. Because of the local nature of our problem we may assume there is

an open neighborhood, N, of the origin in W" and a real-analytic mapping t// =

(<í>,,. .. ,<f>„): ./V -> C" such that the real rank of \p is m (constant on N), <//(0) = 0 and

M = \p(N). We let $ denote the complexification of >//. Thus í> is a holomorphic

mapping from an open subset U of Cm to C" with O(0) = 0 and Mm C $(£/). Let

Cm, respectively C„, denote the ring of convergent power series in m, respectively n,

complex coordinates. Let $* denote the homomorphism from C„ to Cm defined as

follows: for/G C„, $*/ = /<> (p. it follows that M is a uniqueness set for C„ at 0 if

and only if ker $* = (0), i.e. $* is injective [H-l, §6].

Definition 1.1. For an ideal 31 C C„ the corank of 9Í, cg2i, is defined by

cg2I = dimc3í/2í3K.
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In Definition 1.1,5DÎ denotes the maximal ideal in C„. An immediate consequence

of the above discussion is

Proposition 1.2. Mm is a local uniqueness set for C at 0 if and only if

cg(ker $*) = 0.

In [H-l] we see that Mm is C.R. if and only if the complex Jacobian matrix of <D

has constant rank near 0. If M is not C.R. we define the rank $ = rank 4>* to be the

generic rank of the complex Jacobian matrix of 0. It follows that

(1.3) cg(ker$*) =£ w - rk$*.

We also see in [H-l] that Mm is generic in C if and only if rk 0* = n. Thus (1.3)

and Proposition 1.2 yield

Proposition 1.4. If Mm is generic in C then Mm is a local uniqueness set for C at

0.

The above discussion is valid for general values of m and n. However, we will

henceforth restrict our attention to the special case m — 2 and n = 3. Given M2 and

a holomorphic mapping $ associated with M2 as above, the idea is to employ the

technique used in [H-2], simplifying the form of <5> to a form for which we can

determine cg(kerí>*). By "simplifying the form of 0" we mean replacing $ by a

new holomorphic mapping, 4>, with cg(ker $*) = cg(ker $*).

Remark 1.5. In the case m — 2 and n — 3 it follows from the construction of $

that M not C.R. implies rk O* = 2. Therefore (1.3) yields either cg(ker $*) = 0 or

cg(kerí>*) = 1. Moreover, m = 2 is the only case in C3 for which the problem is

interesting.

We now proceed from where [H-2] concludes. Without loss of generality (see [H-2,

§3, Form IX]) we assume 0 is of the form

(1.6) 0 = (Z, Zpwm,Z"wnU(Z,w))

where 1 *s m < « < oo, [/ G C2, and (7(0) ¥= 0. We have thus reduced the study of

the local uniqueness set question for general real-analytic M2 C C3 to the study for

M2 of the special form

(1.7) M2 = (x + iy, (x + iy)pym, (x + iy)qy"U{x + iy, y)).

We should point out that for all examples in §2 one can construct a submanifold M2

from the given holomorphic mapping í> in exactly the same way (1.7) is constructed

from (1.6). M2 will then be a local uniqueness set for C3 if and only if cg(ker <t>*) = 0.

Observe that $ associated with Example 0.2 is $ = (Z, Zw, Zwexp(w)).

Biholomorphic coordinate changes in either the range or domain of $ will yield a

new mapping $ with cg(ker O*) = cg(ker $*). Thus we perform the coordinate

change Z -> Z, w -* Z + w in the domain of 4> and then subtract off the pure Z

terms in the second and third component functions by a range coordinate change.

This yields a new mapping, again denoted by O, of the form

(m n

z,z?w2 (m)zm'vwv-x,z"w 2 (")z"~v U(Z,w)\
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where O < p < q and U G C2 is a unit but not necessarily the same as that in (1.6).

The mapping H(Z, w) = (Z, Zm+"~2w) has generic rank 2, hence H*: C2 -> C2 is

injective and cg(ker($ ° H)*) = cg(kerO*). Thus we compose $ with H to get a

new mapping, again denoted by €>,

(1.9) $ = (Z, Z'wl/,,Z«wt/2)

where 1 </> < <? are not necessarily the same as in (1.8) and £/,, U2 G C2 are units.

We now "absorb" Í7, into IT by a domain coordinate change to obtain the new

mapping

(1.10) ^ = (Z,Zpw,Z"wU(Z,w))

where 1 < p < g and [/ is some unit in C2. After changing coordinates in the range

if necessary, we may assume U = 1 + wh for some A G C2.

We conclude this section with

Lemma 1.11. Suppose 0 is given in the form (1.10). Then cg(ker $*) = 1 //"ami only

if there exists H G C3 st/cA ?Aa/ // s 0, X3 \ H, and

H{Z„ Z2, ZrpZ2U(Zx, Z2/Zf)) G C2.

Remark 1.12. Since U is holomorphic in some neighborhood of 0, the function

U(ZX, Z2/Zp) is holomorphic on some open set ñ C C2\{Z, = 0} with 0EÍÍ. The

existence of H in Lemma 1.11 is a statement that U(ZX, Z2/Z[) is "extendable"

across its singularity in some very general sense. From an algebraic viewpoint the

existence of such H is a condition on the relations among the various coefficients in

the power series U. The results of §2 provide better insight into the meaning of these

conditions.

Proof of Lemma 1.11. (^) Let H G C3 be as hypothesized. Hence

H(ZX, Z2, ZrPZ2U{Zx, Z2/Zp)) = G(Z„ Z2)

is in C2. Define F G C3 by F(XX, X2, X3) = H(XX, X2, X3) - G(XX, X2). F ° 0> =

H(Z, Zpw, Z<<w,U{Z,w)) - G(Z, Zpw). Let Z, = Z, Z2 = Zpw. Thus on fi C

C2\{Z, =0}, F»0 = H(ZX, Z2, Z?-pZ2U(Zu Z2/Zf)) - G(ZX, Z2) = 0. Thus
F o 4> = 0 by analytic continuation. Therefore cg(ker 0*) =^= 0.

(=>) Suppose F G C3, F z 0, and F G ker <î>*. We must have dF/dX3 z 0 because

the homomorphism from C2 to C2 given by f->f(Z, Zpw) is injective. Suppose

F = If=0P¡(Xx, X2)X¡, P, G C2 for each i and P¡o ̂  0 for some ¿0 > 1. Let i/ G C3

be given by H = 2^=XP¡(XX, X2)X¡. Thus H(Z, Zpw, Z"wU(Z, w)) = -P0(Z, Z"w).

Letting Z, =Z,Z2 = Zpw yields W(Z„ Z2, Z\?-pZ2U(Zx, Z2/Zp)) = -P0(ZX, Z2)

GC2.

Remark 1.13. (1) From the proof we see the existence of H in Lemma 1.11 is

equivalent to the existence of H G C3 such that H(Z, Zpw, ZqwU(Z, w)) G

C « Z, Z^vv » , the ring of convergent power series in Z and Zpw.

(2) In Lemma 1.11 it is only necessary to show the existence of a formal power

series H such that X31 H, H 2 0, and H(ZX, Z2, Zq~pZ2U(Z], Z2/Zf )) is a formal

power series in Z, and Z2 to imply cg(ker $*) = 1. This follows from [Gab] for

n = 3.
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2. In this section we provide several consequences of Lemma 1.11. We assume 0 is

of the form (1.10) and i/is the power series appearing in (1.10).

Proposition 2.1. If U is rational in w then cg(ker $*) = 1.

Proof. Let U(Z, w) = P(Z, w)/Q(Z, w) where P(Z, w) = 2" , Pi(Z)wi, Q(Z, w)

= 2fLx Qi(Z)w' with P„ ß, G Cx for all i. Thus

(2.2)  t/(z„z2/zf) =   Sp^Xz^z,)' /IÎqi(z])(z2/zp):

Multiplying the numerator and denominator of (2.2) by z\N+M)p clears each of its

1/Z, dependence. Thus H = 2fi0Qi(Zx)Z¡íZ\N+M-^pZ3 works in Lemma 1.11.

Remark 2.3. (1) Proposition 2.1 proves the final conjecture of [H-2]. That is, if U

is a polynomial in w, then cg(ker $*) = 1.

(2) Proposition 2.1 illustrates the sense in which Lemma 1.11 is a generalization of

the standard algebraic geometry technique of going to projective space, solving the

appropriate equations and then homogenizing to get back to the original setting.

We further illustrate Remark 2.3(2) with some examples.

Example 2.4. $ = (Z, Zw, Zw{\ + w + ■ • • +wN)).

In homogeneous coordinates we have $ = (1, Z2, Z2(l + Z2 + ■ ■ ■ + Z2 )) and

the relation is Z3 = Z2(l + Z2+ ■ ■ • +Z2). Homogenizing yields

Z?Z3 = Z2(Z\" + Z\N~XZ2 + ■■■ +z2v).

Thus H = ZNXZ3 works and Z^Z3 - Z2{Z^ + ZiN'xZ2 + • • • +Z2V) G ker $*.

Example 2.5. O = (Z, Zw, Zw(\ + 2* , Pi(Z)wi)).

In Example 2.5 we cannot consider homogeneous coordinates as in Example 2.4;

however, the same approach leads to

z»u(zu z2/zx) = z» + zr]Px(zx)z2 + ■■■ +PN(ZX)Z».

That is, H = ZXZ3 works and

Z^Z3 - Z2[Z? + Z\W-XPX(ZX)Z2 + ■■■ +PN(ZX)Z2V] G ker O*.

Example 2.6. $ = (Z, Zw, Zw2JL0w').

Here i/(Z„ Z2/Zx) = Z,/(Z, - Z2). So H = (Z, - Z2)Z3 works and

(Z, - Z2)Z3 - Z2ZX G ker $*.

Example 2.6 serves as motivation for another consequence of Lemma 1.11;

namely,

Proposition 2.7. If U(ZX, Z2/Zf) is meromorphic then cg(ker $*) = 1.

Proof. By "meromorphic" we mean there exists F and G in C2 so that

C/(Z,, Z2/Zf) = G{ZX, Z2)/F(ZX, Z2) off the zero set of F near 0. As convergent

power series in Z,, Z2, and 1/Z, this means U(ZX, Z2/Zp) = G(Z,, Z2)/r7(Z1, Z2).

Clearly H = F(XX, X2)X3 works in Lemma 1.11.

The converse of Proposition 2.7 is not true as shown by

Example 2.8. 0 = (Z, Zw, ZwV 1 - w).
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In this example  U(ZX, Z2/Zx) = /l — Z2/Zx   is not meromorphic. However

cg(ker 0*) = 1 because Z\ZX - Z2(ZX - Z2) G ker $*.

Example 2.8 motivates the following

Proposition 2.9. // U(Z, w) is algebraic in w then cg(ker 0*) = 1.

Proof. Suppose there exists P G C3 of the form P = 2f=0otj(Xx, X2)X3' where for

each/, oij(Xx, X2) G C(XX)[X2], polynomials in X2 with coefficients being conver-

gent power series in A',, such that P(Z, w, U(Z,w)) = 0 but P s 0. On C2\{Z = 0}

we thus have

N

(2.10) 0=2 ctj(Z,w/Zp)UJ(Z,w/Zp).
7 = 0

Relabel the variables via Z ^> Z, and w -» Z2. Let

M — max{degreein Z2 of a-(Z,, Z2): 1 <y =£ Nj.

Multiplying (2.10) by Z\MpZ\q-p^Z^ yields

v

0 _ 2 zxMpaj{Zx, Z2/Zp)Z\N'J)^-p)Z^-J[Zqx-pZ2U(Zx, Z2/Zf)]J.
7 = 0

Hence let H = 2f=xbj(Xl, X2)X{ where

bj(Xx, X2) = ZxMpaj(Zx, Z2/Zp)Z\N~^"-p^-J.

H is the desired member of C3 for use in Lemma 1.11.

In order to better understand the relevance of Example 0.2, we need

Proposition 2.11. Let $ = (Z, Zpw, ZqwU(Z,w)) be in form (1.10) and let

^ = (Z, Zw, ZwU(Z, w)). Then cg(ker <E>*) = 1 implies cg(ker **) = 1.

Proof. Define T: C3 - C3 by T(XX, X2, X3) ee (Xx, Xp-xX2, X?~XX3). Then T*:

C3 -» C3 is injective and Í»* = ^* ° T*. The conclusion follows immediately.

We can now prove

Theorem 2.12. Suppose M2 C C3 is a real-analytic two-dimensional submanifold of

C3 and the associated holomorphic mapping $: C2 -» C3 Aas been reduced to the form

o/(1.10). Further suppose U in (1.10) is independent of Z. M2 is not a local uniqueness

set for holomorphic functions of C3 // and only if U is algebraic.

Proof. (<=) This follows from Propositions 2.9 and 1.2.

(=>) Suppose cg(ker $*) = 1. By Proposition 2.11 cg(ker ¥*) = 1. Let/ G ker Sr**

such that/=E 2'*L0Pi(Xx, X2, X3) 2 0 for homogeneous polynomials P, of degree /'.

Then

00 oo

0 =/o * = 2 P¡{Z, Zw, ZwU(w)) = 2 P,{\,w,U(w))Z'.
i=0 (=0

Therefore, P,(l, w, U(w)) = 0 for all /' and hence for some i0 with P¡ z 0.

Remark 2.13. From Theorem 2.12 we see the Osgood example as presented in

[G-R, p. 121] is the "only" way to construct $: C2 -» C3 with $* being injective and
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U being independent of Z. This means that Example 0.2 is the "only" way to

construct a real-analytic two-dimensional submanifold of C3 which has no transcen-

dental dependence on X and is a local uniqueness set for C3 at 0.

Because of Remark 2.13, we consider the situation <£> = (Z, Zpw, ZqwU(Z, w))

where 3C//3Z 2 0. In general cg(ker<&*)= 1 is not sufficient to yield U(Z,w)

algebraic in w. Consider

Example 2.14. O = (Z, Zw, Zvvexp(ZHO).

Obviously, f(Xx, X2, X3) = X3 - X2eX2 G ker 0* but U is not algebraic in w.

However, we can further simplify the form of 0 in (1.10) by subtracting off any

terms of Zqw(U(Z, w) — 1) which are monomials in Z and Zpw, a range coordinate

change. We are left with

(2.15) $ = (Z, Z"w, ZqwU(Z,w))

where

oo     p(n+\)-q~\

(2.16) i/=l+2        2      «m,nzmw.
n=\ m=0

In particular, Example 2.14 simplifies to $ = (Z, Zw, Zw) for which the problem is

trivial. It remains to consider examples like

Example 2.17. $ = (Z, Zw, Zwexp(Zw2)).

Example 2.17 is in the form of (2.15) with U = exp(Zw2) in the form of (2.16).

Because of the z dependence of U we are not able to use an algebraic argument like

that in the necessity proof of Theorem 2.12 to conclude cg(ker$*) = 0. However,

for this example we may appeal to the following geometric argument to conclude

cg(ker $*) = 0. Suppose F G C3, F ¥= 0 and F G ker O*. Without loss of generality

we may assume F is irreducible. Let W denote the germ at0of{zGC3:/7(z) = 0}

and V denote {(Xx, X2, X2exp(X22/Xx)): 0<\Xx\<r and |X,|</-} for some

appropriately chosen r > 0 depending on F. For fixed X2 let Vx denote

{(Xx, X2, X2 exp(X2/Xx): 0 <| Xx |< /•}. For every X2 with_|*21< r we have T^T c

W. The essential nature of the singularity at Xx = 0 yields Vx = {0} X {X2} X C0,

where C0 denotes the germ of C at 0. Letting | A^ | -» 0 yields {0} X Cq C W. Hence

F(Z,, Z2, Z3) = Z,ß(Z|, Z2, Z3) for some unit Q in C3. This implies that Z,

vanishes on V C W, a contradiction.

However we may still have U, expressed in the form of (2.16), not algebraic in w

but cg(ker <!>*) = 1. Consider

Example 2.18. $ = (Z, Zw, Zw[\/(\ - exp(Zw)w)]).

In Example 2.18, U(Z, w) is not algebraic in w but

f(Xx, X2, X3) = XXX2 - X3(XX - X2ex>) G ker$*.

We are thus led to a further "refinement" in the form of U. From (2.16) we see

00

(2.19) U(XX, X2/Xp) = 1+2 gn(X2)Xr
n=\
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where each g„ G C, and (2.19) is valid (as a function) on the open set {(Xx, X2) G

C2 | (| A"2 \/r)x/p <\XX\< r) for some r > 0. For notational convenience we intro-

duce new variables t,, t2 and let £/(t,, t2) denote the formal power series defined by

00

(2.20) £/(t1,t2) = 1+   2 &,(t,)t2"
«=i

where each gn G C, comes from (2.19). We also let ¿/(t,, t2) denote the function

represented by (2.20) on the set ß = {(t„ t2) G C2 | (r/| t, \)x/p >| t2 |> l/r}. By

the same argument used to prove Proposition 2.9 we can prove

Proposition 2.21. // Ü{jx, t2) /'s algebraic in t2 iAe« cg(ker $*) = 1.

By Proposition 2.11 and the geometric argument following Example 2.17 we can

now prove

Proposition 2.22. Suppose Ü in (2.20) is convergent on {| t, |< r) X C for some

r > 0. If cc is an essential singularity for the function t2 h» U(tx, t2) /or eacA //xe^

t, ¥= 0 w/YA | t, | small, then cg(ker <&*) = 0.

Propositions 2.21 and 2.22 can be combined with Proposition 1.2 to prove

Theorem 2.23. Suppose M2 is a two-dimensional real-analytic submanifold of C3

and the associated holomorphic mapping O: C2 -» C3 Aas been reduced to the form of

(2.15) with U in the form of (2.19) and U as defined in (2.20). Further, suppose for

some r > 0, U(tx, t2) is convergent on {| t, | < r) X C, M2 is not a local uniqueness set

for holomorphic functions o/C3 if and only if U{tx, t2) is algebraic in t2.

We now consider the case for which Ü(tx, t2) in (2.20) is a convergent power

series with finite biradius of convergence. We may, without loss of generality,

assume the biradius is (1,1). For each fixed t, with |t,|< 1 let Í/ denote the

function given by t2 h» {/(t,, t2) for | t2 |< 1. For each small e > 0 let A(e) = {r2 G

C|l—£<|t2|<1}. The geometric argument following Example 2.17 can be ap-

plied to yield

Proposition 2.24. // UTt(A(e)) — C for all sufficiently small e > 0 and a dense set

of t, near 0, then cg(ker $*) = 0.

Remark 2.25. For the most general case of a real-analytic two-dimensional

submanifold, M2 of C3, the question of whether M2 is a local uniqueness set for

holomorphic functions of C3 now involves two-dimensional Nevanlinna theory

applied to the function Ü(rx, t2) in (2.20). For example, if for each fixed t, ¥= 0 the

function UT defined above is of unbounded characteristic then M2 is a local

uniqueness set for holomorphic functions of C3 (see [C-L, p. 67]). Applying results

from Nevanlinna theory one can conclude several such technical results, however

they do not appear to significantly contribute to our understanding of the original

problem and will not be included.

We conclude with a conjecture which is motivated by the above examples and our

unsuccessful attempts to construct a counterexample.
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Conjecture. The converse of Proposition 2.21 is also true. That is, if M is not a

uniqueness set for C3 then Ü(rx, t2) in (2.20) depends algebraically on t2.
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