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SPECTRA OF INVARIANT UNIFORM

AND TRANSFORM ALGEBRAS

BY

I. GLICKSBERG1

Abstract. For G a locally compact abelian group, any closed invariant proper

subalgebra of CQ(G) has analytic discs in its spectrum. Related results are given for

A(G) and B(G).

For a compact group G it is an easy consequence of Bishop's generalized

Stone-Weierstrass theorem and some well-known facts on representations that a

proper (doubly) invariant uniform algebra on G cannot have G as its spectrum.

(Indeed, Haar measure of a nontrivial subgroup must be multiplicative.) The

corresponding result for closed subalgebras of C0(C7), G locally compact abelian,

seemingly required more harmonic analysis (and, originally, the argument yielding

Bishop's result); but more emerged, namely, that the spectra of (nonzero) proper

closed invariant subalgebras of C0(G) contain analytic discs. This follows easily from

the following more specific result.

Theorem 1. Let A be a separating translation invariant closed proper subalgebra of

C0(G), G I.ca. Then:

(1) there is a compact subgroup H of G whose normalized Haar measure m is

multiplicative on A, so a -» m * a is a multiplicative projection of A onto its subalgebra

A n C0(G/H), while

(2) there is a nontrivial homomorphism a: R -» G/H for which [A n C0(G/H)] ° a

consists of boundary value functions (onRor R/Z) of continuous functions analytic on

the closed half-plane or disc.

Alternatively, A D C0(G/H) consists of functions analytic with respect to the

induced flow on G/H; in particular we have analyticity relative to a flow on G when

G has no nontrivial compact subgroups. Of course one can exploit such analyticity;

for example, if / G C0(R") has f~l(c) of positive Lebesgue measure for some c =£ 0

then f and its translates generate C0(R") as an algebra. Such corollaries are given in

§2, with the first section devoted to the proof of our theorem.

After a revised version of this paper was essentially complete I found a result of J.

L. Taylor [Tl, Lemma 2] (extending, and using, an earlier result of Gleason and

Rieffel [Ri, Theorem 6.4]), which is closely related to Theorem 2 below; at least two

thirds of the proof of Theorem 1 is devoted to covering essentially the same ground
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382 I. GLICKSBERG

(by an apparently different route). Unfortunately Taylor errs in passing from the

semicharacters obtained by Rieffel to the homomorphism he used, so that Taylor's

result is incorrect as stated;2 of course the correct reading of Taylor's proof is

consequently made more difficult. A much stronger result was given later by Taylor

[T3, Theorem 4.5.2.], but this requires more knowledge of measure algebras than one

might expect from many readers interested in uniform algebras. As a consequence I

have not altered this part of the original presentation, but all my results should

properly be regarded as corollaries to the Gleason-Rieffel-Taylor result. (For the

well-equipped reader the later Taylor result yields the neatest approach although all

use the structure of l.c.a. groups.)

There remains the possibility of replacing C0(C7) throughout by other algebras, in

particular by the usual algebras of Fourier transforms, A(G) and B(G). It was only

when prompted by this question from the referee that I noticed its simplicity for

A(G), and proceeding to B(G), turned to Taylor's works. The results have been

added in a final section.

1. Essentially as an aside, we shall start with the case of G compact nonabelian

because there the antisymmetric approach joins so easily with the harmonic analysis

needed; the reader unfamiliar with or not interested in the latter can just as well skip

to 1.1. (As the referee has pointed out, more detailed results have been given by

Björk [B] and Gichev [Gi] for compact Lie groups.)

To begin, from invariance it is easy to see the maximal sets of antisymmetry for A

are all cosets of a compact normal subgroup H (cf. [G1.2, p. 127]) and as we shall see

the Haar measure m of H is multiplicative on A. Indeed from Bishop's theorem [G]

and the fact that A is proper we know H is nontrivial while B = A \ H is closed and

proper. Of course it is an invariant algebra on H and thus the span in C(H) of all

the entries in certain of Z/'s unitary matricial representations. If utj and u'kl are two

such entries, in U, U' say, and U is not the trivial representation (so m(u¡j) = 0)

then m annihilates u¡jUkl too since it is an entry in U ® U' which cannot contain the

trivial representation unless U' is equivalent to U [N, p. 438], a contradiction to

antisymmetry. Thus all trigonometric polynomials in B with zero constant term form

an ideal / in the dense subalgebra B of B formed by its trigonometric polynomials,

and / is annihilated by m, as in I~ (an ideal in B of course). Since any element of B

annihilated by m can be approximated by elements of I we clearly must have

ß = C©/~ = C© (w~'(0) n B), so m provides an element of the spectrum of A

not in G, as desired.

1.1. In the analogous situation on an l.c.a. group G (with dual group G = T), we

need not of course have any compact subgroups, and thus no potentially multiplica-

tive (nontrivial) normalized Haar measure. Moreover, while antisymmetry was used

2 The correct assertion is that there is a continuous homomorphism from an open subgroup into R

rather than from the full group, which is all Taylor subsequently uses. A simple counterexample to the

result stated is the semigroup of nonnegative elements in a totally ordered discrete group for which, for

each x > 0 there is a y > nx, all n 6 Z+ .
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in this setting originally, and gave the direction our proof still follows, it has been

replaced by a quite elementary argument.

Let A~ * denote the w* closure of A in LX(G). We shall view the dual group

r — G as a subset of L°°(G), and accordingly write the operation as multiplication.

Then

(i) s„ = rnr*

is a subsemigroup of T (since A is a multiplicative subsemigroup on which the w*

topology is separately continuous) which is closed since T has the relative w*

topology. Moreover, SQ contains the spectrum3 sp(a) of a E A, and this fact will

provide the basis for our proof; we shall show there is a homomorphism p of an

open subgroup T, of T into R which is nonnegative (and nontrivial) on S0 n Tx;

because of the Paley-Wiener theorem this yields analytic behavior for the subalgebra

of elements constant modulo the subgroup Txx of G, which essentially proves our

theorem. Thus the main effort is to produce p.

To begin, note that our closed subsemigroup S0 of T is proper; if ¡i ¥= 0 is a

measure orthogonal to our proper invariant algebra A C C0(G) then ix * f¥= 0 for

some/in LX(G), and /x * /, still orthogonal, is in fact orthogonal to A~ *. Since A~ *

cannot contain T without containing its w* closed span, L°°(G), S0 is proper.

Consequently, L = S0 n S0_1 is a closed proper subgroup; if the intersection is

empty we let L— (1). Now we reduce to the case in which L is trivial: if

Wq: T -> ro = r/L then S = tr0S0 is a closed proper subsemigroup ofT0 with

(2) sn5"'c{i}.

Indeed, since 50 is proper we have ay G r\S0 and for any open neighborhood F of

such a y missing S0 we have VL n S0 = 0 since otherwise V D S0D V f) S0L ¥^ 0.

Thus S is both closed and proper as asserted. Evidently to obtain a homomorphism

p of an open subgroup Tx of T into R which is > 0 and somewhere positive on

S0 n T, it suffices to do the same for 5 and ro.

1.2. We should note that S generates T0 because S0 generates T, i.e., (S0Sq l)~ = T.

Indeed, if the latter fails there is an x in G orthogonal to S0Sq ' and not the identity

of G. So for any/in Lx(G),fx —/annihilates (S0SqX)~ C L°°(G), hence annihilates

any element of the w* closed span of (SoSo-1)-. But the latter contains A since,

being a closed subgroup, (S0Sñxy is a set of synthesis by Reiter's theorem [H, R].

Thus/^ * a = /* a — (/* a)x for all/in LX(G) and a E A, so a dense subalgebra of

A cannot separate x and the identity, and A cannot.

1.3. We now proceed to show there is an open subgroup Tx of ro and homomor-

phism p: T, -» R which is nonnegative on Tx n 5 and somewhere positive. To do so

we shall use the fact that ro = T+ X R" where r„, has a compact open subgroup K

and« s*0[Ru,We].

3 sp(a) = H{¿r'(0): m * a ~ 0, ¿i e L\G0)) (where ¿' can be replaced by M); dually sp(a) = V n

span{ax: x E G0}~*. Thus S = A'* n Y D ( {JaeA sp(a)), but in fact one has equality: for y not in the

second set one has ¡i £ Ú with ß. = 0 near the second so fi * a = 0, a E A, by spectral synthesis for open

sets, whence y is separated from A'*.
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Let

(3) it: r0 = r,XR». TJK

denote the natural homomorphism and Sx = ttS; since T' = T^/K is discrete and

SS~ ' dense in ro, evidently 5,5, ' = V. We shall consider the two possible cases:

(i) sx^r  (so 5, n ¿v1 # r),

(ii) 5, = r   (so Sf ' = T' as well).

1.4. In case (i) let S'x denote the semigroup (1} U 5,, so that L' = S'x n S[~x is a

nonempty subgroup of T', and proper: for at most the identity has been added to

the intersection, and Sx fl Sj"1 = T'\{1} implies 1 = yy"1 G Sx n 5,"1 for any

y ¥= 1 (such a y exists unless T' is a singleton, and then only case (ii) can occur since

Sx ¥= 0). Now let «r,: T' -* T'/L', S2 = wxS{. Then S¡nS2"' = {l} since yL' =

yf'L', y, Yi G I", implies yy, G L', so yy, = y2x, y2 G S„ whence y = (y,y2)"1 G

Sx fl Sx~x — L'. Among the subsemigroups 5" of V containing S2 and satisfying

(4) S'n(sr' = {i}

we have a maximal one, S3 say. This has the property that every y E S3,y =£ \,isoi

infinite order because of (4) since y" = 1 with n > 1 least implies y"~x = y~x E S3

D S3~x — {1}. In addition, by maximality y G T'\(S3 U S3~x) is of finite order; for

if not, either no power of y lies in S3 U S3~x and we can enlarge S3 to the

subsemigroup generated by y and S3 and preserve (4) (since yks = y~'sx~x for

k, I > 0, s, sx E S3 implies yk+l — (ssxyx), or some power lies in S3 or Sj-1. But

y* G S3 (resp. 53"') allows us also to adjoin y to S3 (resp. 53_1); for yJs — y~'sx~x

implies(yj+')k = (ssxyk E S3 n S3~x so = 1.

Thus every element of 53 U S3 ' (save 1) is of infinite order while every element of

the complement is of finite order. So if T" denotes the subgroup of elements of finite

order the image 54 of S3 in T'/T" has the property that 54 n S4" ' = {1} and

^ US4"' = T'/T". Hence S4 provides a total ordering of T'/T", making T'/T" an

ordered abelian group. Selecting any element y0 ¥= 1 of the image S of S in 54 the

subset of T'/T" bounded by y0 in that order,

(5) I""=  U (Yo-'^nYo'V),
n

forms a subgroup of T'/T" whose complement meets S4, or better, the homomor-

phic image S of S itself, in an ideal of that semigroup, as is easily seen (elements

which are infinitely large relative to y0 in the ordering multiply elements of S4 to

yield infinitely large elements). By dividing out the subgroup of infinitely small

elements in T" we obtain an archimedian ordered group so we have a nonnegative

homomorphism of T'" into R sending y0 into 1 G R say; the inverse of I"" back in

ro itself yields the desired open subgroup Tx on which we have a homomorphism p

into R sending S n Tx into R+ , with some positive value there. Equivalently, pulling

back to r from ro = wor = T/L we have a homomorphism (still called p) of an

open subgroup tt^T, of T into R which is nonnegative on S0 n ír^'r, and

somewhere positive. Finally, if m denotes the normalized Haar measure of the
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compact subgroup H = (ttqXTx) oi G (whose dual is the discrete group r/77-0_lr,),

the fact that S\T"' is an ideal in S, hence that S\T, is one in S, and S0\tt(j~xTx is

one in S0, shows m is multiplicative on A as we next note.

1.5. Indeed the invariant algebra (A \ H)~ on the compact group H is the uniform

closure of the combined spectra of the elements a \ H of A \ H, while sp(a | H) C

7r(sp(a))~ where it: T -» T/{itq1Tx)± = H is the natural map [R, p. 143]. Because

H is discrete,

sp(a| H) C wsp(a) C trS0,

and A \ H C span ttS0. Since, as functions on H,

ttS0 = s0\h = {s0 n »-»r,)|Hu (s0Wr,) | #

while w(y) = m{\) = 1 on the first set in the union and = 0 on the ideal formed by

the second set, m must be multiplicative on their uniform span, hence on A \ H, and

A.
1.6. We can now turn to case (ii), where

7r:r0 = r, x R«-> r,/* = r

maps S and S x onto I". Recalling (2), that SflT1 C{1}, we can now note that

since a closed subsemigroup of a compact abelian group is a group [W, Gl.l], this

implies (K X {0}) n 5 contains at most the identity. As a first consequence of this if

n — 0, r' is nontrivial (since S cannot reduce to the identity). Indeed if n = 0 (so

T = rj and if y G T\K then there is a A: G AT for which yk G S since it maps S

onto I"; similarly there is a k' G K with y~xk' E S. But then kk' - yky~xk' E K D

S C {1} so A:' = A:"1 and thusy"1^"1 G 5 so y/c G S n S~] C (1} despite y G K.

Son>l.

Next, if

tt2: T* X R" -» R"   and   S, = (.KX R") n S

we have (wjS»)" n(7r2S~')" = (tt2S^)~ r\((ir2S*)~)~x containing at most the

identity of R"; for r therein implies we have (kj, r¡) and (Aj, rj) in S* with rj -» r,

/•' -» —r. Passing to subnets we can assume kj -» A, Aj -» k' in AT, so that {kk', 0) G

S* = (K X R") n S, hence lies in (K X {0}) nXc(l). Thus k' = k~\ so (k, r)

and (A-1, — r) both lie in S* C 5, so coincide with the identity by (3), and r = 0 as

asserted.

Actually, S* ¥= 0 since S maps onto T' = T^/K so S,,* = (7725,)_ is a non-

empty closed subsemigroup of R" with S^^ C\ ( — S**) C (0). Moreover, the set of

positive dilates of 5+Nt, R+ 5+Hl, meets its negative at most in the identity; for

c, c' > 0, s, s' in S++, cs = —c's', or s = — (c'/c)s', cannot hold if c'/c is rational

since then ks = — &' for positive integers k, I, whence both lie in 5+Nl n ( — S#Hl),

hence = 0; and if c'/c is irrational S** contains {ks — l(c'/c)s: A, / G Z+ } which

is dense in the line through 0 and s, so s ¥= 0 implies 5++, and so S** n ( — S**),

contains a line through 0. Thus

(6) (-R+s^)n(R+s^)c{0}.
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Now suppose S** contains a maximal independent set of k < n elements. Then in

their vector span V over R, R+ £„,„, has interior, so (6) implies (R+ S**)- misses the

A"-dimensional interior of its negative, and thus (R+ S**)" is a proper closed cone in

V, hence in R". Consequently we have a non tri vial linear functional \\/ on R" which is

nonnegative on S+% — tt2((K X R") C\ S)~ and indeed positive at some point of

TT2S.

For the moment let T* = K X R". Then for y, y' E T0 trivially

(7) [SnyT*){Sr\y'T*)CSnyy'T*,

so if we set

A(y) = inf{^(7r2(y')):y'G5n(yr*)}

then A(l) > 0 and (7) implies (since each set is nonvoid) that

(8) h(y) + h{y')>h(yy').

In particular A(y) + A(y^') > A(l) > 0,  and A(y) is always finite, while A is

constant on cosets mod T*.

Now consider

2={(y,0er,XR:/>A(Y)}.

From (8) we conclude 2 is a subsemigroup of T^, X R; moreover 2 n 2_1 = 0

since (y, t) E 2 n 2"' says t > A(y) and -t> A(y_1), so 0 > A(y) + A(y_1) >

A(l) 3= 0. Now among the subsemigroups 2' of T^ X R containing 2 with 2' n (2')~ '

containing at most the identity, we have a maximal subsemigroup 2*, and exactly as

in case (i) (cf. 1.4), we conclude that any element of 2*, other than the identity, has

infinite order, while (T+ X R)\(2* U 2*"1) consists of elements of finite order

(which necessarily have second coordinate zero). As before, if T** = K X R

(2* n yr**)- (2* fl yT**) C 2* n yyT**, y, y' E T* X R,

which shows that with H(y) — inf{7r2y': y' G 2* n yT**} we have

(9) H(yy') < H(y) + H(y')

again. From this it follows that H(l) s* 0 if it is finite; but SdT^X (A(l), oo), or

F* X (-oo, -A(l)) C 2"1 C 2*_1, yields finiteness of H(\), hence of H(y) since

H(y) + H(yx) > H(\). But now H is a homomorphism; for e > 0, writing y =

(tj, /) £ T, X R and //(tj) for H(y) (which is independent of /) we have (tj, //(tj) —

e) G (2*r] provided //(tj) - e ¥= 0, so -//(tj) + e > H{i\~x), whence -//(tj) >

H(-q~x) for all tj G T*. But then 0 =s //(l) < H(i\) + H(i\x) ^ 0 follows so //(tj1)

= —//(tj), and thus

//(rj) = //(rjTj.Tjr1) < //(rjîJ,) + H{^) = //(tjt,,) - //(r,,)

which combines with (9) (written in our abused notation as //(rjTj,) < //(tj) + H{t\x))

to yield our assertion.

Now we simply have to note that A > H automatically, so that (recalling the

definition of A) i>(TT2{y)) > H{y), y G S; thus i> ° ir2 — H provides a homomor-

phism of ro into R, nonnegative on S and somewhere positive since t//(y0) > 0 for
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some y0 in (K X R") n S while H(y0) = H(l) = 0. (Since H~X(R+ ) has interior, it

is easy to see H is continuous; for discontinuity at y0 = 1 would imply lim o H(y )

= +00 and limy^ygH(y) = -oo, and by translation this would hold at any y0.)

1.7. We have now obtained in each case a compact subgroup H (trivial in case (ii))

whose normalized Haar measure m is multiplicative on A along with a nontrivial

homomorphism p: (G/H) -* R which is > 0 and somewhere > 0 on S0. Dually we

have a map p: R -» G/H which provides our flow on G/H by translation. Evidently

a -* m * a maps A multiplicatively onto its subalgebra m * A of functions constant

on cosets mod H, and it remains to see each such a has a ° p, the boundary value

function of a function analytic in a half-plane or disc.

For this it suffices to see that4 sp(a ° p) C R+ . Now

sp(a°p) = R {ß-x(0):liEM(R),n*(aop) = 0},

while ju * (a ° p) = 0 iff p*ju * a = 0, where p*/x is the image of ju on G/H. Moreover

(p*ji)(y) = ß(y ° p) = ß ° p(y). Suppose t < 0. Then we have ju G L'(R) C M(R)

with ß(t) = 1, ß = 0 near R+ , so (p*ju) = £ ° p = 0 near p~'(R+ ) D 5 D sp(a).

Thus p*ju, * a = 0 by spectral synthesis for open sets, so jtx * (a ° p) = 0. Since

/x(r) = 1, í £ sp(a o p), and our proof is complete.

The two cases we were forced to consider in 1.3 correspond exactly to the two

possibilities for a representation p of R in an l.c.a. group [We, p. 96]; either (i) p(R)

is a compact subgroup or (ii) p is an isomorphism. (Case (i) leads to a p which

factors through a discrete group, so p(R) = H is compact (cf. 1.4), and in case (ii)

this cannot be the case since we have a line in T mapping onto R under p and since

R -> T -» R is topological so is the dual.) We shall make use of this dichotomy later.

Finally it is easy to see the above proof applies equally well to a strictly closed

subalgebra of C(C7) if we simply replace closure in C0 everywhere by strict closure in

C. Thus

Theorem V. Let A be a separating translation invariant strictly closed proper

subalgebra of C(G), G l.c.a. Then the conclusions of Theorem 1 apply (with C in place

ofC0).

1.8. Clearly a large portion of our proof yields an assertion about certain closed

subsemigroups of l.c.a. groups T. Call £cTa half of T if there is a nontrivial

homomorphism p of T into an l.c.a. group n which is totally ordered by its closed

subsemigroup n+ of nonnegative elements, while £ = p_1n+.Asa direct corollary

of our proof we have

Theorem 2. A closed proper generating subsemigroup S of an l.c.a. group T is

contained in a half of T.

4 This is a well-known consequence of the Paley-Wiener theorem; indeed if sp(cp) C [ 0, oo) and {/„} is

an approximate identity with/„ Ei'n L2(R) and having support in(— \/n, \/n) then /„<p E L2 n i.°°(R)

has sp(/<p) C [ - \/n, oo) so that <p„ = exp(;n"' • )/„<p E H2 n L°° = /7°° by Paley-Wiener, with ¿°°-

norm < H^ll^. Since /„ -» 1 uniformly on compacta it is easy to conclude tp is the boundary value

function of any normal family limit of {<p„} on %+ .
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Actually n is R or discrete, corresponding to our two cases. Note that if we let A

be the strictly closed span of S then A is an invariant algebra, and proper in C(G);

indeed since y ET\S can be separated from 5 by a measure in LX(G), S = T n A.

Thus any closed proper subsemigroup S of T arises as A ~ D T for a subalgebra of

C(G) under the strict topology. This is certainly not the case for subalgebras of

C0(G) (where A ~ is to be taken as the w* closure in LCC(G)): S must be locally an M

set, i.e., for any closed neighborhood N of each y in S there must be m G C0, <p ¥= 0,

with sp(m) c N fl 5. (Indeed some a G A has sp(a) C\ N° =£ 0 (cf. footnote 3) so

<p = / * a will do for some / in L1.) Conversely such an S will be A ~* n T for the

subalgebra ,4 of C0(G) generated by all <p in C0 with sp(<p) c S.

We should note that, at least in the strict setting, A need not be determined by S

when G is noncompact precisely because of the failure of spectral synthesis.5

2. We can now easily prove

Corollary 1. If A is a (strictly) closed proper invariant subalgebra ofC0(G) (resp.

C(G)) then the spectrum of A contains analytic discs.

In fact the discs will appear as an extension to the disc D, or upper half-plane

%+ , of p, so our analytic disc will be " bounded" by a line or circle in our group or a

quotient thereof.

Suppose for the moment A separates G so our theorems apply. Then either p is not

1-1 and a ° p is the restriction to 3D of a function in the disc algebra A(D) for

a E Ax — m * A, or a ° p G H°°(%+). In either case if A, is the usual representing

measure on 3D or d%+ we know the analytic extension of a ° p is given by

(10) z^Xz{aop) = fa(p(t))K(dt)l

since Xz is appropriately multiplicative the map into A(D) or H°°(%+ ) is also, and

a ^> Xz(a ° p) is a multiplicative linear functional on Ax. To obtain the correspond-

ing element of the spectrum of A we need only apply our multiplicative projection

first:

a -» jm * a(p(t))Xz(dt) = fm * a(x)p*Xz(dx)

=  1 / a(x + y)m(dy)p*Xz(dx) = m * p*Xz(a)

5 If AT is a compact set of nonsynthesis and x E G has nx — 00 then the closed subsemigroup S

generated by Nx + K (for some large N ) will meet a neighborhood V of Nx + K in just that set. Let \i be

a measure with support precisely Nx + K, A the strictly closed invariant subalgebra of C(G) generated by

fi (so A D r = S) and let <p E C(G) have sp(<p) C Nx + K and not lie in the strictly closed span of

Nx + K in C(G) (which exists by failure of synthesis). Then <p € A since if as -> <p strictly and/ E L\G)

has / = 1 near Nx + K but =0 off V then /*a6-»/*(p = <p strictly, while / * as lies in the strictly

closed span of Nx + K since / annihilates span (S\(Nx + K)). Consequently, the strictly closed

invariant algebra B generated by all 4> in C(G) with spectra in Nx + K contains A properly and has

b nr = s.
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provides our element of the spectrum with m * p*Xz our representing measure

(familiar from [AS]). Now z -» m * p * Xz provides our analytic disc once we see this

map is 1-1; since a ° p nonconstant implies (10) is nonconstant we of course have the

map 1-1 on subdiscs of D or %+ , but in fact we have global 1-1-ness. This is easier

to see in the disc case: if the rotation invariant algebra A ° p does not separate

z, ¥" z2 in D and | z, | = | z2 | = r then t = zx/z2 G 3D is a period of our functions on

|z|=rso/G,4°p implies f(z) — f(tz) = 0 on | z | = r, so on D, and A ° p cannot

separate 3D. Again if rx = | z, | < | z21 = r2 then invariance again implies / G A ° p

has the same range on |z|= rx as on |z|= r2, so any nonconstant / attains its

maximum modulus over | z | < r2 at an interior point.

In the nondisc case, if z, ^ z2 in %+ are not separated and Im z, = Im z2 then

z, — z2 G R is a period of / G A ° p on the horizontal line Im z = Im z, so a period

of / as before, and A cannot separate p(R). If 0 =£ Im z, < Im z2 we have two

subcases corresponding to the possibilities for p, cited earlier [We, p. 96]; either p is

an isomorphism or p(R)~ is a compact subgroup. In the first subcase/G A ° p E

C0(R) so its analytic extension to %+ vanishes at oo by a well-known Phragmén-Lin-

delöf theorem [Ti, 5.63], and/(- +z,) thus assumes its maximum modulus at some z

in R, hence at some zinR + (z2 — z,), interior to %+ . In the second subcase A ° p

consists of almost periodic functions. If 0 = Im z,, so we can assume zx = 0, we can

choose any nonconstant / G A ° p of norm 1 and x„ in R with |/(—x„) | -> 1; then

{/XJ has a uniform cluster point g in A ° p with ||g|| = 1 =| g(0) | = | g(zx) | and

since g cannot separate z, = 0 and z2, g assumes its maximum modulus at an

interior point so is constant. But that is impossible since any g in the closed orbit

{/c:xGR}~ of/ has precisely the same orbit as /. Finally, in case 0 < Im z, we

have only to replace/by/, = Xz * f G A ° p; then/, cannot separate 0 and z2 — z,

and we argue as before.

There remains the possibility that A does not separate the points of G. But then

any unseparated pair differ by a common period of the elements of A ; if A C C0(G)

the set P of periods forms a compact subgroup of G and A can be viewed as a

subalgebra of C0(G/P) which separates. If instead A lies in C(G) then compactness

of P is not needed; A is a subalgebra of C(G/P) which is evidently strictly closed,

separating, invariant and proper.

2.1. One can exploit analyticity by excluding its consequences at boundaries. For

example for/G C0(G) suppose that for each nontrivial (continuous but not neces-

sarily open) representation a: R -» G there is a coset of the algebraic subgroup a(R)

of G which meets f~x(c) in a set of positive finite linear measure, c = ca. Then the

appropriate translate of /cannot have/° a in H°°, and thus the subalgebra of C0(G)

generated by / and all its translates is CQ(G/P), P again the compact group of

periods off. More generally we can replace ca by a set E C C of logarithmic capacity

zero by a theorem of Frostman [F, p. 97; Ts, VIII.44]. Thus

Corollary 2. Suppose /G C0(G) has (*) for each representation a:R -> G a

translate fx for which a~x(fx'x(Ea)) has positive finite linear measure for some set

Ea C C of zero capacity. Then f and its translates generate C0(G/P) as an algebra.
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(In all the remaining examples P will be trivial.)

A simple condition insuring (*) when G = R" is that f~x(E) have positive

Lebesgue measure in R", for E of zero capacity with 0 £ E. For now each a is an

isomorphism and by Fubini some coset of any line a(R) in R" meets f~x(E) in a set

of positive measure, necessarily finite since 0 Í £. Thus we have

Corollary 3. Let E C C have capacity zero, Oí £. Suppose /G C0(R") has6

f~x(E) of positive measure. Then f and its translates generate C0(R") as an algebra.

When a must be an isomorphism, as when G = R", the fact that a ° o G C0(R)

implies its analytic extension is continuous on %+ U {oo}, as noted earlier; alterna-

tively a ° a can be viewed as pulling back into the disc algebra via the standard map

ofD onto %+ . Consequently we can exploit the argument principle.

Corollary 4. Suppose G has no nontrivial compact subgroups, 0^/E C0(G), and

for each nonzero homomorphism a: R -» G

(a) there are xx, x2 in G and z in C for which the winding numbers lnd(fx ° a, z)

exist and are of opposite sign.

Then f and its translates generate C0 as an algebra.

Alternatively in (a) one can assume there is one translate and two z 's, using the

fact that Ind(A, z) is of one sign for all z for which it exists for A or A in A(D). There

are of course a variety of replacements for (a). For example if dX — 2dt/tr(\ + t2),

which represents i on H°°(%+ ),

(a') there are x G G and z G Cfor which J | log fx ° a — z \ dX — -oo.

Again just the range offx°a can be wrong, as in

(a") there is an x in G for which no bounded connected open set U in C has

dUCfx°o(RU {oo})C U~.

Finally, assuming / is smooth enough to yield fx ° o(R) nowhere dense, one could

assume

(a'") there is an x in G and self-homeomorphism to/R for which fx ° a ° t is even

and 0 at 0.

Here no point z G C\fx° a(R U (oo}) can lie in the range of an analytic

extension since for all such z, Ind(/X ° a, z) = lnd(fx ° a ° t, z) = 0. Needless to

say we could vary these variants of (a) with our a.

The Phragmen-Lindelöf result used in Corollary 4 in fact extends to show no

bounded analytic function on D, continuous on D~\(l}, can have distinct one

sided limits on 3D at 1 [Ti, 5.64]. Consequently one can form a strict density

analogue of the above sort of condition.

Corollary 5. Suppose f G C(R") has, for each nonzero homomorphism o:R -» R",

a translate fx for which fx ° a has distinct limits at ±oo. Then the algebra A generated

by f and its translates is strictly dense in C(R").

6 For / smooth we could equally well assume some partial g of / is bounded and continuous and has

g~\E) of positive measure. (For by induction such partíais are bounded pointwise limits of difference

quotients of elements of A ~ .)
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Evidently such an/has no periods, so A separates R". Finally, assuming/ G C(R")

has no periods one has exactly the strict analogues of Corollaries 2 and 3; and

supposing equal limits at ± oo for/x ° a, an analogue of Corollary 4 as well.

2.2. For G = R" and A separating, at least when the semigroup (formed from the

strict closure AinC)

§ = r HA" = W"DA-

is nice enough the entire spectrum of A is the union of analytic discs (of the type

described in Corollary 1) and R"; for example if S is a set of synthesis with dense

interior.

Indeed, suppose (¡p G MA, so <p is represented by a probability measure X, and thus

has a strictly continuous extension to A given by X. Then t: y -* A(y) is multiplica-

tive on S, continuous, and so a semicharacter of S. Moreover t never vanishes. For

firstly, if t = 0 then <p = 0 since S is of synthesis. So the relatively open set

S\t~'(0) ¥= 0 and thus S°\t"'(0) is a nonvoid open set in T = R"; let y0 + B C

S°\t~'(0), where B is a small ball centered at 0. Now suppose y G t~'(0). Then

because t~ '(0) and §°\t~ '(0) are both semigroups and t~ "(0) an ideal, for k G Z+

y + k(y0 + B) Ct_i(0)    and   A(y0 + B) C S°\t_i(0)

and therefore (y + Ay0 + kB) n (Ay0 + kB) = 0 so y £ kB - kB - 2kB for all

A. So t~'(0) = 0 as asserted.

As a consequence t has an extension f to all of the group S — S (which coincides

with T since S — § is an open dense subgroup); setting f(y, — y2) = t(y,)/t(y2), we

have a well-defined homomorphism of T into (C\(0), ■ ) and if again y0 + B C S°

then for y = y, - y2 G S - S, on y + B = y, - y2 + B = y, + y0 + B - (y0 + y2),

f(Y + A)=T(y1+y0 + A)/T(y0 + y2)

and so is continuous since y, + y0 + B C S.

Now we can write t = ^^ with r¡ continuous and multiplicative, | t, | = 1 and

t2 > 0. So r,(y) = (x, y) for some x G R" = G, and, since T is simply connected,

T2(y) = e~pl-y\ where p is a homomorphism into the additive reals, >0onS since

| t(y) |< 1 for y G S. If p is trivial, so A(y) = r(y) = r,(y) = (x, y>= ôx(y), then

8X and X represent the same strictly continuous functional on the strictly closed span

of S. Since S is a set of synthesis that set coincides with A , and tp is evaluation at

x. On the other hand if p is nontrivial, hence positive somewhere on S, and Xz is the

Cauchy measure representing z G %+ on H°°(%+ ) then since ¿ / ë"x/(l + t2)dt =

X¡(e-ix) = e'W,

p*A,(y) = A,.(y o p) = A,(p(y)) = e~^\        y E S,

so Ôx * p*Xj(y) = t(y) = A(y), and thus 5^ * p*X¡ represents <p on A, again by

synthesis. Now z -> Ôx * p*Xz provides our analytic disc through tp in MA; for the

measure, being multiplicative on span S, must be multiplicative on A~ , while

/: z -> ôx* p*Xz(a) is analytic for a E A since sp/lies in R+ exactly as in the last

step in the proof of Theorem 1.

The above shows that, under our special hypotheses not only that any <p E MA

gives rise to a semicharacter of S but any continuous semicharacter t of S, which
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trivially provides a multiplicative linear functional on span S, is represented by a

probability measure, and thus extends to a multiplicative linear functional on

(spanS)- = A ; hence MA can be identified with the set S of semicharacters of S.

(The same applies if A is a strictly closed subalgebra of C(R" ) and we interpret MA

to be the set of strictly continuous multiplicative linear functionals.) Clearly, in this

case, Theorem 1 adds only the fact that MA\R" ¥= 0.

3. For a subalgebra A of A(G) or B(G) translation invariance amounts to

invariance of the corresponding subalgebra Ax of LX(T) or M(T) under multiplica-

tion by characters, or trigonometric polynomials. By a familiar argument the last

implies (and is trivially implied by) the fact that Ax is an L-subalgebra; ¡x E Ax and

v « | ¡i | imply v G Ax. As a consequence we easily obtain the analogue of Theorem 1

for A C A(G).

Theorem 3. If A C A(G) is a closed proper translation invariant subalgebra either

A — (Lx(T0))for an open subgroup T0 ofT, or the conclusions of Theorem 1 apply, and

MA contains analytic discs.

Again our analytic discs are bounded by homomorphs of R in G or a quotient of

G; thus Corollaries 2 through 5 apply equally well with A(G) in place of C0(C7). (For

example, here Corollary 3 asserts that if/G LX(R") has/~'(l) of positive measure

then the closed subalgebra of L^R") generated by {e'(l'>/: t E R"), or by {xvf: U

BorelinR"},isallofL'(R").)

In this context separation by A can be achieved by replacing G by G/P for the

(again necessarily compact) group of periods P of A; of course in the theorem

T0 — Px and in our corollaries we obtain T — TQ again because P must be trivial

when G = R".

For the proof let S denote the closed support in T of p. in Ax, and 5 the closure of

the union of all such S^, n>0. Because &,., = (Sß + S„)~ for two nonnegative

measures, 5 is a semigroup; since S contains a set of positive Haar measure it has

interior and generates an open subgroup ro of T. For simplicity we can take Ax — A

as subalgebra of A(G/T¿- ); replacing G and T by G/T¿- and T0, we can thus view A

as also separating G, and S as generating T.

Suppose S ¥^T. By Theorem 2 we have a (continuous) homomorphism p, of T

onto n, an ordered group which is either R or discrete, > 0 on S, and non trivial on

S since S generates T. In case n is discrete we can follow p, by a nonnegative

homomorphism into R of an open subgroup, which composes with p, to yield a

homomorphism p of an open subgroup Tx of T into R, with p(Snr,)CR+,

¥" (0}: we have only to select s0 E S with w0 = px(s0) > 0, note that the subgroup of

n of elements bounded by tt0 (as in (5)), modulo its subgroup of elements infinitely

small relative to tt0, is archimedian, and thus order isomorphic to a subgroup of R.

Hence if S is proper we have a continuous homomorphism p of an open subgroup

r, of T for which p(S n Tx) > 0, * {0}, while 5\r, is an ideal in S. Since sp/î C Sß

we see (m * ß) ° p extends to be analytic on a half-plane or disc as before via 1.5, 1.7

and the proof of Corollary 1 where m is Haar measure of r,x. (Alternatively from
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Theorem 2 we could produce a positive semicharacter x of S, zero on T,\5, and

follow Taylor by setting

<PÂn)=fx'dft,        Rez^O;

since x = e~p on r, for p as above we obtain (piy(¡i) = jre~'ypiy)n(dy) =

/r (p(y)y y)m(^t) = (Mr )(p(>0) = (w * /î) ° p(jX showing we would obtain the

same analytic disc.)

There remains the possibility that S = T. Then because Ax is an L-algebra in any

neighborhood N of y we can find the support of a nonzero element of A,, which we

can take to correspond to a nonnegative bounded Lx function /; choosing /,

supported by Ny and f2 supported by Nx we have the open support of the continuous

function/, * f2 C Nx + Ny. Thus S contains a dense open subset U, the union of the

open supports of the p. > 0 in Ax corresponding to continuous nonnegative elements

of L1 in Ax. Since U is trivially a semigroup, and dense, it must be G: V = ( — U) n

U¥= 0, so U contains the neighborhood W=V+V=V— Voi 1, whence

(y + W) n U ¥= 0 implies y G U.

Now since evidently Xu' ^ c A\ follows from the definition of U and the fact

that A, is an L-algebra, we are done.

In the case of an invariant subalgebra of B(G) and the corresponding L-subalge-

bra of A of M(T) the situation is more complicated, and analytic discs may exist and

lie far from our group G; thus only special forms of our corollaries obtain. We now

rely heavily on the work of Taylor, and it is only because of that work that we can

almost precisely describe the settings in which analytic discs arise (though not in a

completely transparent manner). The sole gap that remains would be closed by a

negative answer to a question left open by Taylor [T2, p. 112].

Because a generalized character of A whose modulus is nonidempotent im-

mediately leads to an analytic disc in the spectrum, if such discs fail to exist we can

locate A in the sum of two subalgebras of M(T) described by Taylor in [T2]. Let !T

denote the set of all locally compact group topologies t for T at least as fine as the

original, with TT the corresponding l.c.a. group. The radical of LX(TT), LX(TT)X/2, is

the intersection of all maximal ideals of M(TT) containing LX(TT). We view all such

measures as lying in M(T), and set Af,(r) = 2TLX(TT)X/2, which is the first subalge-

bra. (The sum is in fact a direct sum of mutually singular subspaces.) The second of

Taylor's subalgebras M2(T) is more recondite; it consists of those measures which,

carried to the structure semigroup, are supported by the union of all maximal

subgroups (as are those in M,(r)) but which vanish on each such subgroup; whether

M2(T) can be nontrivial is the question left open by Taylor. Excluding generalized

characters of A with nonidempotent moduli implies, by [T2, 2.3] applied to M =

M(T), that

(11) ^CM,(r) + M2(r);

what one can conclude when no analytic discs exist is that if AT = A n Ll(T)l/2,

then for each r in S" either:

(aMT = 0,
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(b) LX(T*) C AT C L'(r*)1/2, where T* is an open subgroup ofTT, or

(c) AT fl L'(rT) = 0, and the support semigroup of AT is a group.

(Here the support semigroup of an L-algebra is simply the closure of the union of the

closed supports of its elements, necessarily a semigroup.) In all of these cases the

support semigroup of AT is a group; conversely that condition implies (a), (b) or (c)

holds and, at least when A D M2(T) = 0, that no analytic discs exist.

Theorem 4. Let A be an L-subalgebra of M(T). If the spectrum of A contains no

analytic discs then A is the sum of the two mutually singular L-subalgebras A H MX(T),

A D M2(T), where each component AT = A fl L'(rT)l/2 for t£Î has its support

semigroup (void or) a group, or satisfies (a), (b) or (c).

Conversely these conditions imply the elements of A D MX(T) are constant on any

analytic disc in the spectrum, so all such discs necessarily arise in the spectrum of the

ideal A H M2(T) of A.

Suppose we have no analytic discs in the spectrum so (11) holds. Recall that for

each t in S" and each /j, in M(T) we can uniquely write p. = pT + p'r where juT is

carried by a t a-compact set and /x'T vanishes on all t compacta, while p. -> ¡uT is

multiplicative; thus viewing M(rT) as a subset of M(T) we can imbed the spectrum

olAC\ M(TT) into that of A D M(T). Morover, since L'(rT)1/2 is an ideal of M(Tr)

the spectrum of AT = A n L(TX)X/2 imbeds in that of A n M(TT), hence in that of

M(T). So for each r the spectrum of AT contains no analytic disc.

Because of Theorem 3 we can assert AT n L'(rT) = 0 or AT D L'(rT) = LX(T*) for

an open subgroup T* of TT; for if both fail then the spectrum of AT D L'(rT)

contains analytic discs by Theorem 3, and since this algebra is an ideal in AT, so

must the spectrum of A7. When the second alternative holds T* must be the support

semigroup of Ar since otherwise we have elements of the ideal A7 n LX(TT) not

supported by T*; and because L'(rT*)1/2 = L'(rT)l/2 n M(T*) holds7 for any open

subgroup T*, the right-hand inclusion in (b) follows, and (b) holds.

Now if (a), (b) and (c) fail then AT n L'(rT) = 0 but AT = A n L'(rT)1/2 * 0 and

the support semigroup S of A is not a group. So exactly as in the proof of Theorem 3

we can produce a positive semicharacter x of S with values in (0,1) on an open

subset of S, and

<pz(a)=fXzda,       Rez>0,

provides an analytic disc.

Conversely, suppose the support semigroup of AT is always void or a group rT°. If

AT fl LX(TT) ¥= 0 then TT0 must be open, and by just the argument of Theorem 3,

7 Trivially, L'(rT*)l/2 C Z.'(rT)1/2 n M(T*) since any multiplicative linear functional on M(TT)

vanishing on Z,'(TT) restricts to M(F*) to vanish on L\F*), hence vanishes on L\T*),/2. For the reverse,

it suffices to see each element qp of the spectrum of M(T*) vanishing on L'(rT*) is such a restriction. But

{/t E M(TT): n\yr* E Sy * qp~'(0), y E TT), the set of measures coinciding with translates of <p~'(0) on

translates of F*, is a closed proper ideal containing L\Vr), and so lies in the kernel of a ^ in the spectrum

of A/(FT). Clearly \j/ annihilates L\TT), and since i/»_1(0) D <j>~'(0) and cannot contain M(T*) unless it

contains all translates Sy * M(T*), hence all A/(TT), ̂  | M(T*) = ¡p.



SPECTRA OF ALGEBRAS 395

AT n L(TT) = L'(rT°), so (b) follows for rT° = rT* as before. On the other hand, if

AT n LX(TT) = 0 clearly (a) or (c) holds.

Now Taylor [T3, p. 84] calls A balanced if A D LX(TT) is always 0 or L'(r*) for a

(necessarily open) subgroup T*, t G 9"; thus our alternatives (a)-(c) imply A is

balanced. So by [T3, 9.1.2] for a in AT its spectrum inAr coincides with its spectrum

in M(T), or spAa = spM(r) a. Because of our homomorphism p. -> pr the latter

coincides with spM(rr) a, which is precisely â(Tr) U {0}, essentially by the definition

of L'(rT)1/2. Thus sp^ a = â(Tr) U {0}, and the image of TT in the spectrum of AT

provides a boundary; indeed since AT is an L-algebra, Ar on TT is translation

invariant, so the image is that of the quotient group TT/T*±, which, again by

invariance, must yield the Sïlov boundary.

Suppose then that some element a0 of AT has its Gelfand transform ä0 noncon-

stant on our analytic disc z -* «p.. In case (b) each ä in L'(r*) is constant on our disc

since those with â Teal valued span L'(r*) C AT, and these yield analytic functions

with range sp^ a = â(Tr) U {0} C R, and so are constant. Thus a0 must lie outside

L'(r*). But if a G LX(T*), (a * a0) constant on our disc implies ä = 0 on our disc,

so q>z vanishes on L'(r*), and by definition it vanishes on all L](T*)X/2, so case (b)

cannot arise, and we must have case (c).

Now since the support semigroup of AT is a group T* we can construct an element

ax > 0 whose support Tx is itself an open subgroup of T* while a0 « ax. Indeed

replacing a, by a power series in a, we can assume ax * ax « ax.

Consequently, from [T3, 9.2.2] each <pz in our disc is given on Lx(ax) by a -» jfda,

f G Lx(ax), with/(yy') = fiy)f(y') a.e. ax X ax. But because Tr'/T*x provides the

Silov boundary, % is represented by a probability measure vz G M(TT/r*-1):

<pz(a) = Iâ dvz = /vzda,       aEAT.

Thus ^(yy') = vz(y)vz(y') a.e. ax X ax, so for y £ N this holds for y' G Ny where N

and Ny are a,-null. Since N and N are necessarily nowhere dense in Tx and vz is

continuous we conclude vz is multiplicative on all Tx. Finally since Tx can be any

(large) a-compact open subgroup of T*, vz is multiplicative on all of T*, hence is a

character. Thus vz must be a point mass on the dual group rT/r*x , and so our disc

lies entirely in the Silov boundary.

Now the identity of Tr/T*± is a generalized peak point for AT since for our ax,

â,(l) = II a, || M = Il a, II while â,(x) = Il a, II implies x = 1 on the support of ax, an

arbitrary (large) a-compact open subgroup of T*. By translation invariance each

point of rT/r*± is a generalized peak point; since no point of an analytic disc can

be one we have our contradiction, completing our proof.

Note that when no analytic discs exist we can also conclude the support semi-

group of A n M2(T) is a group; otherwise we obtain an analytic disc in its spectrum

from a positive semicharacter as before, which imbeds in the spectrum of A since

A n M2(T) is an ideal. But we cannot obtain a converse, as with Ar, since spW(r) a is

no longer easily related to a Fourier-Stieltjes transform.

Finally, we should note that our corollaries, formulated in terms of just the

transform algebra A C B(G), can really only hold when A C L'(r)1/2, since a disc
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nonconstant on AT has its boundary in a homomorph of R in a quotient of Tr, which

is strictly larger than G. And in case A C L'(r)'/2, our conclusion (if analyticity

must fail) is less precise.

Remark (added in proof December 29, 1982). One can regard Theorem 2 as an

analogue in the group setting of the existence of support functionals for cones in

Banach spaces. In this sense there is an analogue of the separation theorem which

follows from the proof of Theorem 1, viz.: if S is a closed generating subsemigroup of

an l.c.a. group T which contains the identity, and x G T has x" & S for all n> 1, then

there is a half of T containing S but not x.

One need only note that (in our proof) before the first real enlargement of S = S,

or, more properly of S2 = TrxSx,y = mxx can be adjoined to S2X so as to preserve (4),

since y"s'x = y'ks' for s, s' G S2 and n, k > 0 implies yn+k = s, s' € S2, which is

excluded by hypothesis. Then the p and 11 of Theorem 2 have S C p~'n+ and

X(£p-\n+).
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