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DECAY OF WALSH SERIES AND DYADIC DIFFERENTIATION

BY

WILLIAM R. WADE

Abstract. Let W2n[f] denote the 2"th partial sums of the Walsh-Fourier series of

an integrable function/. Let p„(x) represent the ratio W2n[f, x]/2n, for x e [0,1],

and let T(f) represent the function (2p;j)'/2. We prove that T(f) belongs to

//[0,1] for all 0 < p < oo. We observe, using inequalities of Paley and Sunouchi,

that the operator/ -» T(f) arises naturally in connection with dyadic differentiation.

Namely, if / is strongly dyadically differentiable (with derivative Df) and has

average zero on the interval [0,1], then the Lp norms of /and T(Df) are equivalent

when 1 <p < oo. We improve inequalities implicit in Sunouchi's work for the case

p = 1 and indicate how they can be used to estimate the L1 norm of T(Df) and the

dyadic //' norm of/by means of mixed norms of certain random Walsh series. An

application of these estimates establishes that if /is strongly dyadically differentiable

in dyadic H\ then /<j255=i I WN[f, x] - oN[f, x]/Ndx < oo.

1. Introduction. Let m represent Lebesgue measure on the unit interval [0,1]. Let

wQ, h>,,. .. represent the Walsh functions (Paley's ordering) and let r0, /-,,... represent

the Rademacher functions, i.e., rk = w2k for k = 0,1,... (see [3 or 7]).

Let
00

(1) W=^akwk
k=0

be a Walsh series. The partial sums 2k=oakwk wi" De denoted by WN, and the Cesaro

means 2¿=o(l — k/N)akwk will be denoted by aN, N — 1,2,_For each integer

n > 0, the dyadic block W2»+l - W2„ will be denoted by A„(W).

The square function associated with (1) is

/    oo \l/2

(2) S(W)=[  2A2„(IF)       ;

and the trave function associated with (1) is

1/2

(3) T(W) =     2 (2-"W2.)
\ n = 0

Finally, the formal dyadic derivative of (1) is the series

oo

(4) W=2kakwk.
k=0
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Observe once and for all that

(5) WN(x) = N(WN(x) - aN(x))

holds for every x E [0,1] and for each integer TV > 1.

Let W[f] denote the Walsh-Fourier series of a function/ G L'[0,1], i.e. W[f] =

2(k=0ak(f)wk, where for each integer k > 0, ak(f) = ¡¿f(x)wk(x)dx. The corre-

sponding partial sums, Cesaro means, dyadic blocks, square function, trave function,

and formal dyadic derivative will be denoted by WN[f], oN[f], A„(/), S(f), T(f),

and W[f].
Recall that an integrable function / is said to belong to dyadic Hx if S(f) is

integrable. In such a case, the 77 ' norm of /is defined by

(6) H/Jlff. = ilS(/)H£l.

This norm turns out to be equivalent (see [4]) to || /*|| L\ where/* = sup„>01 JF2»[/] |

represents the maximal function associated with/. Moreover, if p > 1 then

(7) (l//2 )ll/llL.<ll/llff. <(p/(p -1))II/IIL„

and

(8) \\f*\\L,<10p\\f\\L,.

Thus the role of the square function is to provide a space intermediate between the

spaces Lp[0,l],p > 1, and the space L'[0,1].

What is the role of the trave function? It provides a method of measuring the

decay of 2~nWr. Indeed, if T(f,x) is finite then {2~"W2«[f, x]}™=0 converges to

zero rather rapidly since it necessarily belongs to I2. This convergence is faster than

what is normally expected since a given integrable function satisfies 2~nW2n[f] -> 0

uniformly, as n -» oo, but there are examples to show that this convergence can be as

slow as one wishes.

It comes as somewhat of a surprise, then, that T(f) is a.e. finite on [0,1] when/

belongs to dyadic 77'. In fact, since the definition of T(f) implies that T(f)<f*.

T(f) actually belongs to L'[0,1] when /belongs to dyadic 77'.

The main purpose of this paper is to show much more, namely the unexpected fact

that T(f) E Lp[0,1] for all 0 < p < oo when / G L'[0,1]. Indeed, in §2 we shall

prove the following theorem.

Theorem 1. 7/2 <p < oo then

nn/)nP<(p/4/(^4-i)) -ii/ii,.

A secondary purpose of this paper is to begin to study what happens to

Sunouchi's inequalities [8] when p = 1. In §3 we shall obtain bounds for the L1

norms of T(W), S(W) and of the function

/    oo \l/2

u(w)=\  2 \WN-oN\2/N\
\ N=\ I
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which improve those implicit in [8]. The most important of these is the bound for

T(W), and our method for obtaining this bound requires that T(W) belongs to

L^O, 1] for some/? > 1. In view of Theorem 1, this will always be the case if IF is a

Walsh-Fourier series.

We use this observation in §4 to apply the results of §3 to dyadically differentiable

functions.

2. A proof of Theorem 1. Let r = p/2 and observe by the Minkowski inequality

that
00

\\T(f)\\2p = \\T(f)\\22r< 1 2-2"\\W2[f]\\r.
n = 0

In particular,

(9) H7t/)ll,<( 2 2-2"\\Wr[f]
\ n = 0

holds for anyp > 2 and any/ G L'[0,1].

Next, for each integer n > 0 use dyadic convolution to write WT[f] as Dr * f,

where DT represents the 2"th partial sums of the Walsh-Dirichlet kernel. It follows

from the Fubini theorem that

(10) ll»F2.[/]||,< H/11,11^.11,

holds for p > 1, n > 0. However, it is well known (see [3]) that Dv(x) — 2" if

0 < x < 2"" and Dr(x) = 0 for 2"" < x < 1. In particular, (10) implies that

(n) \\w2n[f]wp<\\f\\att(l'l/p)

holds for allp > 1 and n > 0. Finally, if we apply inequality (11) to the appropriate

expression on the right side of (9), we conclude that

/    oo \ 1/2 /co \ 1/2

IW/)H,<     2 2-2"22"<1-,/'>||/||M      =11/11,    2 2-2"/*       •
\ n = 0 / \ n = 0 /

The proof of Theorem 1 is complete.

3. Estimates for S, T and U. In view of (5) the main result in [8] can be

summarized as follows.

Theorem A. Let 1 < p < oo. There exist constants E , F and G such that

Hü(/)llL,<Ä,||7t^[/])||i,<F,||S(/)||t,<<?,||l^/)||L,

holds for every fELp[0,1] with a0(f) = 0.

Since 77 ' is a proper subset of L1, Theorem A cannot hold when p = 1. Theorem

A does contain estimates for L1 norms of U(f), T(W[f]), and S(f). For example,

since ||g|| L\ < \\g\\Lp holds forp> 1 and for any measurableg, we have that

\\U(f)\\LX<Ep\\T(W[f])\\LP

holds for any p > 1.

V-í
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In this section we derive inequalities for certain Walsh series which when special-

ized to the Walsh-Fourier series case offer improvements to the estimates above.

Before stating our results we need addtional notation.

Let IF be a Walsh series, let D be the Walsh-Dirichlet kernel, and let (x, 0) be any

point in the unit cube Q. Set

oo 2"+l-l    j

TW(x,0)=^rn(0)    2    —wk(x)Wr(x),
n = 0 k=2"    k

oo ,    n— 1

SW(x,0) =  2 rn(0)- 2 (W2. - W2,)(D2,+, - D2,)(x)
n=0 L     (=0

and

UW(x,0)=  I rn(0)wn(x)W"{x) ~°ÁX) .
n=\ in

We shall prove the following result.

Theorem 2. Suppose that W is a Walsh series with no constant term. There is an

absolute constant A, independent of W, such that:

(i) ifT(W) G L"[Q, 1] for somep > 1 then

(12) [[U{W)\\l}<A(l[\TW(-,0)[\H,dO;

(ii) ifS(W) E Lp[0,1] for some p > 1 then

(13) \\T(W)\\L^Ap\\SW(-,0)\\H,dO;

and,

(iii) ifU(W) <E Lp[0, 1] for some p > 1 then

(14) \\S(W)\\I}<A(\\UW(-,6)[[H,dO + 2[\U(W)\\i:.
■'o

We first show that these estimates improve those implicit in Theorem A.

Lemma 2. For each p > 1 there exists a constant Bp such that

(15) ¡y\\TW(-,0)\\HidO^Bp\\T(W)\\LP,

(16) ¡X\\SW(-,0)\\H.dO<Bp\\S(W)\\LP,

and

(17) Ç\\UW(-,0)\\HidO*ZBp\\U(W)\\LP

hold for all Walsh series W.

To verify ( 15) apply (7), Jensen's inequality and Fubini's theorem to conclude that

'1   . ■   / „N,. „ V (    /"I    1*1, ■   , ^ )l/P

C\\TW(-, 0)\\H,dO <-£-r f f1 fl TW(x,0) YdOdxX
Jo P     l yJo Jo )
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By Khinchin's inequality [10, p. 213] this last term is dominated by

417

<V
oo /2"+l-l    ,

2 w2(x)w2(x)\   2   TT
n = 0 k = 2"    K

P/2

dx

Vp

Since w2(x) = 1, the expression above is no greater than Bp\\T(W)\\ LP, as required.

Similarly, the left-hand side of (16) is dominated by

*J/o'   ïoin[î(Wr-W2,){D2l+l-D2,^

P/2
Vp

dm]

But D2m(x) is well known to be 2m for 0 < x < 2 m and zero otherwise. Thus by

Schwarz, we deduce that

2 (W2- - W2,){D2,„ - D2,)\   < 2n 2 2'(IF2. - IF2,)2.
V/=i / ,-=i

It follows that

í   i    °°    i    "
(\\SW(-,0)\\H.dO<Bp\j     2  yilnWr-Wv)

Jo [Jo [n=0¿   i=\

This last term can be shown to be no greater than Bp\\S(W)\\LP by repeating the

steps indicated in the middle of p. 195 in [9].

A similar argument establishes (17).

The following is the main lemma of this section.

P/2
Wp

dm]

Lemma 3. If {fk}f=0 is a sequence of functions which satisfies

(18)

then

, /    oo \ P/2

I      2 fk(x)\      dx < oo   for some p> 1,
Jo \ k=0 I

dO,
I      oo \ 1/2 oo

(19) /       2   A2„(A)        dm<cC    ^r„(0)fn
J0   \k,n = 0 I J0     « = 0

where C is an absolute constant which does not depend on the functions fk

To prove this lemma set

Fk(x,*)=  2rH(*)A„{fk,x)
n=0

and

*(*,*,»)=  2 rk(0)Fk(x,4>)
k=0
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for x, <¡>, 0 G [0,1]. Recall by the two-dimensional version of Khinchin's inequality

[6, p. 84] that there are constants C and C" such that

(20)
n,k = 0

1/2

C'\    2jt«Uk,x)\      <jf\*{x,*J)\dm{*,6)

1/2

^C"\      2     **(/*,*)
\ n,k = 0

By the left-hand side of (20), together with (7) and Fubini's theorem we have that

/     oo \ 1/2

(21) (\    2    à2n(fk)\      dm^c((\m-,<l>,0)\\H,dm(^0)
Jo\„,k=o I JJQ

where C = J2/C. By the right-hand side of (20) and Lemma 2 of [8] we conclude

that

Ci ( \*(x,<t>,0)\dxd<pdO^C'"f     2 fk\
P/2

'0   U = 0

holds for any p > 1. By (18), then, the series ^ converges in Lx[0,1] norm for a.e.

(<p, 0) E Q. In particular, ty is a Walsh-Fourier series for almost every (0, </>) G Q. A

similar argument establishes that ^k=t)rk(0)fk is also a Walsh-Fourier series for a.e.

0 G [0,1]. Since the Walsh-Fourier coefficients of Fk( ■, <j>) and fk are identical, we

conclude that

2 rk(0)fk
k = 0

= [[*(■, *,0)
H]

holds for a.e. § and 0 in the interval [0,1]. The proof of Lemma 3 is completed by

applying this norm equality to the right-hand side of (21).

By repeating the argument found in [8, pp. 7-8] one can obtain a slight extension

of Lemma 3: if {fk}^=0 is a sequence of functions satisfying (18) for some// > 1 and

if [qk}f=0 is a sequence of positive integers diverging to + oo, then

(22) /    2 \wqk(fk)
Jo \ k=0

1/2 ,

dm < {2 Cf 2 rk(0)wf,
k=0

dO.

A sketch of this argument is that (7) is used to show the left-hand side of (22) is

dominated by fëJ(¡J'2™k=0h2„(wqtfk) dm, and then (22) is established by a single

application of Lemma 3.

The proof of Theorem 2 consists of three applications of inequality (22). For (i)

use (5) to write U2(W) as

2
/V=l

W»

N2

oo      2"-l

wL
wr= 22

"=1 k = 2"-

Thus (12) follows from (22) with qk = k andfk = W2»/k3 where k and n are related

by 2"~ ' « k < 2". Observe that (18) follows from the hypothesis that T(f)E LP[0,1]

for some/7 > 1.
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For (ii) repeat the argument occurring at the bottom of p. 194 in [9] to conclude

that

oo 2"

(23) T(W) <  2 2'" 2   I ̂ 2» - Wk\2.
n=\ k=0

If we note that (22) applies not only to partial sums but to any connected block of

terms of Walsh series (such blocks are differences of two partial sums), we obtain

(13) from (23) as in [9].

Finally, for (iii) we use a string of inequalities which appears at the top of p. 10 in

[8] to see that

/•if °°   w2]V2
(24) l|S(IF)||Ll<2||c/(IF)||¿1 + 2/      2 "T       dm.

Jo U=i   "   J

A final application of (22) followed by (5) establishes (14) and thus completes the

proof of Theorem 2.

4. Applications to the dyadic derivative. In this section we apply Theorems A and 2

of §3 to obtain inequalities relating a function /to its dyadic derivative Df.

Recall that a function / defined on [0,1] is said to be dyadically differentiable in Lp

for some// » 1 if the sequence.

(25) dN{f,x) =  2 2k-x[f(x)-f(x + 2-k-x)],   xG[0,l],
k = 0

converges in the Lp norm, as N -> oo. In such a case the limit, denoted by Df, is

called the (strong) dyadic derivative of/. Since Dwk = kwk for any integer k > 0, the

formal dyadic derivative IF is simply the term by term dyadic derivative of the

Walsh series W. Butzer and Wagner [1] have shown that an integrable function/is

dyadically differentiable in Lp, for some p > 1, if and only if W[f] is the Walsh-

Fourier series of some g E Lp[0,1], in which case Df — g a.e. A similar definition

and result holds for H ' as well [5]. Thus, if /is dyadically differentiable in the strong

sense, then W[f] = W[Df].

For any p > 1 let %p denote these integrable functions h which satisfy T(h) E

Lp[0,1], and set ||A||% = ||r(A)||L,. If we deal only with those functions A6ff

which satisfy a0(A) = 0, then %p is a normed linear space. By Holder's inequality,

the 6l)S norms get weaker as p get smaller. Moreover, by Theorem 1 the % norms

are all weaker than the L1 norm, p ¥^ oo. However, no % is complete.

The following theorem is an easy consequence of Theorem A and Paley's

inequality [7].

Theorem 3. Let /G L'[0,1] be dyadically differentiable in the strong sense and

suppose that a0( f ) = 0. If 1 < p < oo then there exists constants ap and ßp such that

ap\\f\\LP<\\Df\\%^ßp\\f\\LP.

This result contains an interesting corollary. If /, /,, f2,... is a sequence of

dyadically differentiable functions then a necessary and sufficient condition for



420 W.R.WADE

fn -» / in Lp norm, as n -» oo, for some 1 < p < oo is that Dfn -^ Df in %p norm, as

n -» oo. In particular, if 7)/„ -> 7)/in L1 norm, as n -» oo, then/, -* fin Lp norm, as

« -» oo, for every// ^ oo.

Theorem 3 does not hold for /> = 1. Nevertheless, certain one-sided inequalities

for// = 1 can be derived from Theorem 2 by applying it to W= W[f], where/is

dyadically differentiable in L1, and those one-sided inequalities improve those

implicit in Theorem 3 just as Theorem 2 improved those implicit in Theorem A.

Moreover, each of the 77 ' norms on the right side of inequalities (12), (13), and (14)

can be computed exactly. Indeed, by the proof of Theorem 2 the series TW( ■, 0),

SW(-,0), and UW(-,0) all converge in L1 norm, for a.e. 0 E [0,1]. Hence the

Walsh-Fourier coefficients of these series can be computed by orthogonality. We

shall systematically investigate the resulting inequalities in a later paper. One is the

interesting

\\U(W[f])\\L2<fi\\Df\\H>,

which holds for any dyadically differentiable /. Hence, if / is dyadically differentia-

ble in 77', then
00

2   ( N-x\WN(f,x)-oN(f,x)\dx<vo.
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