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RELATIVE GENUS THEORY

AND THE CLASS GROUP OF /-EXTENSIONS1

BY

GARY CORNELL

Abstract. The structure of the relative genus field is used to study the class group

of relative /-extensions. Application to class field towers of cyclic /-extensions of the

rationals are given.

Given a number field E one tries to understand the unramified abelian extensions

of E and so by Class Field Theory derive information about the class group of E,

CE. One way of doing this is to ask for the maximal abelian unramified extension of

E of the form EF^ where F„ is an abelian extension of F C E. This field is called the

relative genus field and we denote it by E*. If F — Q we speak of the absolute genus

field. This paper will use relative genus theory to study the class group of certain

/-extensions of Q. (Henceforth, / will always be an odd prime.) In particular we give

applications to class field towers of such fields. We also study the /-ranks of the class

group of number fields E containing a cyclic subextension of degree /. This will lead

to a slight improvement on a bound of Iwasawa [13]. This technique is then used to

give bounds on both the /-rank and the order of the class group of elementary

abelian /-extensions of Q.

We let HE (respectively HEl)) denote the Hilbert class field of E (respectively the

/-Hubert class field). Also we refer simply to the /-class rank to mean the /-rank of

the class group.

Proposition 1. Let E/F be normal and F^ the fixed field of the commutator

subgroup of Gal(HE/F). Then E* = EF^.

Proof. Any abelian extension of F whose composite with E is contained in HE is

contained in F^. Since F^E is contained in the tower E C F+E C HE, it is unrami-

fied over E. The result follows.

Proposition 2. Suppose E/F is normal and both fields are normal over some

subfield L of F. Then E* is also normal over L.

Proof. We know HE/L is Galois and Gal(HE/F) is a normal subgroup of this

group. The commutator subgroup of Gal(77£/F) is a characteristic subgroup of
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Gal(77£/F), hence normal in Gal(HE/F) because characteristic subgroups of

normal subgroups are normal. This implies that F„, the fixed field of this commuta-

tor subgroup, is also normal. So Ep — EF^ is the composite of two normal

extensions of L and so is normal over L.

Proposition 3. Suppose E/F is cyclic with generator a. Then Gal(Ep/E) »

CE/CXE~° under the Artin-map.

Proof. Since E/F is abelian we know the commutator subgroup of Gal(HE/F) is

contained in CE » Gal(HE/E). We also know that (a) acts on CE by conjugation.

Given any commutator aba~xb'x with a = ax, b = ßy, a, ß E (a), x, y E CE

(where we regard (a) as being lifted to Gal(HE/F)) then

aba-xb~x = axßyx'xaxy-xß-x = xaaßyx-xa-xy-x

= xa{yx-x)aß(aß)a-xy-xß-x = x'(yx-x)"ß{ v"1)",

where, as usual, ( )" = a( )a'x and the manipulations are permissible since both

CE and (a) are abelian. This is in CXE~" since a, ß are powers of a. Conversely, by

choosing ß — 1, a = a we get the reverse inclusion.

We will often be applying the preceding proposition to the following exact

sequence:

(*) 0 - CCE - CE - CE - CE/CE-',       G=(o).

(CE is usually called the group of ambiguous ideal classes and CE/CxE~a the genus

group.) So, for example, we get the following

Proposition 4. The ambiguous ideal class group has the same order as the degree

E*/E.

Proof. This follows from the fact that the alternating product of the orders of the

groups in (*) is one and that Gal(Ep/E) « CE/CxE~a.

Remark. From now on if it is clear from the context, we will suppress the

subscript of CE.

The groups CG and C/Cx~" are not obviously isomorphic. This is true, however,

when F is a cyclic extension of Q of degree /, since both are easily seen to be

elementary abelian /-groups. I do not know if these groups can be nonisomorphic or,

alternately, if nontrivial conditions can be given to force them to be isomorphic.

Lemma. If G — (a) is a cyclic group of order I and A is a G-module such that the

norm element 1 + a + • • • +a'_l annihilates A, then A1 = {x'\ x E A} — A(X~a)   .

Proof. The hypothesis implies that A is a Z[G]/l + a + • • • +o'~x module, i.e. a

module over Z[p¡] where p, is a primitive /th root of 1. Since the ideal (/) =

(1 — Pi)'~x and a acts as p¡, the result follows.

We will denote by r¡(A) the /-rank of an abelian group A. It is, for example,

dim F( A /A)'.
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Proposition 5. Let A be a G-module where G is a cyclic group of order I, generated

by a. Then:

(i)rl(A)<(l)rl(A/A1-'').

(ii) If the norm annihilates then r,(A) < (/ — l)r,(A/Ax~").

(iii) Again assuming the norm annihilates, suppose A contains an element of order I2,

then r,(A) > I - I.

Proof. Consider the series of surjective maps

-> A°-ay/A0-a)'+' - ¿X-°V/A^-^'

given by â -> ¿F1-". Under the hypothesis for both (ii) and (iii) the previous lemma

implies that A(X~a) = A1. Thus (ii) follows by noticing the filtration has (/ — 1)

steps and each one has, by the surjectivity rank, less than that of A/Ax~"; (iii) also

follows because each of the steps has rank at least one since the existence of an

element of order I2 implies that A(X~a)/A(X~a) is nontrivial. For (i) the module

Ax~" is annihilated by the norm, so the previous proposition applies. Thus /l*1-"* =

(^(•-»))'-i = (A1'")' C A'. So there is a surjective map A/A(X~a)' -> A/A1. Since

r,(A) > r,(A/A(X-°)l) > r,(A/A') = r,(A), we have r,(A) = r,(/l/^(1"o)'). The re-

sult now follows as in the proof of (ii), except now we have an /-step filtration.

Remark. The preceding is due to Inaba [11]. For another approach see [5].

Theorem 1. Suppose E/F is abelian with t ramified primes, t> 1. Then Ep may be

obtained by composing E with a ramified extension of F having at most t — 1 ramified

primes.

Proof. Ep/F is abelian so we can take the inertia group Tv for any prime p of F.

Its fixed field L has at most t — 1 ramified primes. We claim EL = Ep. Ep/EL is

totally ramified since EL is included in the tower L C EL C Ep and Ep/L is totally

ramified. It is also unramified as it is included in the tower F C EL C Ep C HE.

Thus the degree Ep/EL is one and so Ep = EL.

Remark. It is easy to construct examples where L has < t — 1 ramified primes.

Corollary 1 (Iwasawa [12]). Suppose E/F is a Galois ¡-extension with only one

ramified prime, and that is totally ramified. Then I \ hE <=> /1 hF.

Proof. Since every /-group has a chain of subgroups, each normal and of index /

in the next, we can assume E/F is cyclic of degree /. Then /1 hE <=> C£'' is nontrivial

<=> the group CE has nontrivial ambiguous ideal classes (i.e. (CE )(/) is non trivial). By

Proposition 4 this is so if and only if / divides the degree Ep/E. Now Theorem 1

says Ep can be gotten by composing F with an unramified extension of F. Since F is

totally ramified it is disjoint from any unramified extension of F Thus / must divide

hF-

Corollary 2 (Kiselevsky [14]). Suppose Gal(E/F) = G is a cyclic unramified

extension of degree n. Then \ CE | = | CF\/n = hF/n.
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Proof. Again by the exact sequence (*), | CE | = | CE/CX " \ . The latter, by

Proposition 4, equals | Ep : E \ . Since Ep = EHF = HF, the degree of \Ep: E\ =

hF/n.

Theorem 2. Suppose E/F is cyclic of degree I with t > 1 ramified primes. Then

r,(CE) « l(t - 1 + r,(CF)). If E/F is unramified then r,(CE) < l(r,(CF)). Finally, if

l\hFthenr,(CE)<(l- l)(t - 1).

Proof. Let//,,... ,p, be the primes that ramify. Theorem 1 says Ep = EL where L

has at most / — 1 ramified primes. Thus in L the group T generated by the inertia

groups of the primes that ramify have rank at most / — 1. The fixed field of T is an

unramified abelian extension of F and so has rank at most r¡(CF). Thus

r,(Gal(L/F)) < t - 1 + r,(CF). So Gal(EL/E) = Gal(Ep/E) has rank also <

(t — 1) + r,(CF). But again by Proposition 4 this group is isomorphic to CE/CE~".

The proof now follows by applying part (i) of Proposition 5. If l\ hF then we apply

part (ii) of this proposition. If there are no ramified primes, part (i) still applies since

Gal(Ep/E) has rank < r,(CF). (This is a slight improvement on a result in Iwasawa

[13].)
We can use Theorem 2 to derive bounds on the /-rank of CE in terms of the /-rank

of CF whenever E/F is a Galois /-extension. This is because any /-group has at least

one normal subgroup of every index and so we have only to proceed by induction in

towers. However, this procedure depends on the choice of the sequence of fields

F = F0 C • • ■ C F„ = F. In one case though there is a canonical choice of fields.

Theorem 3. Suppose E/Q is an elementary abelian extension of degree I" having

n-ramifiedprimes. Then r,(CE) < (/""')(/ - l)(n - 1) = </>(/")(« ~ 1), where $ is the

Euler totient function.

Proof. Since the number of ramified primes is the same as the rank, Gal(E/Q)

must be the direct sum of the inertia groups T , 1 < i < n. Thus we can choose a

subgroup of index / disjoint from all the T . The fixed field F of this group is a

cyclic extension of degree l oî Q having «-ramified primes, so by Theorem 2 we

know that r,(CF) < (/ — l)(n — 1). Now E/F is an unramified abelian extension of

degree l"~x since Gal(F/F) has been chosen to be disjoint from the T . The

theorem now follows by applying Theorem 2 n — 1 times.

It is tempting to conjecture that similar bounds hold for all elementary abelian

/-extensions and not just those of the special type above. I do not know if this is

reasonable. At least it is of the right order of magnitude as shown by the following

weaker result: Suppose F = Fn D F„_, D • • • D F0 = Fis a chain of fields with each

Fi+X/Fi cyclic of degree with t¡ ramified primes. Set e, = /, if /, > 1 and e, = 1 if

/, = 0. Then

Theorem 4. r,(CE) < S^,1/"-'^, - 1) + l"r,(CF). Ifl\hFo then

r,{CE)< 2 /""'(«i-l)-ln-\e0- 1).
r=0
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Proof. Both are easy inductions using Theorem 2.

Remarks. If F0 = Q we can choose each r, to be at least one but this does not

always give the best bounds. Exactly how good these bounds are is less clear, since

this involves proving the existence of fields having large /-class rank. For example, in

the case F0 = Q we know the rank is < (/ — l)(i — 1) for cyclic extensions F, of

degree /, but nothing is known if ranks larger than 2(t — 1) can be obtained. That

the rank can be t — 1 exactly is a theorem of Gerth [8], that ranks 2(t — 1) can be

obtained follows from the early work of Fröhlich but does not appear to have

explicitly occurred in print. Exactly which (if any) ranks > 2(t — 1) can be obtained

from the work of Fröhlich is unclear.

For arbitrary elementary abelian extensions of Q in a subsequent paper, following

a suggestion of T. Takeuchi, improving on the results of [1], we can prove that

extensions of Q of type (Z/l)" can have /-class rank > (/" — l)/(/ — 1) — ». This

shows Theorem 3 is at least in the right ballpark. Also it is worth noting that lower

bounds (at least in the tamely ramified case) of (n)(n — l)/2 — n were obtained in

[5] following ideas implicit in the work of Furuta and Fröhlich.

We can combine the above two theorems with the following elementary observa-

tion to derive information on the order of the /-class group of an elementary abelian

/-extension of Q. (It is worth pointing out that prime to /, part of the class group is

the direct sum of the corresponding parts of the fields on the first layer. For this

result (which has been proved repeatedly) see [16].)

Let G be a finite group. G is decomposable if there exists a partition of G by

subgroups 77, such that G = U 77, with the intersection of the 77, 's being only the

identity. A complete classification of such groups is available, see [9]. However, it is

obvious that an elementary abelian /-group admits such a decomposition by the

subgroups of order /. Corresponding to a decomposition we have an equation in the

integral group ring Z[G]. Set NH = 2ae//o\ Then 7VG = "2HNH — (#77 — 1) where

#77 is the number of subgroups in the decomposition. In the special case when

G^Z/IX Z/l, we have for any G-module A, AlAN° = IM"", since there are / + 1

subgroups of order /. Thus, if A is the /-class group of a bicyclic extension of Q of

type (/,/), where the norm of course annihilates the class group, we have |v4'|<

II | AH | where AH is the /-class group of the cyclic extension of Q fixed by 77. Now

| A | = | A' 11 A/A' | and the number | A/A1 | = /7(/,) is bounded by the previous

discussion. So proceeding by induction we can bound the /-class number in any

elementary abelian extension in terms of the /-class numbers of the first layers.

Now we want to give examples where Ep J EHF. We have the following theorem

of Furuta [6] for the degree Ep/E:

hF-Ile;
if*, p =-1-r-
1    F       '     |F0:F||e:7)|

where hF is the class number of F, e'p is the ramification in the maximal abelian

subfield of the completion of F at p over the completion of F, F0 is the maximal

subfield of F abelian over F and | e : tj | is the index of the units which are

everywhere local norms in the full group of units.
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The difficulty with the above formula is that the presence of the unit index makes

it difficult to decide when this number is > 1. Of course one can always take fields

having enough primes ramified and for those fields it can be shown that | Ep : E | >

hF. These proofs more or less depend on the unit group being finitely generated.

What we want to do is describe a set of primes of positive density such that if F | F

has ramification in this set it is "quite likely" that the genus field is properly larger

than HFE. We will then use this to prove the existence of /-extensions of Q whose

class groups are particularly interesting.

Class Field Theory says the maximal tamely ramified abelian extension of a

number field F at a prime p (to be denoted by Fp) is the full ray class field with

conductor p. It is of finite degree over 77F, the Hubert class field of F, and in the

tower of fields F C HF C Fp the Galois groups correspond to the short exact

sequence

(**) 0^(6/p)*/U/Ux(p) - Iv/Pv - CF - 0

where 0 is the ring of integers in F, U (respectively Ux(p)) are the units of F

(respectively the unity = l(p)),Ip is the group of fractional ideals prime to p, and Pv

is the principal ideals which have a generator congruent (multiplicatively) to 1 mod p

and CF is the class group of F

Remark. Since the exact sequence (**) need not split, it is of interest to study

exactly what is the structure of the group I^/pp. Both the splitting and nonsplitting

of (**) can occur and both have interesting consequences (see [4] for more on this).

For our purposes it will be enough to show that, for a certain set of primes of

positive density, the group (G/p)*/U/Ux(p) is large. Notice that this is not a priori

obvious because U/Ux(p) can be large even while (6/p)* is.

Let L be the extension of F gotten by adjoining to F the nth roots of all the units

of F. By Dirichlet's unit theorem this is a finite extension of F containing the nth

roots of 1.

Theorem 5. If p is any prime from Q which splits completely in L then

i (e/p)*
" I u/u'(p)

for any p above p in F.

Proof. By construction the completion of F at p is Qp and, moreover, the

polynomial X" — u splits completely in Qp = F„ = Lp. Thus every global unit is

locally an nth power. Moreover, since L contains the nth roots of 1 and p splits

completely in L, we have p = 1 (n). So Np =|(0/t>)* \ = p is also = 1 (n). Set

T = (S/p)*. Then by the above, u/u'(p) maps entirely into T". The result now

follows since, for any finite abelian group with n 11 T \ , the index of T" in T is at

least n.

We will denote the set of all primes in F that satisfy the conditions of Theorem 5

by £2„(F). Notice that Up is any prime of Q below a prime in ß„(F), the ray class

field of F with conductor p (considered as an integral ideal of F) has large n-rank

( = numbers of summands in the Galois group of Fp/F whose order is divisible by
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n). More precisely, the rank is at least \F: Q\ and may be larger depending on

whether n \ hF and the sequence (**) splits. To return to the problem of forcing

| Ep : E | large, we must construct unramified abelian extensions of F. The easiest

way is to use

Ab hy anker's Lemma. Let Ex, E2 be Galois extensions of a number field F. Suppose

a prime p of F is tamely ramified in E2 with ramification index e2. Suppose p is also

ramified in F, with ramification index ex. Suppose that e2\ex. Then F2F,|F, is

unramified at p.

For a proof see [2 or 3].

We now want to construct cyclic extensions F of Q of degree / having infinite

/-class field tower. If we naively apply the Golod-Shafarevich bound then the /-rank

of the class group must be > 2 + 2\JTF + SF, where TF is the number of infinite

primes in F and SF = 0 or 1 according as the /th roots of 1 are in F. Then one

applies the fact that the rank of the class group is at least t — 1, where / is the

number of ramified primes, to conclude that there are fields having infinite class

field towers. In [1], on which this paper is based, it was shown that there exist

infinitely many cyclic extensions of Q of degree / having only four ramified primes

which, nonetheless, have infinite /-class field towers. Then T. Takeuchi remarked in a

letter to the author that a theorem of Furuta [7] enables one to replace this (for

/ > 13) by only two ramified primes and by three ramified primes for all odd /. Since

the methods are slightly different we will give both results here. For Takeuchi's

version, which was done independently, see [15].

Choose any prime px = 1 (/) and let kx be the unique cyclic extension of Q of

degree /having only//, ramified. Choosep2, p3, p4 below primes in &¡(kx). Let A'be

any field cyclic of degree / over Q having/?,, p2, p3, p4 ramified.

Theorem 6. K has an infinite ¡-class field tower.

Proof. Kkx is, by Abhyanker's Lemma, an unramified abelian extension of K of

degree /. We will show that Kkx has an infinite /-tower which implies that K itself

does. Since | Kkx : Q |= I2 the Golod-Shafarevich bound says Kkx has infinite /-class

field towers whenever r¡(CKk )> 2 + 2y/2 — 1 . We will explicitly construct an

unramified abelian extension Q having /-rank larger than this. So this, by class field

theory, implies that the rank of CKk is also > 2 + 2]/l2 — 1 . Let F be the maximal

elementary abelian /-extension in the ray class field of kx with conductor p2p3p4.

Since we have chosenp2, p3, p4 in íi¡(kx), this has /-rank at least 3/ (and in fact since

l\hk , exactly 3/). Moreover, the ramification index of any prime above//,, / = 2,3,4,

is exactly /. Thus Abhyanker's Lemma implies that FKkx is an unramified abelian

/-extension of Kkx of rank at least 3/ — 1 (and actually it equals 3/ — 1 since Kkx is

in F). This finishes the proof since 3/ — 1 > 2 + 2\//2 — 1 for all odd /.

Now the improvement of this result will depend on a remarkable theorem of

Furuta that in some circumstances enables us to replace "large unramified abelian

/-extensions" by "large abelian /-extensions". We will state the theorem only in the

tamely ramified case where it is somewhat simpler.
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Theorem (see Theorem 3 in [7]). A number field E admits an infinite l-class field

tower if E contains a subfield L such that E/L is a Galois ¡-extension (i.e. the degree is

a power of I) and such that the ¡-rank of the maximal abelian ¡-extension F0 of L in E

has ¡-rank >2 + 2^Jp + t + 1, where p is the rank of the units of L modulo ¡th powers

and t is the number of primes of L which ramify.

Using this theorem we need only choose one prime//, = 1 (/) and//2 any prime in

&i(kx) where, as before, kx is the unique cyclic extension of Q having only //,

ramified. Let K now be any field cyclic over Q of degree / with both px, p2 ramified.

We claim K has an infinite /-class field tower. As before it is enough to prove that

Kkx has an infinite class field. Let F now be the maximal elementary abelian

/-extension in the ray class field of kx with conductor p2. As before F D Kkx and is

an unramified abelian extension of it. We apply Furuta's theorem to the pair F/kx

to conclude F has an infinite /-class field tower. This implies that Kkx does, which in

turn implies that K does. In Furuta's theorem p is / — 1 since /c, is of degree /, /-odd,

and so the /th roots of 1 are not in kx. r is / since all the primes above p2 ramify.

Now for / > 13,7 - 1 > 2 + 2\/(/- 1) + t + 1, so the result follows.

Remarks. The extension F/K while unramified is not abelian. In fact, it is easy to

see that Gal(F/Q) is a wreath product of (Z/l)1 by Z/l. Such groups have no large

abelian subquotients. Thus we cannot use F to get fields K having very large /-class

rank. However, we can apply Burnside's basis theorem to conclude the following:

Theorem 7. The ¡-rank of CK is at least 2, and CK contains nonambiguous ideal

classes.

Proof. If the /-rank is at least two then CK must contain ambiguous ideal classes.

This is because K has only two ramified primes over Q and so the rank of the

ambiguous ideal classes is one. So it is enough to prove the first statement.

Since F/Q is Galois, F/K is also. Since it contains Gal(F/Kkx) which is of rank

/ — 1, it is not cyclic. Thus Burnside's basis theorem implies Gal(F/AT) has an

elementary abelian quotient of rank 2. Since (as remarked before) F/K is unrami-

fied, we are done.

Remark. This gives another solution to the problem solved by Gras in his thesis

[10].
As a final theorem we give an amusing consequence of Proposition 5 to infinite

class field towers.

Theorem 8. Suppose I > 11 and K is a cyclic extension of Q of degree I having an

element of order I1 in the class group. Then K has an infinite l-class field tower.

Proof. By Proposition 5 we know the /-rank of CK is then at least / — 1. Since the

Golod-Shafarevich bound for a cyclic extension of odd degree I is > 2 + 2i¡ — 1 , it

is easy to check that, for all /> 11, / — 1 is indeed larger than this.

Remark. Unfortunately, we do not know if there exist infinitely many cyclic

extensions of Q of degree / having elements of order I2 in the class group. This does

not even seem to be known for 1 = 3. For / = 2 it is true but the proofs do not seem

to generalize.
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