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F-PURITY AND RATIONAL SINGULARITY

BY

RICHARD FEDDER

Abstract. We investigate singularities which are F-pure (respectively F-pure type).

A ring R of characteristic p is F-pure if for every R-module M, 0 -> M ® R -> M

®'R is exact where ]R denotes the R-algebra structure induced on R via the

Frobenius map (if r E R and s E [R, then r ■ s = rps in '/?). F-pure type is defined

in characteristic 0 by reducing to characteristic/».

It is proven that when R = S/I is the quotient of a regular local ring S, R is

F-pure at the prime ideal Q if and only if (Ilp]: I) </_ Q[p]. Here, J[p] denotes the

ideal [ap \ a E J). Several theorems result from this criterion. If/is a quasihomoge-

neous hypersurface having weights (rx,...,rn) and an isolated singularity at the

origin:

(1) 2?=,»-, > 1 implies K[XX,.. .,*„]/(/) has F-pure type at m = (Xx,.. .,X„).

(2) T¡=xr¡ < 1 implies K[Xx,...,X„]/(f) does not have F-pure type at m.

(3) 2"= | r, = 1 remains unsolved, but does connect with a problem that number

theorists have studied for many years.

This theorem parallels known results about rational singularities. It is also proven

that classifying F-pure singularities for complete intersection ideals can be reduced

to classifying such singularities for hypersurfaces, and that the F-pure locus in the

maximal spectrum of K [ A-,,..., Xn ]//, where AT is a perfect field of characteristic P,

is Zariski open.

An important conjecture is that R/fR is F-pure (type) should imply R is F-pure

(type) whenever R is a Cohen-Macauley, normal local ring. It is proven that

Ext'('/?, R) = 0 is a sufficient, though not necessary, condition.

A local ring ( R, m ) of characteristic p is F-injective if the Frobenius map induces

an injection on the local cohomology modules H'm(R) -> H'm(xR). An example is

constructed which is F-injective but not F-pure. From this a counterexample to the

conjecture that R/fR is F-pure implies R is F-pure is constructed. However, it is not

a domain, much less normal. Moreover, it does not lead to a counterexample to the

characteristic 0 version of the conjecture.

0. Introduction. Let R be a ring of characteristic p and let XR denote the ring R

viewed as an Ä-module via the Frobenius map F(r) = rp. R is F-pure if for every

R-module M, 0 -* R ® M -* XR ® M is exact. A notion of F-pure type is then

defined in characteristic 0 by reduction to characteristic/».

F-pure rings are connected with invariant theory and appear in the proof that the

ring of invariants of a linearly reductive affine linear group acting on a regular ring

is Cohen-Macaulay [3]. It has also been demonstrated that F-purity measures good

singularities in the sense that it implies a great deal of simplification in the

computation of local cohomology [1].
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In this paper a criterion is given for F-purity (Theorem 1.12). If R = S/I where S

is a regular local ring of characteristic/» and maximal ideal m, then R is F-pure if

and only if (Ilp]: I) <£ m[p] where Jlp] denotes the ideal generated by {ap \ a E J}.

When S is a polynomial ring over a perfect field K, it is proved that the F-pure locus

of S/I is a Zariski open set (Theorem 1.13).

The ideal (I[p]: I) is trivial to compute when / is generated by a regular sequence.

In particular, for a hypersurface, (S/fS) is F-pure if and only if fp~x <£ m[p]. With

this criterion, it is possible to determine almost completely which quasihomogeneous

hypersurfaces with isolated singularities have F-pure type (Theorem 2.5). The results

agree with the classification of when such hypersurfaces have rational singularities

[2]-
Since, for affine rings, R, Elkik has proven that, for/ a nonzero-divisor on R,

R/fR has a rational singularity implies R has a rational singularity [4], the question

is investigated here with the worlds "F-pure" replacing "rational singularity". The

condition Ext^'/Î, R) = 0 is sufficient for proving this theorem. It is therefore true

at least when R is Gorenstein (Theorem 3.4). Some examples where the rings are not

Gorenstein are discussed in §4. A counterexample (Example 4.8) is thereby given to

the general conjecture that R/fR is F-pure implies R is F-pure. However, it is not a

domain. Moreover, it is not a counterexample to the characteristic 0 version of the

conjecture.

This paper is an outgrowth of my doctoral thesis at the University of Michigan. Í

am especially grateful to my advisor M. Höchster whose conjectures provided the

inspiration for this paper and whose suggestions were frequently helpful. In particu-

lar, the full generality of the argument in Proposition 1.11 is based on his sugges-

tions. I also appreciate many helpful comments made by C. Huneke in the process of

developing these ideas.

1. Definitions and criteria for F-purity.

Definition. Let E and E' he modules over a fixed base ring R. E -* E' is pure if

for every A-module M, 0->E'®M->E®Mis exact.

Since direct limit commutes with tensor and every Ä-module is the direct limit of

finitely presented ones, it suffices to test purity using only finitely presented modules

M.

a

Lemma 1.1. Let M be finitely presented by R" -» Rm -» M -> 0 and let M' — coker a*

where * denotes the functor HomÄ(—, R). Let 0 -» E' -» F -» E" -» 0 be an exact

sequence. Then,

kernel(F' ® M' -» F ® M') « Cokernel(Hom(M, F) -» Hom(M, E")).

Proof. See [1, Lemma 5.1].

Corollary. Let R be a Noetherian subring of S. Then R is a pure subring of S if

and only if R is a direct summand, as an R-module, of every finitely generated

R-module of S which contains it. If S is module finite over R, R -* S is pure if and only

if it is split.
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Lemma 1.2. Let (R, m) be a complete local ring and M an R-module. Let E be the

injective hull of R/m. Then the following are equivalent:
a

1. R -» M splits.
a

2. R -> M is pure.
a

3. E ^M ® E is injective.

Proof. 1 => 2 => 3 is clear. E^M®E is injective » Hom(M ® E, E)^>

Hom(F, F)  is  surjective <=> Hom(M, Hom(F, F)) -» Hom(F, F)  is  surjective «•
a*

Hom(Af, /?) -> /? is surjective.    D

The following is a summary of some basic facts about pure subrings (see

[1, Propositions 5.4, 5.5, 5.6, 5.7, and 5.13]).

Proposition 1.3. (1) If R ESE T are rings and S is pure in T, then R is pure in T

if and only if R is pure in S.

(2) If S is faithfully flat over R, then R is pure in S.

(3) Let R E S be nonnegatively graded algebras of finite type over a Noetherian ring

and suppose that the inclusion map preserves degree. If S is module finite over R, the

following conditions are equivalent:

(a) R is pure in S.

(b) R is a direct summand of S as an R-module.

(c) There is a degree preserving R-module retraction of S onto R.

(4) Let R, S be nonnegatively graded K-algebras of finite type with R0 = S0 = K

where K is a field. Let R -» S be a homomorphism that multiplies degrees by d and

assume that S is module finite over R. Let ty, Q be the irrelevant maximal ideals of R

and S respectively. Note that SQ - S ®R R9. Denote by Sq the Q-adic completion of S

which is the same as the 9-adic completion of S as an R-module. The following

conditions are equivalent:

(a) R is pure in S.

(b) R is a direct summand of S as an R-module.

(c) R9 is pure in Sq.

(d) Refis a direct summand of Sq as an R ̂ -module.

(e) Ry is pure in Sq .

(f) R!¡? is a direct summand of Sq as an R^ -module.

(5) Let R -* S be a homomorphism from a local ring (R, m) and let E be the

injective hull of R/m. Then R -* S is pure if and only if R/m is not killed under

E ^ E®RS.

(6) Let S be an F-pure ring of characteristic p. Let R be a pure subring of S (e.g. a

ring which is a direct summand of S as an R-module). Then R is F-pure.

If R is a Ä^-algebra where F is a field of characteristic/», we denote by Fe the ring

homomorphism r -» rp' which is the eth power of the Frobenius map from R into

itself.

Definition. If M is any /^-module, "M will denote the group M viewed as an
F'        .

/^-module via r-m — rpm. Thus, R -»eR is an /î-module homomorphism.
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Definition. R is F-pure if R -» XR (equivalently, R -» '#) is pure.

In studying F-purity, one need only consider reduced rings since, if R has nonzero

nilpotents, it is obviously not F-pure. When R is reduced, there is a natural

identification of maps:
f ,

l.R^R.

2. R -» Rx/p where Rx/p denotes the ring of/»th roots of elements in R.

3. Rp -» R where Rp denotes the ring of /»th power of elements in R.

Thus, if / = (/i,,... ,ixr) is an ideal in R, then '/ can be thought of as the ideal

(pYp, . . .,nYp) E Rx/p under the second identification of maps.

Definition. R is F-finite if XR is finitely generated as an Ä-module.

Since, for any localization, X(S'XR) ̂ XR® S'1« as S-'F-modules and X(R/I) -

XR/(XI) as R/I-modules, we have

Lemma 1.4. If R is F-finite, then:

1. S'XR is F-finite for any localization.

2. R/I is F-finite for any ideal I.

Lemma 1.5. Let R be a finitely generated K-algebra where K is a perfect field of

characteristic p. Then R is F-finite.

Proof. R = K[\px,... ,t//„] and Kp = K. Hence, XR is generated by the monomials

of the form ̂ \' ■ ■ ■ 4>'„" where 0 < i¡<p — 1 for each 1 <j <n.    D

Regular local rings play a leading role in the study of F-purity. Note that a regular

local ring S of characteristic /» has the property that S -> XS is faithfully flat (and

therefore, by Proposition 1.3, 5 is F-pure). To see this, we may reduce to the

complete regular local case, completion being a faithfully flat functor. Then,

S = K[[XX,...,X„]] and, denoting Kx/p = {kx/p | k E K}, it is clear that XS =

K[[Xx/p,...,Xx/p]] as an S-module. The result follows from the fact that

KX/P[[XXX/P,...,XX/P]] is a free module over Kx/p[[Xx,...,Xn}] which is faithfully

flat over K[[XX,.. .,Xn]}. (The condition that S -> XS be faithfully flat indeed

characterizes regular rings of characteristic/» [9,Theorem 2.1,Corollary 2.7].) The

goal of the next section will be to develop a criterion for determining whether a local

ring R which is the quotient of an F-finite regular local ring S is F-pure (e.g.

R = S/I where S is the localization of a ring finitely generated over a perfect field).

Then, we will eliminate the need for the F-finite condition by a technical argument.

It might be illuminating to discuss the general technique used repeatedly here. If S is

an F-finite regular local ring, then XS is also a regular local ring which is free as an

S-module and, denoting canonical modules by fi, it is an immediate consequence of

local duality that Homs('S, S) - Homs('S, Sls) =* Q¡s ̂ 'S as XS modules. T will

always be used to denote a homomorphism which generates Horn s ('S, S) as an

'.S-module. Of course, T is not unique but is determined up to a unit in 'S. Let

/ be any ideal in S. Then R = S/I has a free resolution by S-modules, 0 -» S"m

-» ■ ■ • - S"> -> 5 -* S/I -* 0. Since XS is a free S-module, 0 -> xSn- -» • • •

-^XS"< -+XS ->X(S/I) -> 0  gives  a  free  S-module resolution  of  XR.  Identifying
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Homs('(S//), S/I) with HomÄ('Z?, R), every <j> G HomÄ('/?, R) induces a homo-

morphism of complexes:

XS"-    ->->    'S"1     -»     £     -*    'S/7    ->    0

! <t>m ! *i ', <>o <i>

5«m     _»-,     5«,     ^5      -     s/I      -    0

In many cases, this homomorphism of complexes leads to a very explicit computa-

tion of HomR('/?, R) which permits us to determine whether R -> XR is split.

Lemma 1.6. Let (S, m) E (S*, m*) be Gorenstein local rings and assume that S* is a

finitely generated free S-module. Then:

(1) Homs(S*, S) - S* as an S*-module.

(2) Let T be a generator for Homs(S*, S) as an S*-module, H be an ideal ( possibly

improper)in S*, I be an ideal in S, and s be an element in S*. Then the image of H

under the homomorphism sT: S* -» S is contained in I if and only if s E (IS*: H).

Proof. (1) Since both S and S* are Gorenstein, their respective canonical modules

satisfy ßs =í S and fis, =* S*. As in the remarks above, an easy application of local

duality shows that Homs(S*, S) - Homs(S*, fis) = fi5, =* S* as S*-modules.

(2) sT: H^I^ sT: (aS*) - / for all a E H « soT: S* -» / for all a E H. If

{wi}/=i nlsa basis f°r S* over S and if {<#>,} is the dual basis, then <p¡ = m,F where

th, ES*. Thus, soT: S* -» / » soT(mt) = u,. E / for each 1 </<«<=> saF =

(2jn,w,)F <=> ia = 2/i,rn, G /S*.    D

Corollary. Under the assumptions of Lemma 1.7, ¿/¡ere ex/sis a« isomorphism \p:

(IS*: H)/IS* - Homs(S*/H, S/I) given by i(s) = (si) where sf is the homomor-

phism defined by sT(t) =sT(t) E S/I for ¡E S*/H.

Proof. Since S* - S", every homomorphism <j> E Homs(S*/H, S/I) induces a

commutative diagram:

S*      ^      S*/H    ->    0

¡<>0 4>

S S/I      -»    0

Since <i>0 G Homs(S*, S), <j>0 = sF for some í G S* and <p = sF. Conversely, sF

induces a well-defined homomorphism sT ** sT: H -> /. Moreover i F induces the

zero homomorphism <=> îF: S* -» /. Now apply Lemma 1.7.    D

Recall that I[p] is the ideal generated by {ap \ a E I}. Thus, when 'S is identified

as a ring with the ring S, the S-module /• 'S in 'S becomes identified with I[p] in S.

Corollary. // S is a« F-finite regular local ring and R = S/I, there exists an

isomorphism ip: x((Ilp]: I)/Ilp]) -» HomR('/?, R) defined by 4>(s) -sT where T is

any choice of a xS-module generator for Homs('S, S).

Proposition 1.7. Let (S,m) be an F-finite regular local ring and let R = S/I.

Then, R is F-pure « (Ilp]: I) ¿ mlp].
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Proof. Let F be a generator of Homs('S, S) as an 'S-module. Then, by the

preceding corollary, every element of Hom^'F, R) has the form sT where 5 G

(Iíp]: I). R -> XR splits if and only if there exists some <j> —sT E HomR(xR, R) such

that the image of <¡> is not contained in the maximal ideal of R. But, the image of the

map sT contains a unit if and only if s G mlpX.    D

Our goal is to ehminate the restriction that S be F-finite in Proposition 1.7. If

(R, m) is a local ring and E is the injective hull of R/m, E is a direct limit of

modules of finite length and is therefore unaffected by ®R. Thus, the question of

whether F -» F ® XR is injective, which is equivalent to F-purity, is unaffected if we

replace R by R. Consequently, we may assume that F is a complete local ring. If R is

F-pure, R is clearly reduced. Moreover, if R is complete and reduced, Höchster has

proven [6] that there must exist a sequence of Gorenstein ideals qn which are cofinal

with the powers of m. It follows that E = lim R/qn and that R is F-pure if and only

if R/q„ -* R/q„ ®XR is injective for each n. Of course, the map is injective if and

only if qn is contracted with respect to the Frobenius, that is, (q„- XR) n R = qn.

These observations prove Lemma 1.8.

Lemma 1.8. Let (R, m) be completed and reduced. Then R is F-pure if and only if

there exists a sequence of ideals qn, cofinal with the powers of m, such that R/q„ is

O-dimensional Gorenstein, and each qn is contracted with respect to the Frobenius map.

Lemma 1.9. Let (R, m) be F-pure and complete. Denote R/m by K and let X be in K

but not in Kp. Then T = R[Z]/(ZP — X) is reduced and complete.

Proof. Let z denote the image of Z in T.T is obviously complete since z is a unit

and R is complete. Let S be the set of nonzero divisors in R. It is enough to show

that S~XT is reduced. But, since R is reduced with minimal primes qx,...,qn,

S'XR — W"=xLi where L, = R/q¡ = Rq. (Note that each L¡ contains a copy of K.)

Thus, S-xT^H"=xLi[Z]/(Zp - X) and it is enough to show that L¡[Z]/(ZP - X)

is reduced for each i. Since L¡[Z] is a UFD, either ZP — X is prime or Zp — X can be

factored in L¡[Z]. But, if Zp — X can be factored inF;[Z], then L, must contain a

/»th root of X. We try to solve X = (r/w)p where w G q¡ and q¡ is a minimal prime in

R. There must exist a v G q, such that 0 = vXwp — vrp = Xvpwp — vprp in R. Let

wx = vw and rx = vr. Then, since A is a unit in R, we get wpX = rp in R and

w\ = rf/A m R- Since R is F-pure, the ideals of R are F-contracted. (R/I -> (R/I)

®XR =XR/(I- XR) is the map which sends r to rp viewed in XR/(1■ XR). Of course,

F-purity implies that this map is injective, so that (/• XR) n R = /.) It follows that

wx E rxR and rx E wxR. Thus, r, = awx where a is a unit of R. Now (ap — X)wf = 0

and wx = vw G q¡. Thus wp ¥= 0 and ap — X is a zero-divisor in R. Hence, ap — X = 0

modulo mR and ¡xp — À (where " denotes reduction modulo m so that â G K). We

conclude that if X has a /»th root in L¡, X has a pth root in K violating our

hypotheses.    D

Lemma 1.10. Let (A, m) and(B, n) be local rings and let \p be aflat homomorphism

from A to B such that \p(m) E n.

(I) If A is Gorenstein and B/mB is Gorenstein, then B is Gorenstein.
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(2) If A is a O-dimensional Gorenstein ring, n — m-B, and x generates the socle of A,

then \p(x) generates the socle of B.

Proof. For (1), see [7]. For (2), observe that B/mB is a field and B is therefore

O-dimensional Gorenstein. Since \p is injective, \¡/(x) ¥= 0 in B. But x E (0: m)A =>

4>(x) E (0: m)B = (0: n)B => \p(x) generates the socle of B.    D

Proposition 1.11. Let (R, m) be a complete local K-algebra where K is a field of

characteristic p. Let X E K such that Xx/p G K. Then, R is F-pure if and only if R[Xx/p]

is F-pure.

Proof. Identify R[Xx/p] with T = R[Z]/(ZP - X) where Z is an indeterminate.

Note that F is a free F-module and therefore R -» T is pure. If F is F-pure, then

R -> XT is pure and consequently, R -* XR is pure. Conversely, if R is F-pure Lemma

1.9 says that T is complete and reduced. By Lemma 1.8, there is a sequence of

Gorenstein ideals {qn} cofinal with the maximal ideal of R such that each qn is

F-contracted. Since R/q„ is a O-dimensional Gorenstein ring, the maximal ideal of T

is just (m ■ T), and T/qnT is a free (hence flat) R/qn-modxile; it follows that {qnT} is

a sequence of Gorenstein ideals in T cofinal with the maximal ideal of T (Lemma

1.10). Moreover, if xn generates the socle of R/q„, x„ also generates the socle of

T/qnT. Applying Lemma 1.8 again, it suffices to show that each ideal qnT is

F-contracted. Suppose qnT is not contracted. Then there exists y G qnT satisfying

yp E (qnT)lpX. Since j' G qnT and xn generates the socle of T/qnT there exists s ET

such that xn = sy + q for some q E qnT. Hence, xp = spyp + qp E (qnT)[p] =

qlnp]R. The facts that xn E R, xp E q\f^, and qn is F-contracted, together imply that

xn E qn which contradicts the fact that xn generates the socle of R/q„.    D

Theorem 1.12. Let (S,m) be a regular local ring of characteristic p and let

R = S/I. Then R is F-pure if and only if(Ilp]: I) £ mlp].

Proof. We may immediately reduce to the case where S and R are complete. Then

S = K[[Xx,...,Xn]] where F is a field of characteristic /». Let L be the perfect

closure of K and denote by T the ring L[[Xx,...,Xn]]. By Proposition 1.11, S/I is

F-pure if and only if T/IT is F-pure. Since T is F-finite, T/IT is F-pure if and only

if [(IT)lp]: (IT)] (¡L mlp]. Since S -» Fis flat, [(IT)lp]: (IT)] = (I[p]: I)T. Finally,

(Ilp]: I)T £ m[p]Tif and only if (Ilp]: I) £ mlp].    D

Remarks. 1. For a given regular ring S, it is natural to ask whether the locus of

maximal ideals m of S at which (S/I)m is F-pure is open in the maximal spectrum

of S/I. Since localization commutes with colon, the criterion (I[p]: I) Çt mlp] still

applies.

2. The criterion (Ilp]: I) Çt m[pX suggests the trick of testing F-purity by taking

derivatives. That is if ¡j. E mlp] and D is any F-linear derivation from S to itself, then

D(n) E mlp]. On the other hand, if S = K[Xx,...,Xn] where K is algebraically

closed and m = (Yx,.. .,Yn) where Y, = X¡ — ai for some a¡ E K, then the fact that

H G mlp] implies that we can find some iterated sequence of derivations of the form

9/9?; such that 9'(/x)/((9Y¡)r' • • ■ (dYn)'») is a unit in the ring Sm.
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Definition. Let S be a F-algebra and let / be an ideal of S. Then, DK(I) will

denote the ideal generated by all the iterations of F-linear derivations from S to

itself applied to elements of /.

Theorem 1.13. Let S = K[Xx,...,Xn] where K is a perfect field of characteristic p.

Let R = S/I and let m be a maximal ideal of S which contains I. Then Rm is F-pure if

and only if m/> Dk(I[p]: I). Thus, the locus of closed points at which R is F-pure is

Zariski-open in the maximal spectrum of R.

Proof. The case where K is algebraically closed is obvious from the remarks

above. Let T = K[Xx,...,Xn] where K is the algebraic closure of K. Let J =

Dx(IT[p]: IT). Let ß = (w, | m¡ is maximal in T and m¡ D S = m}. Then since

S -> T satisfies the going up theorem mDJnS^m¡Z)Jíor some m, G ß. Since

S -> F is flat, (ITlp]: IT) = (Ilp]: I)T, and the theorem is true when K is

algebraically closed; it suffices to show that (I[p]: I) E mlp] if and only if

(IlpX: I)T E m\p] for some m¡ E ß. (The fact that these two conditions are equiva-

lent actually implies the stronger equivalent condition that (Iip]: I)T E m\pX for all

m, G Ö.) Of course, (I[p]: /) C mlp] =* (Ilp]: I)T E m\p]. Conversely, (Ilp]: I)T E

m[p) => (F/>]: /) c (I[p]: I)TD S E m\pX D S. It is therefore enough to prove that

m\p] n S = m[p]. Let ¡x E m\p] D S. Then ¡x = ap where a E mi and ap E S. Using

v to represent a multi-index v = (vx,...,vn) and denoting X" = W"-.XX"', we can

write a = 1kvXv as a polynomial with coefficients kv G K. Then ap = 1kpXpp so

kp E K. But K is perfect, so each kvE K and a E S (~) m¡ = m.    □

2. Hypersurfaces and complete intersections. The criterion (I[p]: I) </ m[p] applies

readily to the case when (R, m) is a complete intersection, that is when R = S/I

where S is a regular local ring and / is generated by a regular sequence. Proposition

2.1 reduces the question of F-purity for complete intersections to the question for

hypersurfaces S/(f), in which case fp~x G mlp] is a necessary and sufficient

condition.

By reducing to characteristic/», a notion of F-pure type is defined in characteristic

0 which is useful primarily because it implies a great deal of simplification in the

computation of local cohomology (see [1, Proposition 4.7 and Theorem 4.8]). If

S = k[Xx,.. .,Xn] and / is a homogeneous polynomial with an isolated singularity,

then S/(f) has a rational singularity if and only if the degree of /is less than n.

Watanabe (see [2, Theorem 1.11]) proved that this condition generalizes in the

obvious way to quasihomogenous hypersurfaces. An analogous result (Theorem 2.5)

is derived here for classifying quasihomogeneous hypersurfaces with isolated singu-

larities in terms of F-pure type. The only unresolved case occurs when the degree of/

is equal to n.

Proposition 2.1. If (S, m) is a regular local ring of characteristic p,fx,...,f„ is an

S-sequence, andf= W"i=xfi, then the following are equivalent:

(a)S/(fx,...,fv)isF-pure.

(b)S/(f) is F-pure.
(c)fp~x $mip].
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Proof. In case (a), (Ilp]: /)=/'"' + (ff,...,fp).    □

Definition. Let W be a property defined for rings of characteristic /». Let

R = A[ Xx,..., Xn ]/(fx,... ,ft ) where A is a ring of mixed characteristic. Let S be the

maximal spectrum of A. For each m E S, denote A/m by Km. We can define a

notion of W type which is unaffected by localization at finitely many elements of A.

R has open (respectively, dense) W type if there is a Zariski open (respectively,

dense) subset U C S such that for all m E U, Km[Xx,... ,X„]/(/,,...,/,) satisfies W.

Let F = K[Xx,...,Xn]/(fx,...,ft) where F is a field of characteristic 0. F is said to

have W type if there exists some ring A of mixed characteristic in K containing all

the coefficients of each of the polynomials/ such that A[XX,..., Xn]/( fx,... ,f) has

W type.

Remark. In this paper, W will be replaced with either the words "F-pure" or

"F-injective" (see §3). At the beginning of §4 of the Hochster-Roberts paper [1], a

definition of F-pure type which has sixteen variants is given. The definition used

here corresponds to "having a presentation of F-pure type" which, by Proposition

1.11, is equivalent to "having a presentation of perfect F-pure type". The reason for

distinguishing between open and dense type is that dense F-pure type suffices to

prove Proposition 4.7 and Theorem 4.8 in [1] whereas the stronger notion of open

F-pure type corresponds more closely to rational singularity (see Theorem 2.5).

In the following three definitions, let S = R[XX,... ,Xn] where R is any ring and

the X/s are indeterminates.

Definition. Let m E S be a monomial m = ¡iX{' • • • X'n" where ¡i E R. Define

t(m) = {(rx,...,rn)\ each r is a positive rational number and 2"=1/}/y =1}.

Definition. If / G S, then /can be written uniquely as a sum of monomials in the

X¡:'s with coefficients in R,f= l}¡=xm¡. Define t(f) = n'=1i(m,).

Definition. / G S is called quasihomogeneous if ;(/) ^ 0. If (rx,...,rn) E t(f),

fis said to have type (rx,...,rn). The type of /need not be unique.

Lemma 2.2. If(rx/k,...,rjk) E t(f)ond(rx/m,...,rn/m) G t(g),then

(rx/(m + k),...,rn/(m + k)) Et(fg).

In particular, (rx,... ,/•„) 6((/)=> (rx/m,.. .,rjm) E t(fm).

Lemma 2.3. Let f be quasihomogenous of type (rx,...,rn) in the ring S —

K[Xx,...,Xn] where K is a field of characteristic p. Let I — (df/dXx,.. .,df/dXn) be

the ideal generated by the partial derivatives of f. Let m = (Xx,...,Xn). If I D

(Xxk,...,Xk),r = Tt=xrt> l,andfp-] E mlp], thenp < kr/(r - 1).

Proof. Note that if any polynomial g = gxXp + ■ ■ ■ +g„Xp E mlp], then 9g/9Ar,

G mlp]. Since fp~x E m[p] by hypothesis, there is a/, 2 <;'</», such thatfp~J+x E

mlp] but f"-J G m[p]. d(fp-J+x)/dXl = ((p~j+ l)fp'J)df/dXi E m[p]. Hence,

f-Jdf/dXt E m[p] for each i= l,...,n. That is,

V

fp-j G (mM:I) c ((xp,...,xp): (xk,...,xk)) = n xrk.
7=1
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Since fp j 6 m[p], fp J has a monomial term of the form jn = aWt=xX¡' where

0 J= a E Kand/» - k </,</»- 1 for 1 < / < v. Now,

(rx,...,rn)Et(f)^(rx/(p-j),...,rn/(p-j))Et(fp-J)Et(li).

Therefore, /» — j = 2*=1r,j, > 2t=xrt(p — k). Denoting 2*=1r, by r, we find that

/»(/•- l)<kr ~j<kr or p < kr/(r - I).    D

As a partial converse to Lemma 2.3,

Lemma 2.4. Letf, S, K, and m be as in Lemma 2.3. If2"=xrt < 1 andfp~l G m[p],

then 2"=1rr = 1 andfp~x = a\\"=xXp-] (modulo mlp]).

Proof. Assume fp~x G mlp]. Then there are/» — 1 choices of monomials /i- of /

(not necessarily distinct) such that J\pI¡¡Xj = aU"=xX¡' where aEK and each

¿,</>-l. Since (/•„..., r„) E t(f), (rx/(p - 1),.. .,rn/(p - 1)) G t(f»~x) and

thus /» — 1 = "Z"=xrtit < (2?= ]/■,)(/> — 1) </» — 1. Equality must hold everywhere.

That is, each i,—p—l and (2"=xrt) = 1.    D

Theorem 2.5. Lei S = F [ Xx,..., Xn ] be a polynomial ring with the characteristic of

K equal to 0. Let f be a quasihomogeneous polynomial of type (rx,...,rn) having an

isolated singularity at the origin.

(a) Ifl"= xr¡ > 1, S/(f) has open F-pure type.

(b) If%"=xr¡ < l, S/(f) does not have F-pure type.

(c) If 2"=,/" = 1 and f- X¡' + ■■ ■ +X'n", S/(f) has dense F-pure type but not

open F-pure type.

Proof. Since / has an isolated singularity at the origin, the ideal generated by the

partial derivatives of /, ID (X[,...,X'n) for some t. That is X] = I^=xaljdf/dXi

where each atj is a polynomial in S with coefficients in K. Let {a,}1 = 1 „ be the

finite set of all the coefficients from K used in writing each of the a,7 and / as a sum

of monomials with coefficients in K. Let T be the finitely generated Z-algebra,

Z[a,,...,aJ. Let Q E max Spec T, and denote by KQ the field T/Q. KQ has

characteristic /». To check for open (respectively, dense) F-pure type, it suffices to

show that KQ[XX,... ,Xn]/(f) is F-pure for all but finitely many prime characteris-

tics (respectively, for infinitely many prime characteristics). By construction, the

ideal of partial derivatives of / viewed in KQ [ Xx,..., Xn ] still contains (X'x,...,X'n).lt

follows that / has an isolated singularity and it is enough to check for F-purity after

localizing at the maximal ideal (Xx,...,Xn) = m. Thus, we reduce to the question of

whether/"^' G mlp] in KQ[XX,. ..,XJ.

(a) Assertion (a) follows from Lemma 2.3.

(b) Assertion (b) follows from Lemma 2.4.

(c) If /= */' + ■•• +X'n", r,= l/it for each  K t < n and f'1 = aXp~x °

• • • o xp~~ ' (modulo mlp]) (a E Kq may be zero). Note that a ¥= 0 if and only if it is

possible in multiplying out (X{1 + ■ ■ ■ -\-X'n")p~x to write /» — 1 as the sum of n

integers

I^A+---+li1=[Írl)(p-l) = (p-l).
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In particular,/» — 1 is divisible by L,j = l,...,n. Hence,/» = 1 (modulo a) where a

is the least common multiple of the i/s. That is, fp~x E mlpX if and only if /» = 1

(a). There are, of course, infinitely many primes for which p = 1 (a) and infinitely

many primes for which/» £ 1 («).    D

Remark 1. Watanabe has proven (see [2, Theorem 1.11]) using the integrability

criterion for rational singularity that if S = C[Xx,...,Xn] and /is quasihomogeneous

with an isolated singularity, then:

(a) (2"=1r,) > 1 => S/(f) has a rational singularity.

(b) (2"=1/",) < 1 => the singularity of S/(f) is not rational.

Remark 2. An example of the difficult case in Theorem 2.5 is the polynomial

/= X3 + Y3 + Z3 + XXYZ where X E K. To attempt to apply the criterion by

blindly computing/''_1 leads to an infinite system of combinatorial equations of

which an infinite subset must vanish modulo /». That is,

(X3 + Y3 + Z3 + XXYZ)P~] =lxp-x +Xp-4l      P~ l_

modulo m'"1

where (í>/i(j¡I¡_3,) is the multinomial coefficient. This does not seem to be a useful

point of view.

Remark 3. R. Hartshorne and M. Höchster have pointed out that if X is an

elliptic curve in P2 and R is the coordinate ring for X, then R is F-pure if and only if

the Frobenius map acts injectively on H'(X, &x) =* K. (If K is perfect, the Frobenius

induces an automorphism. The question then is related to whether the elhptic curve

has a complex multiplication (see [8]).)

3. A question about F-purity which has applications to deformation theory. We ask

whether R/fR is F-pure (respectively F-pure type) is sufficient to imply that R is

F-pure (respectively F-pure type) when F is a Noetherian local ring and / is a

nonzero-divisor on R. This property is important in deformation theory and can be

shown to hold in the case of affine F-algebras of characteristic 0, when the words

"F-pure type" are replaced by "rational singularity" (apply the main result of Elkik

[4] to the map K[t] -» R[ft, l/t]). In the case where R is Gorenstein, an affirmative

answer can be derived immediately from the contractedness criterion in [1] and the

fact that R is its own canonical module. An alternative proof will be given here

which requires the weaker condition that/be a nonzero-divisor on Ext'R('F, R). In

§4 a counterexample will be given to the characteristic /» version of the question. The

characteristic 0 version remains unknown.

Let A denote a functor from a subcategory of rings R in characteristic p to

F-modules satisfying:

(1) A R is a finitely generated F-module.

(2) If 0 -» F -» R - R/f -» 0 is exact, then 0^ NR^NR^ AR/fR -» 0 is exact.
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We are interested in the cases AR = R or, in the subcategory of rings R which

have canonical modules denoted ßR, AR = ßR. Of course, in the case R is Goren-

stein, ßR can be identified with R noncanonically.

Consider the commutative diagram

'/
0     -»     'F      -» 'F        -»     '(Ä//R)     -»    0

0     -    AR     -» AR        -     A(Ä//JJ)      -    0

where '/ denotes the element / as viewed in the ring 'F and the induced map is

defined by

(xfy-]<t>(xr)=<P[x(fp-xr)].

Denote HomÄ('F, AR) by XR*, HomÄ(F, AR) by R*, HomR(x(R/fR), A(R/fR)) by

\R/fR)* and Hom„( F//F, AIR/fR,)hy (R/fR)*. Let rjybe the 'F-hnear map from

'F* to x(R/fR)* defined by -qf<t> =(xf)p~]<b. In the case where AR = R, we will

denote rjf by Yf; where AÄ = ßR we will denote tj^ by yf.

Lemma 3.1. Let (R, m) be a local ring of characteristicp. Let f be a nonzero-divisor

on R. If i\r is surjective and if F*: l(R/fR)* -» (R/fR) is surjective (where F:

R/fR -» x(R/fR) is the Frobenius map), then F*: XR* -» F* is surjective.

Proof. x(R/fR)* -» (R/fR)* is surjective imphes that there is a finite set {a,},

1 < i < n, such that a, g'(F//F)* and a,(l) = /i, where {ft,}, 1 < i < n, is a finite

set of generators for AR/fR. Each a, = rj^cj), for some <j>, G'F*. It follows that

'Z^-'</>,(!) = /x, (modulo/AÄ) = ju, (modulo mAR). The map F* from XR* to F* is

onto AR/mAR, identifying R* with AR, and, therefore, by Nakayama's lemma F*:

XR* -* R* is surjective.    □

Lemma 3.2. Fei R be a ring of characteristic p andfa nonzero-divisor on R. Then T\f

is surjective if and only if multiplication by '/ induces an injective endomorphism of

Ext'^'F, AÄ).

Proof. The problem reduces to that of determining for what class of rings F,

every map a in the diagram below lifts to a map <j>.

7
0     -»     'F      ->       'F      ->      '(Ä//R)     -*    0

(*) *
/

-^R        ~* A-R        ~* AR/fR

For, if ¿> exists, then i//('/") = 1//"<í>[1(/ir)] defines a homomorphism \p G'F* which

makes the diagram commute. It follows that for every r E R

Cfp-^)i\fr)] = 4\fPp)] =f-*Cr) = <¡>[\fp)],
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that is, </>\(ifiR) =[fp~xip\(if*Ry In general, if ¡x and v are elements of 'F* and

H'/'R) = "l('/'R) then Ju[l(//,,')] = »'['(Z^)] for everY r E R. But then/-u('r) =

f-v(xr) and, since / is a nonzero-divisor on AR, ¡x(xr) = v(xr). We therefore

conclude that <j> = xfp~ x\¡/ and a = Tjy<j>.

It is obvious that for a given a, <i> exists if and only if tr*a is in the image of e*

(where it*a — a ° it and e^ = e ° <j>). Thus, it is necessary and sufficient to show

that imw* C ime^. The diagram (*) gives rise to the following commutative dia-

gram:

Exi\{xR/fR),AR)

Î / ( = the 0 map)

ExtxRÇ(R/fR), AR) C     Ext^'F, AR) Z ExtR{xR, AR)

î s î§

HomR('(F//F), A(R/fR)) '-* HomRÇR, A(R/fR))

î f,

0 - Hom^'F.A«)

Hom('(/?//F), AÄ) = 0 explains the 0 in the lower left-hand corner, im tr* E im e^
'/

**8°ir* = Q**ir*°8 = 0<*'ir* = Q**0-> Ext'^'F, AR) -> Ext'Ä('F, AR) is ex-

act.    D

Corollary. Under the assumption of Lemma 3.2, z/Ext'R('F, AR) = 0, then f)f is

surjective.

Definition. Let (F, m) be a local ring of characteristic/». F is F-injective if the

Frobenius map F: R ->XR induces an injective map on all of the local cohomology

modules (0 -> H'm(R) -* Hlm(xR) is exact for all /). If (R,m) is a local ring of

characteristic 0, the notions of open and dense F-injective type are defined by

reduction to characteristic /» as described in §2. In general, F is F-injective (respec-

tively, F-injective type) if Rm if F-injective (respectively, F-injective type) for every

maximal ideal m E R.

Remark. Since local cohomology is unaffected by completion, we may always

assume that F is complete and, consequently, that F has a canonical module.

Moreover, if F is Cohen-Macaulay of dimension n, then H'm(R) = 0 except when

i = n and it suffices to check whether H^(R) -» H£(XR) is injective. By local duality,

this is equivalent to checking whether HomR('F, ßR) -» HomR(F, ßÄ) is surjective.

Lemma 3.3. If (R, m) is a local ring of characteristic p and R is F-pure, then R is

F-injective. Conversely, if R is Gorenstein and F-injective, then R is F-pure.

Proof. We may assume F is complete. By Lemma 1.2 F is F-pure implies R -*XR

splits. Thus Ext^'('#> ßÄ) -» Ext^"'(F, ßfi) is surjective for 0 « i < n. It follows,

by local duality, that //¿(F) -> Hlm(xR) is surjective for 0 *£ /' < n.
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The partial converse statement is immediate from the isomorphism of QR with F

when F is Gorenstein.    D

Remark. Example 4.8 gives a Cohen-Macaulay ring which is F-injective but not

F-pure.

Theorem 3.4. Let (R, m) be a local ring of characteristic p and let f be a

nonzero-divisor on F. Then:

(1) If R is Cohen-Macaulay and R/(f) is F-injective then R is F-injective.

(2) If R is Gorenstein and R/(f) is F-pure, then R is F-pure.

Proof. By the corollary to Lemma 3.2, it suffices to check that Ext'('F, tiR) = 0

which is equivalent, by local duality, to checking that //^~'('F) = 0. Since

Hm~\ R) - Hm~RX(  R) - #Wr(  R)

and since 'F is Cohen-Macaulay, the result follows.    D

Remark. Of course, Ext'('F, AR) =/= 0 does not imply that t\f is not surjective.

However, if the functor A also has the property that AR® Rp = AR for all prime

ideals p E R, there is a partial converse to the corollary of Lemma 3.2. Assume that

some prime /» of height strictly greater than zero is minimal with respect to the

condition Ext'('F, AR) ® Rp ^ 0 (e.g. Rp is a regular ring for all primes p associ-

ated to F which is true certainly if F is a domain). Then, if F is Cohen-Macaulay,

the depth of p is strictly greater than zero. Thus, there exists / G Rp such that / is not

a zero-divisor on Rp. But, since Extx(xRp, AR ) ¥= 0 and has finite length, multiplica-

tion by '/ must have a nontrivial kernel and, therefore, t]f is not surjective. The

condition that i\f be surjective is not a sufficient tool to examine the conjecture that

R/(f) is F-pure (type) implies F is F-pure (type) when F is a Cohen-Macaulay

domain.

Definition. An F-module M satisfies the condition S, if for all prime ideals

F C F such that MP # 0, depthp^M,, » mini/, height F}.

Let * denote the functor HomÄ(—, F).

Lemma 3.5. If M is a Noetherian R-module, M* satisfies S3, and Ext'(M, F) ® RP

= 0 whenever the height of P =£ 2, then Ext'(Af, F) = 0.

Proof. Construct a free resolution of M. ■ ■ ■ -> Fn — F2 -* F, -* F0 -* M -* 0. Let

F be a prime such that Ext'R(Af, F) ® RP is not zero and has finite length. Localize

the resolution of M at F (without changing notation). By assumption, height F > 3.

Apply the functor * to the resolution of M to get 0 -» M* -> F0* -> F* -> F2* ->

Let / = image(F0* -> Ff) and K = kernel^* -> F2*). Then K has depth > 1 and

0 -* M* -» F0* -» / -» 0 is exact so / has depth ^ 2. But, 0 -> / -> K ^ Ext'(M, F)

-> 0 is exact. Thus, Ext'(A/, F) would have to have depth > 1 which is a contradic-

tion.    D

Corollary. // XR* satisfies S3 and if RP is Gorenstein whenever height F < 2, í/¡en

Ext'('F, F) = 0 and Ty is surjective.

In practice, it is very difficult to determine whether XR* =x(I[pX: I) satisfies S3

without computing (IlpX: I) exphcitly. However, it can be proven using local duality
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that if F is an F-finite normal domain with canonical module ß — J where J is a

rank one reflexive ideal which is free at height one primes, then 'F* =* X([J~X]P~]).

Here, of course, [M] denotes the divisor class of the F-module M and M~x — [M*].

In the literature, there are examples in which /"' can be computed explicitly and

examples in which the depth of J~x can be computed at each of the prime ideals of

F. I do not know of any such computation which actually sheds light on the

examples to be discussed in §4. However, in the case where S =

K[XX, X2, X3, Yx, Y2, Y3](m) and / is the ideal of 2 X 2 minors of

/ A",     X2    X3 \

U     Y2     Y3J

so that F = S/I and /"'is generated by the images of Yx, Y2, Y3 in R, we will be

able to compute (IlpX: I) by exhibiting an explicit isomorphism between [J~l]p~x

and (I[p]: I)/Ilp].

4. Some examples. In this section (I[pX: I) will be computed explicitly for the

ideal generated by the two by two minors of a two by three matrix of indeterminates.

Example 4.8 which is F-injective but not F-pure will then be constructed.

Note that if (S, m) is a regular local ring of characteristic/» and / C S is an ideal,

then j is a nonzero-divisor on S/I if and only if y is a nonzero-divisor on S//1/,] (the

Frobenius from S -» 'S is faithfully flat). Hence, if y is a nonzero-divisor on S/I, y is

a nonzero-divisor on S/(Ilp]: I). The set of primes associated to (Ilp]: I) is a subset

of those associated to /. In particular, if / is primary, (I[p]: I) is primary.

Definition. / is unmixed if all the prime ideals associated to / are minimal.

Lemma 4.1. Let (S, m) be a regular local ring of characteristic p and I E S an

unmixed   ideal.   Let   I — D"=iQ¡   be   the  primary   decomposition   of  I.   Then

(/[":/)= n;=1(ôpi: e,).

Proof. By the remark above, (Ilp]: I) is unmixed. Also, (]"=1[Q\p]: Q¡) is

unmixed and (Ilp]: I) obviously contains D"=l(Q\p]: Q¡). It therefore suffices to

check equality after localizing at each of the minimal primes, where equality is

obvious.    D

Definition. Let F be a ring and / C F be an ideal. The symbolic n th power of /,

denoted /'"', is the ideal {x E R \yx E I" for somej> G F which is a nonzero-divisor

on R/I}. Note that if / is a prime ideal, J(n) = IR, D F.

Lemma 4.2. Let S be a regular local ring of characteristic p and I E S be an

unmixed, reduced ideal of height d. Then, (I[p]: I) D fidp-d) D Idp-d.

Proof. Assume first that / is prime. S, is a regular ring and IS, is generated by an

S^-sequence A,,..., Ad which we may assume lies in /. Thus,

(llp]: I)S, = (Af"1 " ■ ■ Ar')S, + I[p]Sr.

So

(ilp]: i)s,ns = (idp-ds, + ilp]s,) n s.
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But (Ilp]: I) is primary so (I[pX: I)S, D S - (Ilp]: I). The result is now obvious

when / is prime. For any unmixed, reduced ideal, use Lemma 4.1 and the fact that

Q(dp-d) n Q(dP-d) 3 (q^ n Q.ydp-d) t0 reduce to the case where / is prime.    D

For an example of a Cohen-Macaulay ring which is not Gorenstein, we will study

S/I where S = F[A,y](m), 1 < i < 2, 1 </ < 3, m is the maximal ideal generated by

the X¡ 's, F is a perfect field of characteristic /», and / is the ideal of two by two

minors of

A,

v21

l12

v22

X,

'23

Denote A, = XX2X23 ^13^22' ^2 ~~ ^13^21 A',, A"22 XX2X2X.XXXX23, and A3

The goal (see Proposition 4.7) is to prove that (I[p]: I) — I2p~2 + Ilp]. The proof is

somewhat tedious, the main point being to construct an S/I isomorphism from

(x2x, x22, x23)p~x to (I2p~2 + I[p])/Ilp] and thereby conclude that the maximal

ideal is not associated to I2p~2 + IipX, whence it suffices to check the equality

j2P-2 _|_ j[P] — tj[p]. /) locally at primes other than m. (In this notation, xtJ

denotes the image of the indeterminate Xtj in S/I.)

Let T be a generator of Homs('S, S) as an 'S-module and let a, y, and À be

matrices with entries in 'S which make the diagram (*) commute:

(*)

0

0

's2

[XT

'S3

lyT

S3

'S

laT

X(S/I)

S/I

0

0

Here, (atj)T means (a,-,T) an n by m matrix of i-linear homomorphisms from 'S to

S. Every S-linear homomorphism from 'S" to Sm has this form. To give such a triple

of  matrices  up   to  homotopy  is  equivalent  to  giving  a  homomorphism  i// G

Homs('(S//), S/I).

Identify 'S with S and S with Sp in (*). Then

/A,

\n3

¡Ap]

Ap2

Ap3l

d2 =
l2l v22 L23

and

9,
X& Xp2    xp3

Xpx    Xp2    xp3

The diagram (*) commutes if and only if the matrices d2y = Xd2 and dxa — ydx

under ordinary matrix multiplication in S. The T 's can therefore be suppressed.

Remark. The correspondence between homotopy equivalence classes of matrices A

and a which make (*) commute is an S/Flinear isomorphism. This is a consequence

of the following quite general fact: Let F be Cohen-Macaulay and assume that

F = T/J where T is Gorenstein and height J = d. Let C denote Ext¿(C, T) where
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C is Cohen-Macaulay and dimension C = dimension F. Then C — C is a con-

travariant functor on Cohen-Macaulay modules and C° ~ C. If M and N are two

such Cohen-Macaulay F-modules whose dimension is the same as F, then

Hom^M, N) =* HomR(JV°, M"). In our case, F = S//, M = XR,N = F, and J = 2.

The duals R -> Rv and 'F ^> 'Fu are simply computed by applying the functor

Homs(—, S) to the free resolutions for S/I and X(S/I) respectively.

Remark. It is a standard fact for a morphism from a free complex to an acyclic

complex that if the induced map of augmentations is zero, then the map of

complexes is homotopic to zero. Applying this fact, along with the isomorphism

discussed in the previous remark, to the diagram (*) gives the fact that the

augmentation map \p = 0 if and only if there exists a homomorphism llT from 'S3 to

S2 such that X = d2ii under ordinary matrix multiplication.

In the ensuing discussion, identify 'S with S and S with Sp. Let A = {X \ X is a

two by two matrix with entries in 'S induced by some xp E Homs('(S//), S/I) in

the diagram (*)}. Note that A is an 'S-module. Two matrices X, li E A are equiva-

lent if X — li is homotopically equivalent to the zero map. Denote the equivalence

class by ".

Lemma 4.3. The 'S-module consisting of all X G A such that X — 0 is generated by

AY
for 1 =S/<3.

In particular, if X is a matrix whose entries all lie in I, then X — 0.

Proof. Homs('S3, S2) is of course generated by maps of the form e'JT where e'J

is the matrix whose i, /th entry is a one and whose other entries are zero.

Ai,     A,- A,

X21 v22 »23
13 \(e'J) =

*2

0

0

0

0

Xu

if/ = 1

if/ = 2

D

Let h denote the isomorphism from (Ilp]: I)/Iip] to A given by h(a) = X in the

diagram (*). By Lemma 4.2, A^'A^-1 G I2p~2 C (I[p]: I).

Lemma 4.4.

h(Ap'xApk-x)
Xp2~x

where (i, j, k) is any permutation of (1,2,3).

0

xp-x

Proof. It suffices to do the case i = 3. We can exhibit the matrices which

commute in (*). Take a = AP~XAP2~X,

Ap2~x       0 0

0       Af"' 0

Tai        Y32      {Xp3-{XP3-X)

and   X
*&"' 0

yp-\
Ax3
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where

_-XxxAp2-x + XpxX^x      -X2M-* + X&Xff1 ^„
'31  ~ y ~ Y ^ °

AI3 A23

and

-A-12Ar' + A-f2A-f3-'_   -X22Ap~x + XP2Xp3~x
Y32 y Y to.

A13 A23

It is easy to check that dxa = ydx and d2y = A92 as desired.    D

Lemma 4.5. Let r, s, and t be nonnegative integers whose sum is p — 1. Let li denote

the matrix

iX2XX22X23 00 xx\ XX2 X[3 J

Then

(1) lie A.
,r+s

(-1)'
(2) h~\ß ) = )r + s\ Af-'-'AÇ-'-'Af-1-' G (Z2^-2 + Ilp])/I[p].

Proof.   Note  that  r + s = /» - 1 - t,   and  Af"'"^"'"^"1"'G/2^"2 C

(I[p]: I). Moreover,

*■£-»-'*( Ar'-'Ar1"'*!-1-') = ^Af-'-Ar'-i-A-^A,-a-^a,)^1-'

(-ír'Cí'jAT^- A21A22

(since A (ju) = 0if/t G/1*1)

(-irr^j^i^rf1        ° (byLemma4.4)
0        A-f,

r + i / r + S \ j   ^1 ^22 ^23 0=(-ir(r;s)
U 21      22      13

But X^X^Xff1 ^(XxxX23)r(XX2X23Y(XX3)p~x-r-s = X¡xX¡2Xl3X^3-x-' (modulo

/). Hence, applying Lemma 4.3,

A'27'-7i(A1-'-'A^r'-JAf-'-')

AtiA22-^23= (-i)'+'(r + J)jrg-H "2lJ
Mrl I 0 X[XX{2X[3 J

Since X23 is not a zero-divisor on the module (Ilp]: I)/I[p], the result follows.    D

Corollary. Let ß denote the ratio xxx/x2x = xx2/x22 = xX3/x23 in the fraction

field of S/I. Then if ¡x E (x2X, x22, x23)p~x,

¡x        0
_ A.

0       Bp-XLL,
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Proposition 4.6. Let S = K[XiJ](m), 1 < i < 2, 1 <j « 3, K is a perfect field of

characteristic p, the X^'s are indeterminates, and m is generated by the X¡j's. Let ß

denote the ratio xxx/x2X = xX2/x22 = xX3/x23 in the fraction field of S/I, denoting by

Xjj the homomorphic image of Xtj in the ring S/I. Then there is an S/I linear

isomorphism between the ideal (x2X, x22, x23)p~x and the module (I2p~2 + Ilp])/Ilp].

Proof. If a G (x2X, x22, x23)p~x, there is an injective S/Fhomomorphism

Composing this map with A"1 gives the desired isomorphism. That the image of this

isomorphism is precisely (I2p~2 + Ilp]) follows from Lemma 4.5.    D

The depth of the ideal / = (x2x, x22, x23)p~ ' in F = S/I where S = K[X¡J](m), m

is the maximal ideal generated by the indeterminates, and / is the ideal of two by

two minors, is known to be greater than or equal to two (see [5, Example 4.3]).

Consequently, depth(/2p"2 + Ilp])/I[p] > 2. The maximal ideal m of S is not

associated to I2p~2 + Ilp].

Proposition 4.7. In the notation of Proposition 4.6,12p~2 + I[p] = (I[p]: I).

Proof. I2p~2 + Ilp] c (I[p]: I). Moreover, ISQ is generated by a regular se-

quence for any prime Q =£ m. Hence, by Proposition 2.1, (I2p~2 + I[p]) ® Sq —

rjlpl. j) ® sQ. The inclusion map I2p~2 + I[p]^(Ilp]: I) becomes an isomorphism

at every prime Q¥^ m. But m is not associated to I2p~2 + Iip\ and, therefore, the

inclusion map is an isomorphism at m as well.    D

Example 4.8. Let S = K[X, Y, Z, U, V\m) where m = (X, Y, Z, U, V). Let / be

the ideal of two by two minors of the matrix

X"    Z     V\
U     Z     Y")'

Then, if the characteristic of K is /» and p < n, S/I is F-injective but not F-pure.

Proof. That S/I is F-injective follows easily from Theorem 3.4. For the generic

resolution of the two by two minors of a two by three matrix of indeterminates

remains exact when speciahzed to this example and, since / has height 2, S/I is

Cohen-Macaulay. The images of X and Y in S/I form a regular sequence on S/I.

The ideal/ = (/, X, Y) = (X, Y, UZ, VZ, UV) is F-pure because

Xp-\Yp-^up~1Vp~xZp~x E(J[pX:J).

Denote F, = R/XR and F2 = F,/7F, =* S/J. Since F2 is F-pure, it is certainly

F-injective. Thus, F, is F-injective and F is F-injective.

It remains to prove that F is not F-pure. Note that

/= (Z[Yn - V],Z[X"- U],[UV - X"Y"])

= (z,uv- xnY") n (y- v,xn - u)
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gives a prime decomposition for I. Lemma 4.1 together with Proposition 2.1 enables

us to give a primary decomposition for (I[pX: I), namely

(I[p]:I) = (ZP~X[UV- X"Y"]p~x,Zp,UpVp - XnpYnp)

n ([(Yn - V)(X" - U)]p~l, Y"p - Vp, Xnp - Up).

If F is F-pure, there is some element t in this intersection which is not in m[p]. Thus,

t = rxZp-\UV- XnY"]p~x + r2Zp + r3[UpVp - XnpYnp]

= sx[(Yn - V)(X" - U)]p~x + s2(Y"p - V") + s3(Xnp - Up)

and sx[(Y" - V)(X" - U)]p~x = sxVp~lUp~x z 0 modulo m[pX since n >/». In the

first equation involving /, kill U, V2, Xnp, Ynp~", Zp. We get 0 = slVYnp-2nXnp~n

modulo (t/, V2, Xnp, Ynp-", Zp). Thus

sx E((U,V2,Xnp,Ynp-n,Zp): (VY"p-2nXnp-n)) = (U, V2, Y", X", Zp).

Since n>p, sx G (U, V2, Yp, Xp, Z"). But then sxVp~xUp-x G m[p] which con-

tradicts the assumption that (Ilp]: I) Çt m[p]. So S/I is not F-pure.    D

Remark. This example is less than satisfactory in two ways. First of all, S/I is not

a domain. In fact, for each of the primes Qi in the prime decomposition of /, S/Q¡ is

F-pure. However, the intersection of these F-pure primes is not F-pure. Secondly, the

argument depends on the assumption that n > p. It is still an open conjecture that

F-pure type is equivalent to F-injective type in characteristic 0.

References

1. M. Höchster and J. L. Roberts, The purity of the Frobenius and local cohomology, Adv. in Math. 21

(1976), 117-172.
2. K. Watanabe, On plurigenera of normal isolated singularities. Math. Ann. 250 (1980), 65-94.

3. M. Höchster and J. L. Roberts, Rings of invariants of reductive groups acting on regular rings are

Cohen-Macaulay, Adv. in Math. 13 (1974), 115-175.

4. R. Elkik, Singularities rationelles et deformations, Invent. Math. 47 (1978), 139-147.

5. C. Huneke, The theory of D-sequences and powers of ideals, Adv. in Math. 46 (1982), 249-280.

6. M. Höchster, Cyclic purity versus purity in excellent Noetherian rings, Trans. Amer. Math. Soc. 231

(1977), 463-488.
7. K. Watanabe, T. Ishikawa, S. Tachibana and K. Otsuka, On tensor products of Gorenstein rings, J.

Math. Kyoto Univ. 9 (1969), 413-423.

8. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York, 1977.

9. E. Kunz, Characterization of regular local rings of characteristic p, Amer. J. Math. 91 (1969), 772-784.

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104

Current address: Department of Mathematics, University of Missouri, Columbia, Missouri 65211


