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POLES OF A TWO-VARIABLE F-ADIC COMPLEX POWER

BY

LEON STRAUSS

Abstract. For almost all P-adic completions of an algebraic number field, if s G C

is a pole of f = ff\f(x, y) \s \dx\K \ dy \K , where / is a polynomial whose only

singular point is the origin,/(0,0) = 0, and/is irreducible in K[[x, y]], then Re(i) is

-1 or one of an explicitly given set of rational numbers, whose cardinality is the

number of characteristic exponents of / = 0.

0. Introduction. Let F be an algebraic number field, Kp a F-adic completion of F

with ring of integers F, maximal ideal F, group of units Fx , and residue class field

R/P of cardinality q. The Haar measure on Kp such that F has measure 1 is called

the usual Haar measure, and its product measure is the usual Haar measure on Kp.

The absolute value IL on Kn is defined as

101^ = 0   and   \d(tx)\Kp=\t\Kp\dx\Kp

for every t in Kp — {0}.

Let f E K[x, y] have a singularity only at (0,0),/(0,0) = 0, and suppose that/is

irreducible in K[[x, y]], where K is the algebraic closure of K.

Our purpose is to investigate the poles of the meromorphic continuation of the

complex-valued function

fs=SJ)^y^M^My\x,

where j is a complex variable.

Igusa has given [4, p. 310], in a more general setting, a set of candidates which

contains the poles of fs and, in the situation described above, has determined the

pole of/1 closest to the origin [3, p. 367].

Here we show that for almost all F-adic completions of K, if j is a pole of fs,

Re(j) is -1 or one of an explicitly given set of quotients of integers called

"numerical data" of desingularization. Only one such quotient is associated with

each characteristic exponent of / = 0.

Every exceptional curve in the desingularization of / = 0, not only the relatively

few we associate below with the characteristic exponents, has a pair of numerical

data whose quotient appears, at first glance, to give a negative real pole of fs. We

eliminate false candidates by using a relationship between the numerical data, and

also an argument involving the Newton polygon. In the process, the behavior of a

previously studied function defined on the set of exceptional curves is clarified.
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The analogous/1 for R has been studied [1-5, and 8].

The author wishes to express his gratitude to Professor Igusa for introducing him

to this subject, and to acknowledge the benefits of many fruitful discussions and of

his splendid lectures.

1. Numerical data associated with exceptional curves. In this section we review

results of Igusa [3]. Characteristic exponents are defined, a desingularization is

described, and certain "numerical data" associated with this desingularization are

given explicitly.

Let o denote the local ring of an irreducible plane algebroid curve / = 0 over an

algebraically closed field K of characteristic 0 and m the maximal ideal of o; then we

have

m = ox + oy

for some x, .y in m. Let "ord" denote the normalized discrete valuation on the field

of quotients of o; then the integral closure of o is the ring of formal power series in

any element of order 1 with coefficients in K. We shall assume that o is not regular,

i.e., that ord(x), ord(j>) > 2.

If ord(x) = m, then xx/m is an element of the field of quotients of o and is of

order 1. We have

y=y(x)= 2a,x'/m

¿=i

with a j in F for z = 1,2,_We rewrite this "Puiseux series" as

k0 kx oo

y(x) = 2 %,*'' + 2 fli,,x(,"+i>/" + • • • + 2 a,,/jc(,l»+0/'"i""'«,
1 = 1 / = 0 i" = 0

in which the exponents are strictly increasing, aX0a20 • ■ ■ ag0 ¥= 0, li¡, v¡ are rela-

tively prime integers for 1 < i < g, and vx,v2,...,vg>2. We then have

ord(x) = m = vxv2 ■ ■ ■ v ,

and the g exponents \xx/vx, \x2/vxv2,.. .,¡xg/vxv2 ■ ■ ■ vg are called characteristic

exponents of the series y(x).

Now let X denote a nonsingular algebraic surface over an algebraically closed field

K (of characteristic 0) and C an irreducible curve on X which is analytically

irreducible at its only singular point. It is well known that C can be desingularized

through a unique series of quadratic transformations which can be described by the

characteristic exponents of the corresponding algebroid curve; i.e. the total trans-

form C* of C under the product morphism X* -> X is desingularized; cf. [10, pp.

5-10]. Igusa has formulated [3] a quantitative theorem concerning this process,

which we present after recalling some of the details of the desingularization.

Let \xx/vx, fx2/vxv2,...,ng/vxv2 ■ ■ ■ vg denote the characteristic exponents [3,p.

358] of C, and expand each ¡xi/vi -/*,_,, 1 < í « g, where /x0 = 0, into a continued

fraction \xi/vi - /j,,_, = [ki0, kiX,.. .,k¡t¡]; the ktj are nonnegative integers and kxo,

kiX,.. .,kit > 1, kut > 2, r, > 1 for 1 < /' « g. We note that unlike kx0 > 1 we may

have jfc.0 = 0 for some /'. The number of quadratic transformations is the sum of all



POLES OF A TWO-VARIABLE P-ADIC COMPLEX POWER 483

k¡j. If we let C denote the strict transform of C under the morphism A"* -> X, and if

Ej denotes the exceptional curve of the /th quadratic transformation, then the total

transform C* of C is of the form C* = 1¡NIE, + C, where N, > 1 for every /. By

making X smaller if necessary, we may assume there exists a gauge-form w on X, i.e.,

a 2-form on X without zeros or poles. Let w* denote the preimage of w under

X* -» X; then its divisor (vî>*) is of the form (w*) = 1¡(n¡ — l)F/; in which n,>2

for every /, and it is independent of the choice of w. We will call (N¡, nr) the

numerical data associated with E¡.

In order to study (Nr, n¡), Igusa introduces polynomials /», a, b, c, P as follows:

Let pn= pn(k0, kx,...,kn) denote a polynomial in n + 1 variables with integer

coefficients defined inductively as follows: it represents 0,1, respectively, for n = -2,

-1 and/»,, = k0pn_x(kx,...,kn) + pn_2(k2,...,k„) for n > 0. Since there will be no

confusion, we shall drop n from /»„. In the following we shall fix a positive integer t

and limit ourselves to the t + 1 variables k0, kx,...,kt. For any integer pair (r, s)

satisfying 0 < r < í < t we put

s

a(r,s)=   2   kip(ki+x,...,ks)p(ki+x,...,k,);
i = s — r

then, if we put a(s, s) = a(s), we get

/ \ _   [p(k0,--',k,)p(ku...,kt),    sewen,

\p(kx,...,ks)p(k0,...,kt),    sodd;

this remains valid for s = -2, -1 if we put a(-2) = a(-l) = 0. We define b(s) for

-2 < s < t as

b(s) = a(s) +p(ks+2,...,k,);

then b(t) = a(t). Finally, we define c(s) for s > 0 as

c(s) = 2 kip(ki+x,...,ks)+ I,
i=0

and we put c(-2) = c(-l) = 1; then we get c(s) = p(k0,... ,ks) + p(kx,.. .,ks) for

s > -1. For 0 < s < í we have

fl(j) = /Vs¿»(í - 1) + fl(j - 2),   6(j) = k,a(s - 1) + 6(s - 2),

c(s) = ksc(s- 1) + c(j-2).

We define

pr s=U(s)-a(s)/b(-l),    seven,

yS}     \c(s) - b(s)/b(-l),    sodd,

for -1 < s < t, and find F(-l) = 0, F(0) = 1, F(-2) = 1, and

P(s) = ksP(s - 1) + P(s - 2)    forO<í<í.

We may assume that X is an affine plane minus a finite number of points, C is an

irreducible curve on X with the origin 0 of A" as its only singular point, and C is

analytically irreducible at 0; then C is defined by / = 0, and X has a gauge form w.
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We shall denote by X, the /th quadratic transform of X and by 0, the unique point

of Xj where the strict transform of C and the /th exceptional curve intersect. We

denote by f, = 0 and w¡ a local equation for the strict transform of C and a local

gauge-form, respectively, both on X, around 0,.

Choosing affine coordinates (x, y) on A' such that x = 0 is not tangent to C at 0,

we get a Puiseux series

y=y(x) = i a^x* + i aux<»+0/'i + ...
i-l 1=0

such that its characteristic exponents ixx/vx, \^2/vxv2,... ,\xg/vxv2 • • • vg are also

those of the algebroid curve/= 0 at 0. If we denote by e(x, y) a unit in the ring of

formal power series in x, y, then we can write

f(x,y) = e(x, y)H(y - conj y(x)),

in which the product extends over vxv2 ■ ■ ■ vg conjugates of y(x); we shall use

dx A dy as w(x, y). As before, we put \xi/vi — ju,_, = [ki0, kiX,... ,k¡ t] and /, = kxo

+ kxx + ■ ■ ■ +kit for 1 < /' < g, in which ll0 = 0; we denote by a¡(s), b¡(s), c¡(s),

P,(s) the a(s), b(s), c(s), P(s) for the sequence ki0, kiX,.. .,kit. Then we have the

following lemma:

Lemma 1. If we take I = kx0 + kxx + ■ • ■ +kx s_x +j, where 1 </ < kXs, 0 < s =£

tx, then we get

Ni = (fli(^ - 2) +jbx(s - l))v2 ■■■Vg,   n, = cx(s - 2) + jcx(s - 1).

The proof goes as follows: Local coordinates (u, v) are constructed on X¡ valid in

an open subset containing 0,. For the sake of simplicity, omit "1" from kxo,

kxx,...,kX!i, ax(s), bx(s), cx(s),Px(s) and put q¡ = p(ki+x,... ,kt) for -1 «£ i «S í + 1.

By passing from (x, y) to (x', y'), defined as x' = x, y' — y — ?,kgxaQ¿x', we may

assume that aox = ■ ■ ■ — a0k = 0. Put x — y_x, y = x_x and introduce

(x0,y0),...,(xs_x,ys_x)asxi_x =xf<yi,yi_x = *, for 0 < / < í; finally put xs_x =

uJv,ys_x — u. Repeatedly applying an inversion formula [3, p. 359], we get

f(x,y) = (M^-2'+^í-V<í-'))"2'''V/(",ü),

w(x, y) = ±u<'-2)+j<s-i)-ivc(S-i)-i du A dv

We then have a Puiseux series

and this series has

M, - (k0q0 + •■■ +ks_xqs_x - q0 + qs)v2 •••?,-

1sv2 • • • Vi

for 1 < ¡' < g as its characteristic exponents, unless 5 = t, in which case the above g

exponents become ¡x¡/v2 ■ ■ ■ vt. — u, + k, for 1 < i < g, and we simply omit the first

exponent kt which is an integer. When / = /,, we get

"0

V = V(u) =   2 «0,/«' + «LO""27"2""' + • ■ •
i=0
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in which k0 = k20 and a00 = (aXQ)±>'' ¥= 0, a10 ¥= 0,_ Passing from (u, v) to

(£, 7)) defined as £ = u, r/ = v — 2£L0o!o,i"'> we get

f(x, y) = *"'"-'.//,(«, 7)),    *(*, v) = ^'-'m^U, T)),

and the Puiseux series t/ = t/(£) has ixi/v2 ■ ■ ■ vt■ — ¡xx for 1 < i < g as its characteris-

tic exponents. Lemma 1 is applied to /7|(£, tj) to determine N¡, n, for /, < / < I2,

and in this way we obtain

Lemma 2. For 1 < / < g we take I = /,_, + ki0 + kn + ■ • ■ +kis_x +j in which

1 <j < ki, , 0 «£ s < í,; /Ae« we ge/

TV, = (Pf(í - 2) +/F,(5 - l))JV7i_, + (a,(s - 2) + jb¿s - l))vi+x

n, = (F,(i - 2) +jP,(s - l))(«/(_, - 1) + c,(i - 2) +/c,(5 - 1).

Moreover, if we put M{ = Nr/vi+, • • ■ vg, mi = n¡, for 1 < / < g, we get Mx = ¡xxvx,

m, = /x, + vx; and

Mi = (M,_, + Lii/vi - \x¡_x)v2,   m¡ = (m,_, + /i,A, - /»i-i)"i-

Further consideration of polynomials /», a, b, c, P enables Igusa to prove his

Theorem 1. We put /, = kx0 + kxx + ■ ■ ■ +k¡, for 1 < /' < g; then we have

«,/#/> «7,/^,   (/<7i)-       "l/NI>nI/NI¡   (/>/,)

/or 1 *£ / < g.

The function / -» n,/N¡ is strictly decreasing in the subinterval /V10 + • ■ • +kx s_x

< I < kl0 + • ■ ■ +kx s for 0 < s < fj. In every other interval /,_, < / < /,, it is

oscillating, i.e., it is strictly increasing or decreasing in the subinterval /,_, + A:i0

+ • • • +k¡>4_ | < / < /,_ i + kj0 + ■ ■ ■ +kis according as s is even or odd for 0 < s

<ti,l<i'<g.
For our later purpose we add the following remark: suppose that F0 is a subfield

of K over which X, C are defined and the singular point is rational. Then all

successive quadratic transformations are defined over K0.

We have finished our review of material in [3].

2. Numerical data—a relationship between them, and the ordering of their quo-

tients. Our demonstration that certain candidates fail to be poles of fs will depend

on the following relationship between the numerical data of a given exceptional

curve and of those other exceptional curves it intersects.

Theorem 1. Suppose I ¥= /,, 1 < /' < g, and that, in C*, E¡ intersects exceptional

curves we shall call E,3 (which intersects E¡ at yfx = 0) and EI2. Here, ifE, intersects

only one other exceptional curve EI2, we assign numerical data (0,1) to a fictitious EI3.

Then

"i,2 + »ra _ Ni,2 + Nrq

ffj

2 iff < k,
ks+x + 1     ifj = ks,s = t- 1,

ks+x + 2    ifj = ks,s<t-l.
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Proof. Considering each possible location of E, in C*, we form the above ratios

from Igusa's expressions for the numerical data, given here in §1, and verify the

equalities through the properties, also given here in §1, of the polynomials

/», a, b, c, P. In the following table E, denotes a fictitious exceptional curve with

numerical data (0,1), and i0 is any fixed value of s.

Case*

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

E,

> \,j<k

= \,s = 0,ka=\,t=\

= l,s = 0,/co= l,/> 1

= l,i = 0, k0> 1

= l,i = 2,/t0 = 0,/c2= l,r = 3

= l,s = 2,k0 = 0,k2= I,i>3

= 1,5 = 2, k0 = 0, k2> 1

= 1,5= 1,/c, = l,/ = 2

= 1,5= 1,/c, = l,r>2

= 1,5= 1,/c, > 1

= l,l<í0<í-l,*Jo=l

= A:,_,,5 = /— 1 > \,k,_x = 1

= 1,1<*0 <*,*„> I

k„> \,sn<t- I

1

E/,3

; -

Eh-
E',-

E',~

Eh~

H-
Eh-
E,

Eh
E,B

*J0'    '.-»O

fc,_,   >  1,5 = t ■

- ks0-2<

= /C,_3,5

= *«,-

= **„

-1 y = *,-

:50 - 2

i-3

2, 5 = 50 — 2
- 1,5 = 50

-  1,5 = /-

EI,2

y+i

j = kx,s = t

j = 1,5 = 2

7 = 2,5 = 0

5 = 3,7 = fc3

1,5 = 4

2,5 = 2

= i:2,5 = 2

1,5 = 3

2,5= 1

1,5 = 50 + 2

k„s = t

= 2, 5 = 50

1,5 = 50 + 2

j = k„s = t

We give details in two representative cases:

Case 9. E, has / = 1, s = 1. F/3 has NI3 = 0, «/3 = 1. F/2 has / = 1, s — 3.

A:, = l;/>2.

nI,2 + "/,3  _ (F(l) + f (2))(h7)_, - 1) + c(l) + c(2) + 1

(P(-l)+P(0))(n/(_,-l)+c(-l) + C(0)

F(-1) = 0;    P(0)=1;    P(l) = Ar, = l;

F(2) = p(kx, k2) = /c,fc2 + 1 = *2 + 1.

(F(l) + F(2))/(F(-1) + F(0)) = k2 + 2.

c(l) = kxc(0) + c(-l) = c(0) + 1, which is k0 + 2,

because c(0) = p(k0) + p(kx, k0) — k0 + 1.

c(-l) = 1.

c(2) = p(k0,... ,k2) + p(kx, k2) = k0k2 + k0 + 2k2+ 1.

c(l) + c(2) +l=(k0 + 2)(k2 + 2).

c(-l) + c(0) = k0 + 2.

(c(l) + c(2) + l)/(c(-l) + c(0)) = k2 + 2.

*i,2 + Njj =    W) + P(2))NI¡_i + (a(l) + b(2))vi+x ■ ■ ■ vg

N,        - (p(-l) + P(0))/V, + (a(-l) + b(0))pi+x ■■■>

P(l)+P(2)   _  a(l) + b(2)   _

P(-l) + P(0)      a(-l) + b(0)        2
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Case 12.

P(t - 5) + kt_3P(t - 4) + P(t - 2) + ktP(t - 1)

P(/-3) + F(/-2)

_ c(t - 5) + k,_3c(t - 4) + c(t - 2) + ktc(t - 1)

c(t - 3) + c(t - 2)

_ a(t - 5) + Á:,_3¿»(/ - 4) + a(t - 2) + ktb(t - 1) _

o(/ - 3) + kt_xb(t - 2) -*t+l.

The numerator of the last fraction is:

a(t - 3) + a(t - 2) + k,b(t - 1) = a(t) + a(t - 3) = b(t) + a(t - 3)

= kta(t - 1) + b(t - 2) + a(t - 3)

= kta(t - 1) + a(t - 1) = (k, + l)a(t - 1).

The denominator of that fraction,

a(t - 3) + kt_xb(t -2) = a(t - 1).

Theorem 1 and its usefulness in the evaluation of fs were introduced in the

author's doctoral thesis [7],

Corollary 1. (1) The function I -» n¡/N¡ is strictly decreasing as I ranges through

the sequence of subintervals: 0 < / < kxo, kxo + kxx < I < kxo + ■ ■ ■ +kX2,.. .,kx0

+ • ■ • +(kx h_xor kx has txis odd or even), and also as I ranges through the sequence

of subintervals: kxo< I < kxo + ku, kx0 + ■ ■ • +kX2 < I < kxo + ■ ■ ■ +kX3,...,kx0

+ ■ ■ ■ +(kx><i_, or kx t¡ as /, is even or odd), with n¡ /N, a lower bound for the

function on both sequences, attained at I = kx0 + • ■ • +kx,.

(2) For i > 1 the function I -» n¡/N¡ is strictly increasing as I ranges through the

sequence of subintervals: /,_, </</,_, + k¡0, /,_, + • ■ ■ +kjX < I < /,_,

+ • • • +ki2,...,/,_[ + • • • +(fc(j,_i or kit as /, is odd or even), and strictly decreas-

ing as I ranges through the sequence of subintervals: /,_, + ki0 </</,_, + ■ ■ • + kiX,

/,-! + ••• +ki2 < I < /,_, + • • • +ki3,...,/,_, + • • • +(kit_x or kit, as /, is even

or odd), with »¡/N^ an upper bound for the former and a lower bound for the latter,

attained at I = /,.

(3) n,/N, > nj/NIt for I > /,, Ki<g.

Proof. Plotting (JV7, n,) on a cartesian coordinate plane, our Theorem 1 tells us

to obtain (N„ n,) for / =¿ /,., 1 < / < g, by adding vectors (N,a, nI2) and (/V/3, nI3)

and dividing by the scalar 2, ks+x + 1, or A:J+1 + 2. The slope of the first vector,

which is n,/Nj, is intermediate between the slopes of the latter two. This fact

together with Igusa's Theorem 1, given here in §1, gives the corollary.

Corollary 2. F7., where 1 < / < g, intersects exceptional curves with quotients

n,/N, both less than and greater than its own.

3. The Newton polygon. Let F be an algebraically closed field of characteristic 0,

fix, y) = 2-=1a,xa'j»ft a polynomial with a, E K, such that/(0,0) = 0, and (0,0) is

the only singular point off. The Newton diagram of fix, y) is formed by plotting in
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a cartesian coordinate system the points P¡ with coordinates u = a,, v = /},-. Suppose

that points P-, Pj. of the Newton diagram of / are such that there exist vx, 8X in R

satisfying a, + >>,/?, = ak + vxßk = 8X < a, + j»,/?, for i = 1,...,« with ay < a^, p,

> 0. We define the Newton polygon of / to be the longest convex polygonal arc,

each of whose vertices is a P,, such that no P, lies below the arc. Then P,, Pk are on a

segment L, of negative slope, of the Newton polygon. We will construct, following

an argument of Walker [9],

y = cxx"' + c2x"l+'2 + c3x^+^+v' + ■■■    in K(x)*,

the fractional power series in x, such that fix, y) = 0. Here c, ¥= 0 and v2 > 0,

v3 > 0, — There may be a finite or infinite set of c¡.

Abbreviate y = x"'(cx + yx), where we have putyx = c2x"2 + • • •. Then

/(*> y)=l atx«y*' = £ ^«"(¿"(c, + y,)f
1=1 1=1

= laix«<+»Hcx+yxf,
i=i

which we can rewrite as

f(x,y)= 2 cf'o,x««+'«A + g(x, j»,),
i=i

where g contains all the terms involving j»,. As the order of yx is r2 > 0, each term of

g(x, yx) has order greater than some one of the terms cfiaix"'+''lP'i. The terms of

lowest degree in fix, y) are those cxß•aixa•+,'^• such that a, + vxßt = S,. In order

that/(x, y) = 0, it is necessary that the terms of lowest order cancel, i.e. 2aAcf" = 0,

the summation being over all values of h for which ah + vxßh — 8X. The existence of

c, ¥* 0 is guaranteed by the existence of at least two values of h, namely i and/, for

which ah + vxßh = 8X, and the fact that F is algebraically closed.

We define fx(x, yx) — x's'f(x, x"'(cx + yx)) and, considering the root yx of

f\(x-> y\) — 0> continue the process, determining c2, v2. We require v2 > 0, v3 > 0,...,

i.e. in each step we need a segment with negative slope in the Newton polygon of/.

In each step the existence of c, is guaranteed as that of c, was. Finally, in order that

the y we construct be in K(x)*, we must show that after a certain stage all the vi

have a common denominator.

Suppose that P-, Pk are the left- and right-hand ends of segment F of the Newton

polygon off. Then, a, + vxßj = ak + vxßk implies vx = (ak~ ctj)/(ßj - ßk) = p/q,

where /», <? are relatively prime integers, and q must divide (ßh — ßk) if PÄ is on L.

For every Ph on F we have ßh = ßk + sq, s being a nonnegative integer. Therefore

SAaAcf* = 0 has the form cf*d>(cf) = 0, where <¡>(z) is a polynomial of degree

(ßj - &)/?, such that <f>(0) ¥= 0. If c, ^ 0 is an /--fold root, r > 1, of </>(z?) = 0, we

have

*(z') = (z-c,)V(z),       V(c,)^0.
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Then

fx(x,yx) = x-s>Íaix»ix'icx+yx)f
1=1

= x-a'2«í**,+"A(<?i+*)A
1=1

= x-s^ahx^+,/^(cx + yx)ßk

h

+ x-*^adx"<+^(cx+yx)ß\
d

where h runs over the values of /' for which F, is on F, and d runs over the remaining

values of /'. Since ah + vxßh = 5,, the first sum is

2ah(cx+yxf^(cx+yfy{(cx+yxy)
h

= (cx+yx)ßkyrMcx+yx),

and we have

Mx,yi)=yfol +yx)ßkHcx +yx) + *-4'2*</*a'+"''(c. + yx)ß<
d

= cH(cx)y[

+ (terms with j, to a power greater than r and no power of x)

+ (terms with powersofx).

We consider two cases: (1) If there is no term with x to a positive power and_y, to a

power less than r, then yx = 0 is a root of fx(x, yx) = 0, and y = cxx"i is a root of

fix, y) = 0. (2) If there is a term with x to a positive power and v, to a power less

than r, then the Newton polygon of /, has a segment of negative slope, and there

exist Pr, Ps, v2, 82 satisfying

ar + v2ßr = as + v2ßs = 82< a, + v2ß(

for all i, and v2 > 0. We can then determine c2 as we determined c,.

We have only to show that the successive vi have bounded denominators; i.e., that

after a certain number of steps the value of q is always 1. The line segment of

negative slope we choose in the Newton polygon of /, has vertical height at most r,

which is at most the vertical height of the segment L in the Newton polygon of /.

Thus we see that r cannot increase from step to step and must take on a constant

value r0 after a finite number of steps. Then

<f>(z«) = e(z - c)r° = ezr° - • • • +r0ecr°~xz ± ecr°.

Since K is of characteristic 0 and r0, e, and c are each different from 0, r0dcr°~ ' =/= 0,

and so q — 1.
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We have shown

Proposition 1. Each segment of negative slope in the Newton polygon of f

corresponds to a root

y = cxxp> + c2x><+"> + c3x"' + ̂ +^ + ••■

in K(x)* of fix, y) = 0, where -l/vx is that slope, and all v¡ > 0.

Corollary 1. If fis irreducible in K[[x, y]], the Newton polygon of f cannot have

two distinct segments of negative slope.

Returning to the setting of §3, we have

Corollary 2. Set I0 = 0 and f0 = f. For I ¥= /„ 0 < /" < g, fi(u, v) = l^a^'v-i

has exactly one j, say j = m, such that a0m =£ 0.

Proof. Each/- is irreducible in K[[x, y]], because/is (see for instance [6, p. 100]).

In particular, x and y do not divide fi-x(x, y), so there is at least one/ such that

a0j ^ 0 and at least one / such that ai0 ¥= 0. Choose i and/ as small as possible, say n

and m. Corollary 1 of Proposition 1 guarantees that no point of the Newton diagram

of f,_x may lie below the line joining (0, m) and (n,0). We examine the effect of a

quadratic transformation onx",ym, and an arbitrary term xayb of fT_v (We ignore

the constant coefficients of the terms.) Suppose that n > m. Set x = u, y = uv. Then

x" + x"yb + ym becomes um(un~m + ua+b~mvb + vm). If n > m, we cannot have

a + b — m = 0, because then (a, b) would he below the above-mentioned line. If

n - m, we have um(l + ua+b~mvb + vm) and / = /,. for some /' > 0.

4. Poles of fs. Let F be an algebraic number field, Kp a F-adic completion of K

with R, P, Rx , q, and | \K as in the Introduction. Let/ E K[x, y] have a singularity

only at (0,0), /(0,0) = 0, and suppose that / is irreducible in K[[x, y]], where F is

the algebraic closure of K. Furthermore, assume that our choice of F is such that

/ E R[x, y], and that certain constants discussed below are in F or Fx .

We have prepared, in Theorem 1 and Corollary 2 of Proposition 1, to examine

fS=ipjp\f(x,y)\Kp\dx\Kp\dy\Kp,

where 5 is a complex variable. We resolve the singularity of /following §1: Pass from

(x, y) to (x\ y') defined as x' = x, y' = y — 2fi,a0,x'. We assume F has been

chosen so that a0, E F for all i. Then x, y E P imply x', y' E P, and the Jacobian

of this transformation has absolute value 1. Therefore we may change all a0i to 0

without affecting the integral/1.

Set I0 = 0, /0 = /, and (N0, n0) = (0,1). Suppose now that / ¥= /,, 0 < / < g, and

that E, intersects exceptional curves we call E, 4 (at the origin of the x¡, y¡ plane),

E, j (aty~x = 0), and EI2 (in C*). When/ = k,^x, s = / — 1, we note that F/4 = EI2.

If there is no F/4 and/or there is no E,3, we assign fictitious exceptional curve(s)

numerical data (0,1). After we perform each quadratic transformation we will

evaluate part of the integral/1. The part remaining as we come to perform the /th
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quadratic transformation, including the first one, will always be (omitting Kp from

| |^ ) of the form

(A) f f\x\N'-'s+"'-'~x\y\N'-l"s+'''-'^x\fI^x(x,y)\5\dx\\dy\ .

Perform a quadratic transformation x = u, y = uv. Then x, y E P imply v E Kp

and ME{Pnt;~'F}, and our integral becomes

f   f |«|JV/,+"/-1|i3|wM*+»M-i|//(Mfl})|*|diu||<fo|.
JK/pnv~lp

We break the domain of integration into region 1 = P X F, region 2 = F X Fx ,

and region 3 = v'xP X {Kp — R}. Region 1 gives us an integral of the form (A)

above, and we save it for the next quadratic transformation. To treat region 3 we

change to coordinates at t>~' = 0 by setting v — w~x, u = wz. Then v E {Kp — R),

u E v~lP imply w, z E P, and our integral becomes

[ ¡\z\N,s+"''x\w\N'^+n'^x\gI(z,w)\s\dz\\dw\ ,

where g, E R[z, w]. The strict transform of / intersects Er only at t; = 0, so g has a

nonzero constant term which we assume to be a unit. Then g has constant absolute

value 1 on P X F and, by the lemma,

fjxr\dx\Kp^ (I - q~x)Ll - q-^+xr' -J2q^+XA,

for/ > 0, Re(s) > -1, the integral on region 3 is

(1 - q~xf((l - q-W+"<))-] - l)((l - i-W3»+»w>)-1 - l).

To treat region 2 we turn to Corollary 2 of Proposition 1, which tells us that for

// = 2iJaijU'vj there is exactly one/, say/ = m, such that a0m ¥= 0. As /7(0,0) = 0,

we have aw = 0. We assume a0m is a unit, and all a,y are in F. Then/- has absolute

value 1 on Fx X F and the integral on region 2 gives

f    f\u \N'S+"'~X | v |»m*+«m-' \fi(u, v) \s I du 11 dv |
JR*Jp

= (l-q-x)1((l-q-^'s+^)'i -l).

Adding together the integrals for regions 2 and 3 and for the "region 3" (see Note 3

below) we get when we perform the quadratic transformation that generates F/2, we

cover E, and obtain

({l-q-<N<*+»»yX-l)(l-q-x)2-G,

where

G = (l - q-v>r#+*,jyx + (i - 9-w.3*+«,.3))-' _ i

Note I. (I - q'aYx +(l - q-bYx - 1 = 0 iff a = -b.

Note 2. -Nia-n,/Nr + nI2 = -i-N,yn,/N, + nI3) iff (n¡2 + n!3)/n¡ =

W,2 + Nj^/Nj.
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Notes 1 and 2 allow us to see that Theorem 1 implies G = 0 for s = -n¡/N¡. We

have proved that the portion of our integral that covers E¡ does not generate a pole

at s — -n¡/Nj.

Note 3. In this argument we have tacitly assumed that EI3 is not an E¡: As we

examine E¡, however, we will find that the "region 3" contribution is the same

whether or not E¡ is an E¡.

Suppose then that / = /, for some /'; the n and m of the proof of Corollary 2 of

Proposition 1 are equal, and a quadratic transformation (omitting the constant

coefficients) gives

x"-i + 2*/-i^/-i +x?-i.    */-i = «.yr-i = uv>
U

un + 2«,+v + «"»" = «"(i + 2ui+j-"vJ -v\.
v y

Unlike the case where n ¥= m, there may be several terms inside the parentheses in

which v appears without u; we have something of the form

ao + 2aiü' + 2ajkuJx>k-
jk

As before, we divide the domain of integration into region 1 = P X P, region

2 = F X Fx , and region 3 = v~xP X {K - R}. As in §1, the transformation «' = u,

v' = v — 1Ki=0b¡u', b0¥=0 moves the origin to the intersection of E, and the strict

transform. We assume a0, b0 E Rx, and all a¡, b¡, ajk E R. Then the strict

transform intersects E¡ in region 2. As before, the two exceptional curves E,

intersects that have / smaller than its own we call EI2 and EI3.

We argue as before that in region 3 | g | = 1, and we have

(1 - q-xf((l - q-(»"+»'))-X - l)((l - q<N^+»,jyx - l).

Region 1 has

f ( | u [»>*+»'- ' | v \N'3s+"n- • | unit + terms in F \s | du \ \ dv \
J pj p

= (1 - q-xf((l - q-(N>°+"àyx - !)((! _ q<Nl3,+«l3)yi _ ,)

Region 2 has

f     flu \N's + "i
'RKJP

a0 + 2ay + 2a,*"V
jk

du 11 dv |

The Jacobian of the transformation from (u, v) to (u\ v') has absolute value 1, and

u E P, v E Fx imply u' E P, v' E {PU{FX - {b0/P}}}. We divide region 2 into

region 4 = P X P and region 5 = F X {Fx - {bQ/P}}. Region 4 is of the form (A)

above, and we save it for the next quadratic transformation, unless i = g, in which

case it covers only parts of E¡ and the strict transform. Region 5 covers only part of

Er, and we do not evaluate it.
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We have proved our main result:

Theorem 2. For almost all P-adic completions of K, the poles of

f5=Sj\f^y)\s\d-\xP\dy\Kp

are on some or all of Re(j) = -1, -nj/Nj, where 1 < i < g. N¡, n, are given

explicitly in §1 and give possible poles of the form constant/(l — q'(N'¡s+ni)).

We have not ruled out the possibility that Re(j) = -nj/N¡ may fail to give poles,

except in the case /' = 1 (see [3, p. 367]). Igusa's argument in that case depends on the

fact that n¡ /N¡ is smaller than the quotients corresponding to the three components

of C* that intersect Er ; for 1 < / < g, Corollary 3 of our Theorem 1 tells us E,

intersects exceptional curves whose quotients n,/N, are both larger than and

smaller than its own.
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