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MEASURE AND CATEGORY APPROXIMATIONS FOR C-SETS

BY

V. V. SRIVATSA

Abstract. The class of C-sets in a Polish space is the smallest o-field containing the

Borel sets and closed under operation ((£). In this article we show that any C-set in

the product of two Polish spaces can be approximated (in measure and category),

uniformly over all sections, by sets generated by rectangles with one side a C-set and

the other a Borel set. Such a formulation unifies many results in the literature. In

particular, our methods yield a simpler proof of a selection theorem for C-sets with

Gs-sections due to Burgess [4].

Introduction. A natural class of definable universally measurable subsets of a

Polish space is the C-sets of Selivanovskii [10]. This is the smallest class containing

the open sets and closed under complementation and Souslin's operation (<$,). An

alternate description would be: the smallest class c>(X) of subsets of a Polish space

X containing the analytic sets and stable under composition of S(X)-measurable

functions. These pleasant properties make the C-sets a natural object of study. A

survey of their important structural properties is available in Burgess [4].

The content of the present article is in part motivated by the main new result in

Burgess [4], namely: Let X and Y be Polish spaces and let F: X -» Y be a Gs-valued,

S (^-measurable multifunction such that Gr(F) (= {(x, y): y E F(x)}) is in

S(IX Y). Then F has an §(.JQ-measurable selection. We shall give a proof of this

result by a different argument which, in our opinion, greatly simplifies it.

Our approach is to reduce such questions about sets in S(Z X Y) to ones about

descriptively simpler sets in product a-fields. It should be noted in this context that

sets in %(X X Y) cannot be related directly to any product structure (for example,

as observed by B. V. Rao [8], C-sets in R X R need not belong to £(R) ® £(R), the

product of the linear a-fields of Lebesgue measurable sets). However, as we shall see,

sets in S (A' X Y) can be "approximated" section-wise, in measure and category, by

sets in product a-fields. Thus, our main theorem states: Let A G§(IX Y). Then

there are B and C in %(X)®%Y (®y = the Borel a-field on Y), such that

B E A EC and Cx — Bx is meager for each x E X. A similar statement can be

formulated and proved for measure. Many questions about A then reduce to ones

about the simpler sets B and C.

Various selection theorems for sets in S(IX Y), including the theorem of

Burgess quoted above, are an immmediate consequence of such approximations.

While Burgess uses high-power tools from game theory and the theory of inductive
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definability our methods are essentially elementary (modulo some fairly deep results

about coanalytic sets). It should be noted, however, that while this paper follows in

the main, boldface (classical) language and techniques, we deviate at two points to

make crucial (albeit simple) use of the local methods of the effective theory.

Vaught in [13] has shown that if A E S(X X Y), then {x E X: Ax is nonmeager}

etc. are sets in <5>(X). Another consequence of our approximation theorem is that

such computations follow immediately from the corresponding ones for Borel sets.

Similar computations also hold for measure and these follow via our approximation

theorem in the measure case.

In §0 we fix the basic definitions and notation and in §1 carry out the pre-

liminaries for the category case and establish the base step of our approximation

theorem (we will actually prove our results level by level through a hierarchy of

C-sets). In §2 we prove our approximation theorem in the category case and set

down its consequences. We prove the analogues in the measure case in §3.

The content of this article forms part of the author's doctoral dissertation

submitted to the Indian Statistical Institute. The author wishes to express his

indebtedness to Professor Ashok Maitra, his thesis supervisor.

0. Definitions and notation. We now fix the basic notation and definitions used in

this article. The natural members will be denoted by to, and the set of finite

sequences of natural numbers by Seq. If s is such a sequence, lh(s) denotes its

length, and Sk will stand for the set of all sequences i with lh(s) = k, k > 0. If

s E Sk, s¡ denotes its /th coordinate when this exists and we write s = (sx,.. .,sk),

and for i < lh(s), si i abbreviates (s,,...,s¡). For n E w, sn denotes the catenation

of s and n. For s, t E Seq, we write s Et it t extends s.

The set w" is equipped with the product of discrete topologies. As is well known,

this space is a homeomorph of the space of irrationals. For a E co", n E w, a(n) will

denote (a(0),...,a(n — 1)). If s E Sk, N(s) denotes {a E 2: â(k) = s}. These sets

form a base for <o". The symbol R stands for the real line.

Let F and X be nonempty sets. A multifunction F: T -> X is a function whose

values are nonempty subsets of X. By Gr(F) we mean {(r, x): x E F(t)} and call it

the graph of F A function /: F -* X is called a selection for F or for Gr(F) if

f(t) E Fit), t E T. For F E X, F~X(E) is the set {/ E F: F(t) D F ¥= 0 }.

If 6E and ® are a-fields on F and X respectively, 6E ® 9> denotes the product

a-field. A multifunction F: T -> X is called immeasurable if F'X(V) E & for each

open V in X (assume X here to be separable metric). For W E T X X, W' denotes

its vertical section at t.

For X separable metric, %x denotes its Borel a-field. For Polish X, we denote the

class of C-sets in X by §>( X) and specify the following hierarchy (due to Nikodym)

for it. For each ß < «,, the first uncountable ordinal, define by transfini te recursion

classes &ß( X) and c>ß( X) as follows:

Put &0(X) = c>0(X) = Borel sets in X. Suppose these classes have been defined

for all a < ß.

Put &ß(X) = {A E X: A is the result of operation (éB) on a system of sets

Ani„2...„k with Aninr..„k E Ua<ßSa(X)}, %ß(X) = a-field generated by &ß(X). Ob-

serve that Up<uSßiX) = S(A-).
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Suppose 911 is a countably generated a-field on T generated by {Mn}n^x. By the

characteristic function of the sequence {Mn}n^x we mean the function /: F -» [0,1]

given by

00        -,

/(<)=    2   fn-IM,
n=\  J

where IM is the indicator of Mn. Let S = f(T). Then, as is well known, / is a

bimeasurable function between <91t and ®s.

For F E X, cl(E) will denote the closure of F.

We will in some places (namely Lemmas 1.5 and 3.4) take recourse to effective-

theoretic methods. Rather than use the effective notation throughout we thought it

best, in the interest of reaching the widest possible audience, to use effective notation

such as natural number codes for finite sequences of natural numbers only at these

points. All notation and terminology from the effective theory is from Moschovakis

[7]. Thus, in contradiction to what we have fixed, Seq in these parts will denote the

set of sequence numbers of finite sequences of natural numbers.

1. We will prove our approximation theorems by inducting on sets in S( AT X Y).

In this section we will do the preliminary work for the category case and conclude

with our theorem at the base step.

The following simple fact enables us to reduce the base step to the zero-dimen-

sional case.

1.1 Lemma. Let Y be Polish. Then there is a meager set N such that Y — N is a

zero-dimensional Polish space.

Proof. Let {V„}n>x be a base for Y. Put TV = Un&1(cl(K„) - Vn). It is easily seen

that N is meager, and that Y — N is a zero-dimensional Gs in Y. The result follows.

The computation in the next lemma is due to Kechris [5] and Vaught [13] and is

quite well known.

1.2 Lemma. Let X and Y be Polish spaces and suppose A E X X Y. Then for any

open set V in Y, A*, = {x E X: Ax is comeager in V] is analytic (coanalytic) if A is

analytic (coanalytic).

The next result will give us one half of the base step when we induct on sets in

§(IX Y). Our method is just to carry out uniformly over the sections of an

analytic set in the product what is essentially the procedure in Sion's proof [11] that

"analytic" sets in general topological spaces are capacitable a la Choquet.

1.3 Lemma. Let X and Y be Polish and let A ÇlX Y be an analytic set such that

A* is comeager for each x E E, with E E c>x(X). Then there is a set B EA,

5eS,(I)® %Y such that Bx is a dense Gsfor each x E E.

Proof. By virtue of Lemma 1.1 we may assume without loss of generality that Y is

zero-dimensional. As any such Y can be written as ww U Z with Z countable, easy

arguments show that we may further assume that Y = «".
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Notice first that as A is a continuous image of cow, and is a G$ in the a-compact
onto

space R, there is continuous /: D -» A where D E R, D = rim>1 Un>1 £>(m, «)

with D(m,n) compact for each m, n > 1.

Let ux,u2,... be an enumeration of Seq. We will define two sytems of S,( ^-mea-

surable functions defined on F into u, g,„ „      „ ■. and h,„ „      „ -. such that:> o(ní,n2,...,ni¡) (nx,n2,. ■■ ,nk)

(i) gs(x) E Seq and lh(gs(x)) > lh(s) for 5 E Seq, x E F;

(Ü) 5 ç s' => gs(x) Ç gj.(jc), x E F; ä/jc) E « - {0};

(iii) lh(s) = lh(j') and s ^ s' => N(gsix)) D A(g,-(x)) = 0, jc E F;

(iv) UiES Ar(gi(x)) is dense in ww, for each k > 1, x E F;

(v) lh(i) = fc =>(/(£ n F»(l,/jJfl(jc)) D ■■■ HDik, hs(x))))x is comeager in

N(gs(x)), x E E, k > I, and therefore

(v)' lh(s) = k=> (f(D n D(l, hstx(x)) n • • • HDik, hs(x))))x n 7V(g,(x)) ¥= 0,

xEE.

We will establish first that the existence of such systems proves the lemma. For, if

such systems exists, put

Bk = {(x, a):xEE&(3sE Sk)(3n)(gs(x) = u„ and a E N(un))}.

Then Bk E ?>X(X) ® <$r and F^ has dense open sections. Put F = (lk^xBk. It

remains only to check that C\k^xBk EA. So let (x, a) E (~\k>xBk. Then by (iii),

there is a unique sequence (kx, k2,...) such that a E N(g,k¡k2¡ k.) for each /> 1.

An easy argument using (i), (ii), (v'), and the compactness of the D(m, n)'s then

shows that

(x,o)Efl r\D(l,h<kikr..ki>(x))\ EA.

We will complete the proof now by constructing gs and hs. We proceed by

induction on lh(s). Put ge(x) = e, he(x) = 1, x E E. Suppose gs, hs have been

defined for all s of length < k. Fix s E Sk+X. We have to define gsn, hsn, n > 0. Let

ELx,...,mk = {x EE: h^iix) = mx,...,hs(x) = mk, gs(x) = u,}. Then by the induc-

tion hypothesis these are disjoint sets in §,(^0 whose union (running over

(/, mx,...,mk) E Sk+X) is F. It suffices now to define {gsn, hsn, n > 0} on each

E'mx.mk separately. So fix now (/, mx,...,mk) E Sk+X. Define Fy C F^.m¿ by

Rj = {x E Elmw m: u, E wy&lh(wy) > k + 1 & there is n > 1 such that (/(£> n

D(l, mx) n • • ■ DD(k, mk) n £)(/<: 4- 1, n)))* is comeager in N(Uj) and for all u

such that h,Ç«Ç m; and lh(w) > k + 1 and for all m > I, (f(D n I>(1, w,)

n • • • nD(A:, mk) D D(k + 1, m)))x is not comeager in N(u)}. (For example, if

k = 0, {uj-. x E Rj] is the collection of those sequences of length 5= 1 that code the

"largest" basic clopen sets in which some (/(D D D(l, m)))x is comeager.)

It follows that, for each fixed x, the distinct sequences Uj s.t. x E Rj must code

disjoint neighbourhoods, and by condition (v) in the induction hypothesis,

ö{N(uj): x E Rj) is dense in N(u,), and so {j: x E Rj) is infinite© .

By Lemma 1.2 each Fy E §/(Ar). Now define, for n > 0, gsn(x) = u} if j is the

(n + l)st integer such that x E Fy. By ©, gsn is well defined for all n 3= 0.
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Finally put hsn(x) = least m such that

(f(D n D(l, mx) D • • • DD(k, mk) D D(k + 1, m)))x

is comeager in N(gsn(x)). It is easily checked that {gsn, hsn, n > 0} satisfy (i)-(v).

We also need the counterpart of Lemma 1.4 for analytic sets with meager sections.

To do this we shall make crucial use of the local methods of the effective theory,

specifically the following result from Kechris [5].

1.4 Lemma. Let A Eua be a1\ (lightface), meager set. Then A is contained in the

union of all closed, nowhere dense A1, sets. The relativised version also holds.

(Readers are reminded that all terms and elementary facts from the effective

theory are from Moschovakis [7].)

The following is now easy.

1.5 Lemma. Let X and Y be Polish, and A E X X Y an analytic set such that Ax is

meager for all x E E, with E E SX(X). Then there is B E %X(X) ® %Y such that

A E B and Bx is meager for x E E.

Proof. As before, it suffices to prove the result for A E ua X u". For simplicity

assume A is 2j. The relativized version can be argued similarly. As, for each x E F,

Ax is a 2j(x) meager set, Lemma 1.4 applies to show that for x E E,AX is contained

in the (countable) union of all closed, nowhere dense sets given by A',(x) trees on u.

Let d: w" X « -» w" be a IT ¡-recursive partial function that codes points in à\(x), x

running through u" [7,4D.2]. Then we may write

A (1 (EX a»") E {(x, y): (3n)(d(x,n)l andd(x, n) codes a tree

F such that [T] is nowhere dense, y E[T])

= B',   say.

Let C„ = {x: d(x, n)l &d(x, n) codes a tree whose body is nowhere dense}, n s* 0.

Then C„ is coanalytic. Recall that x E u" codes a tree on <o if {s: x(s) = 0} is a tree

on w. Plainly, then,

B' =   U {(x, y) E uu X ío": x E C„ and (d(x, n), y) E F},

n>0

where F= {(x, y) E u" X u": (\/m)(x(y(m)) = 0)}. As F is closed, C„ is coana-

lytic, and d(x, n) is S,(w") n C„-measurable, F' E §,(«") ® <$u„. Thus, as F E

S,(wu), B = B' U ((<ow - F) X a") does the job.

We can now prove the approximation theorem at the first level of the hierarchy of

C-sets.

1.6 Lemma. Let X and Y be Polish. Let A be an analytic subset of XX Y. Then there

are B and C in S X(X) ® <$ Y such that B EA EC and Cx - Bx is meager for each

xEX.
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Proof. Fix a base {Vn} for Y. Let Tn = {x E X: Ax is comeager in Vn}. As Ax

satisfies the Baire property for each x,

® U Tn = {x E X: Ax is nonmeager}.

n>\

For each n > I, apply Lemma 1.3 with Tn playing the role of F and V„ playing the

role of Y. Set F„ as in the lemma. Put B = Un>x(Bn n (T„ X Y)). Then 5 E §,(*)

® ®y and © ensures that for each x E X, Ax — Bx is meager.

To get the set C one has only to carry out the above argument for the coanalytic

set (X X Y) — A. That this can be done is ensured by Lemma 1.5.

2. The category approximation theorem and its consequences. We will now state

our main theorem for category.

2.1 Theorem. Let X and Y be Polish spaces. Let A E%a(XX Y), a < «,. Then

there are B and C in Sa( X) ® % Y such that B EA EC and Cx — Bx is meager for

each x EX.In particular if A E%(XX Y), then one can find B and C in S( X) ® % Y

with the above properties.

Proof. The argument is by induction on a. For a = 0, c>0(X X Y) is the Borel

a-field, and there is nothing to prove.

Suppose then that the result is true for all ß < a. Let W stand for the class of all

sets in Sa(X X Y) for which the result holds. It is easily seen that "¿Fis closed under

complements and countable unions. Thus, one need only check that &a(X X Y) E$.

So fix A E &a(X X Y), say A is the result of operation (6B) performed on a system

{A,„2 „J with each A„ittr..nk E Uß<ßß(XX Y). By the induction hypothesis,

for each (nxn2 ■ ■ ■ nk), we haveF^^..^ and C„t„r..„k, both in Uß<a(§ß(X) ® %Y),

such that F„,...„t QA„v..„k E Cn¡...„k, and C*...„t - #*...„, is meager for each

xEX. Let B* = &({B„r..nk}) and C* = &({C„r..„k}). Then B* E A E C* and

since any y E (C*)x — (B*)x is in some Cx ...„ — Bx ...n , each of which is meager,

we have (C*)x — (B*)x is meager for each x. To complete the proof it suffices to get

B EB*, CD C* such that B, C E $a(X) ®<&Y, (B*)x - Bx is meager and Cx -

(C*)x is meager. We will obtain B, the argument for C being similar.

Let Sa(X) be the a-field generated by Uß<ßß(X). Now B* = #({£„,...„J) with

each Bni...„kESaiX)<8><3>y. Thus, there is a countably generated sub-a-field €l"(Ar)

of Sa(i) such that each £„,...„, 6 W(X) ® %Y. Let m: (X,^ka(X)) -» [0,1] be the

characteristic function of a countable generator for <Sla(X). Put M = w(JÍ), and for

each (nx,...,nk), let B^...nt = {(m(x), y): (x, y) E £„,...„J. Then B'nv..„k E %M

®®y, and if F** = {(m(x), ^): (x, y) EB*},thenB** = (2({F;...„J). It follows

that there is an analytic set A* E [0,1] X Y such that A* n (M X Y) = B**. Apply

Lemma 1.6 to get A** ÇA*, A** E S,([0,1]) <S> %Y such that for each t E T,

(A*)' — (A**)' is meager.

Let now (w,id): XX Y -> [0,1] X 7 be the map (m,id)(jc, y) = (mix), y). Put

F = (m,id)'x(A**). Observe that as m is a bimeasurable map of (X,Oí") and

(M, %M),

m-1(SI([0,l]))cS.(AT).
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Thus B E c>a(X) ® ißy and B clearly satisfies the other properties required of it.

We will now set down some of the consequences of Theorem 2.1.

2.2 Corollary. Let X and Y be Polish. Suppose A E X X Y and Ax is nonmeager

for each x. Then:

(ï) A E S(X X Y) ^ A has an %(X)-measurableselection.

(ii) A E%a(XX Y) => A has an %a(X)-measurable selection.

Proof. To see (ii), use Theorem 2.1 to get B E %a(X) ® %Y such that F E A and

Ax — Bx is meager for each x. As each Bx is then nonmeager, the result follows from

the following abstract version of a theorem that is normally stated for absolute Borel

sets.

2.3 Lemma. Let (T, 91L) be a measurable space and Y Polish. Suppose B E 9H ® ®y

has nonmeager sections. Then B has an GMrmeasurable selection.

Proof. Let m: F-»[0,1] be the characteristic function of a generator for a

countably generated sub-a-field <31t0 of M such that F E 91t0 ® <$>Y. Let M = m(T)

and B' be Borel in [0,1] X Y such that for t E T, (t, y) E B iff (mit), y) E B'. Let

F = {x E [0,1]: (B')x is nonmeager). Then M E L, and L is Borel in [0,1]. It

follows from a well-known theorem (see H. Sarbadhikari [9]), that the Borel set

B' n (L X Y) has a Borel selection g defined on F. Then/= g ° m is the desired

selection for B.

2.4 Remark. We will also need the following observation that can be shown by a

similar argument: Let B E 91L ® %Y. Then {/ E T: D' is nonmeager (comeager)} is

a set in 911.

Our next objective is to obtain the selection theorem of Burgess, referred to in the

introduction. The argument is simple enough but makes use of a "parametrization"

result that follows easily from Theorem 3.1 of [12]. A direct proof of 2.5 can be given

but we will not go into it here.

2.5 Lemma. Let (F, 9!t) be a measurable space and X Polish. Suppose F: T -> X is a

closed-valued, ^measurable multifunction. Then there is an 911 ® % ̂ -measurable

map f: T X «w -> X such that fit, ■) is continuous, open and onto Fit) for each t E T.

Next is the theorem of Burgess [4].

2.6 Corollary. Let X and Y be Polish, and F: X -» Y a multifunction such that

Fit) is nonmeager in cl(F(i)) for each t E X iin particular, we may take F to be

Gs-valued). If F is %iX)-measurable and Gr(F) £§(ZX Y), then F has an %iX)-

measurable selection.

Proof. The argument is via a useful technique due to R. Barua (see [1]). Define G:

X -» Y by Gix) = cl(F(x)). Then G is a closed valued, S( A')-measurable multifunc-

tion. By the lemma, there is a map g: X X to" -» Y such that g is S(Z) ® ®u„-

measurable and gix, •) is continuous, open and onto Gix) for each x. Define

G' Q X X ww by

G'= {(x,o):g(x,o)EF(x)}.
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As Gr(F) E S(IX Y) and g is S(X) ® <Su„-measurable, G' E S(Z X <o"). Also,

as the inverse image of a nonmeager set under a continuous open map is nonmeager,

G' has nonmeager sections. By Corollary 2.2, G' has an S(A')-measurable selection

g'. Then/(x) = gix, g\x)) is the required selection for F.

The next result was established by R. L. Vaught [13] by a much more direct

argument using only classical methods. However, it is worth pointing out that our

approximation theorem essentially contains this fact.

2.7 Corollary. Let X and Y be Polish and A EXX Y. Then:

(i)A E %iXX Y) => {x E X: Ax is nonmeager icomeager)} E %aiX).

(ii) A E o>aiX X Y) => {x E X: Ax is nonmeager icomeager)} E %aiX).

Proof. In either case get B E A in the product a-field as in Theorem 2.1. Clearly

it is enough to perform the above computations for F. But these are valid in view of

Remark 2.4.

2.8 Remark. We conclude this discussion by observing that our methods yield the

following: Suppose A ESJIX Y), with X, Y Polish, and Ax is comeager for each

x. Then there is {Bn: n^ 1} E%aiX)® ®y such that Bx is open and dense for each

x and n, and C\n>lB„ Ç A.

To see this get F E A as in the theorem. An argument as in Lemma 2.3 shows that

there is {Bn: n> 1} with the above properties such that C\n^xBn E B, because of the

validity of this result for Borel sets (see H. Sarbadhikari [9]).

3. The measure case. We will now establish the measure theoretic counterparts of

Theorem 2.1 and its corollaries.

Let X and Y be Polish. Recall that /x:ArX©y->Risa transition function if

(i) /i(x, •) is a probability measure on %Y for each x E X,

(ii) jit(-, F) is ©^-measurable for each Borel F in Y.

An equivalent formulation is the following: Let 911(7) be the Polish space of all

probability measures on "Sy equipped with the weak topology. Let ¡x: XX%Y-+YL

satisfy (i) above, and define y: X -* 911(7) by y(x) = ¡xix, ■). Then, ¡x is a transition

function iff yisi%x, ©g^y^-measurable.

We now fix some notation. Unless otherwise specified A will be a fixed analytic

set in X X Y and ft: A" X <$y -> R a transition function. Also, as before we fix a

continuous map /on D onto A, where D = r\m>l Dn>xDim, n), Dim, n) compact

in R for each m, n > 1, and such that, moreover, Dim, n) 1 with n for each fixed m.

The following is implicit in Kechris [5], and can actually be argued out quite easily

using Sion's capacitability argument adapted to measure. The result is also implicit

in Shreve (see [2]), where the methods are entirely classical.

3.1 Lemma. For any real r, {x: ¡xix, Ax) > r] is analytic.

Next is a preliminary version of Lemma 1.3.

3.2 Lemma. Let A, ¡x be as above. Suppose ¡xix, Ax) > a for each x E E, for some

fixed E E S,(jc), and fixed 0 < a < 1. Then there is a set C E A, C E S,( A") ® ©y,

such that Cx is compact and jti(x, Cx) > a for each x E E.
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Proof. We define sets T(s), s E Seq, to satisfy:

(a) Tie) = E.

(h)T(s)E%x(X).

(c) F(i) n Tit) = 0 if s J= t and lh(i) = lh(/)-

(d)F(i)= Um>xTism).

(e) F(i) ç {x: pix,ifiD n nf=1Z)(i, j,.)))*) > a}, where A: = lh(j).

Suppose F(i) has been defined to satisfy the above conditions for all s E Seq with

lh(s)<A:. Fix 5 E Sk. Put

T'{m) = \xE T(s):ii\x,\Dn  C\ D(i,s¡) n D{k + l,m)\      >ai.

By Lemma 3.1, each T'im) E §,(X), and as is easily checked using the continuity of

¡xix, ■), Um>1F'(w) = F(i). Disjointify these sets to get T'im), and put Tism) =

T'im), m>l. These sets satisfy the required conditions. Finally, take C =

n?=, UjeS/„ where

Ps=iT{s)X 7)ncl   /  oil  P\D(i,Si)     ,       sESk.

Plainly, C E S^X) ® %Y. Fix r££. Then there is a unique a E u" such that

x E T(a(k)) for every k > 1. Then

c*= Pi cl  / £>n fli)(i,«(i))
A:=l       \      \ ¡ = 1

=    /   O D(/c, a(/c)) (by an easy compactness argument).

So C* is compact, Cx E Ax, and

Li(x,Cx) = lirnJx,lf{Dn  (~) D(i,cx(i))\\   \ ^ a.

The analogue of Lemma 1.3 now follows by a simple argument. We state it in a

more general form now in line with Remark 2.8. We omit the proof.

3.3 Lemma. Let A and ll be as above. There is a sequence {Bn}n>x of sets in

S,( X) ® 9> Y such that Bx is compact for each x, B„ E A, for n > 1 and

Jx,Ax-( ljF„)   | =0

for each x.

Next is a version of Lemma 1.5. Once again we state this in a more general form,

in line with Remark 2.8, partly because such a statement suggests the proof.

3.4 Lemma. Let fx be as above and C E XX Y coanalytic. Then there is a sequence

{C„}n>1 such that Cn E %X(X) ® <Sy, C„E C, Cx is compact for each x E X, and

\x(x, Cx - (Un>xCn)x) = Ofor each x.
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Proof. Just as we used an effective result of Kechris to prove Lemma 1.5, here we

will use its measure analogue, also due to Kechris [5], namely:

Let /x be a probability measure on w" such that the relation

R(k, s) ~ Seq(k) and Seq(s) and lh(>) = 2 and fx(N(k)) > (s)0/ (s)x

is A1,. Let £ > 0. Then every ilj subset F of w" contains a A1,, compact set Qe such

that ¡x(P — Qc) < e. The relativized version also holds.

As in Lemma 3.3, it is enough to prove a version of Lemma 3.2. The argument is

now very similar to the argument in Lemma 1.5 (the only change is to choose finitely

splitting trees instead of trees with nowhere dense bodies). We omit the details.

The following is now obvious.

3.5 Lemma. Let X, Y, ¡x and A be as above. Then there are B and Cinc>x(X)®(S>Y

such that B E A EC, and fx(x, Cx - Bx) = 0 for each x E X.

3.6 Remark. Before proceeding any further we will have to overcome a technical

difficulty that does not arise in the category case. Let E E X. Suppose fx is a

transition function defined only on £ X Sr One can then look at the equivalent

©¿.-measurable y on F -* 911(7). By a well-known theorem on the extension of

Borel measurable functions [6], y has a ©^measurable extension y': X -» 911(7),

which yields an equivalent ¡x': X X ©y -» R.

We now put down the fact (analogous to Lemma 2.3) that the theorem of

Blackwell and Ryll-Nardzewski [3] holds in an abstract setting.

3.7 Lemma. Let (T, 9IL) be a measurable space and Y Polish. Suppose u: T X ©y -»

R is such that for each t E T, u(r, •) is a probability measure on %Y and for each

B E ©y, fx(-, B) is ^measurable. Let B E 91L ® ©Y and suppose fx(t, B') > 0 for

each t. Then B has an 9H-measurable selection.

Proof. One need only imitate the argument in 2.3. There is however one subtle

difference. As in 2.3, it suffices to prove: Let X and 7 be Polish, E E X, and D Borel

in F X 7 Let A be a transition function on F X ©y. Then if X(x, Dx) > 0 for each

x E E,D has a ©£-measurable selection defined on F.

To see this observe that in view of Remark 3.6, A is the restriction to F of a

transition function defined on I X Sy. Now proceed as in Lemma 2.3.

Virtually all the steps in the proof of Theorem 2.1 go through to yield its measure

analogue. Lemma 3.5 gives the base step, and a small additional argument using

Remark 3.6 is needed to carry out the inductive step just as in the proof above.

Indeed, the kind of arguments we have been using establish the following

3.8 (Measure) Approximation Theorem. Let X and Y be Polish and ¡x: X X ©r

->Rú transition function. Let A E%a(X X 7), a < tcx. Then there are B and C in

%a(X) ® ©y such that B E A Q C, and nix, Cx - Bx) = 0 for each x E X. Further-

more, one can write B = Un>xBn with Bn E c>aiX) ® 9>Ysuch that Bx is compact for

each x.

3.9 Corollary. Let X, 7, ll be as above. Suppose A Ec>aiXX 7), a < to, and

u(jc, Ax) > 0 for each x E X. Then A has an <èaiX)-measurable selection.
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One has only to argue as in Corollary 2.2. The measure version of the computation

in Corollary 2.7 also holds.

3.10 Corollary. Let X, Y, and Libe as above.

If A E Sa(X X Y), then {x: ¡xix, Ax) > r}E %a(X), for each r.

An immediate consequence of this is a result of Shreve [2] proved by a more direct

argument using only classical methods, in connection with Dynamic Programming.

The result reads as follows.

3.11 Corollary. Let f: [0,1] -> [0,1] be S„([0, Immeasurable. Then g: 91t([0,1]) ->

[0,1] defined by g(<x) = ffd^ is Sa(91t([0, Immeasurable.

Proof. It suffices to show that the function ju -» ¡u(C) is §„(91L([0, l]))-measurable

for each fixed C in S„([0,1]). Observe that if X is defined on 91t([0,1]) X ©(0,, by

Xiix, B) = /i(F), then X is a transition function. Let A = 9L([0,1]) X C. Then

A E Sa(9H([0,1]) X [0,1]). Also

{ix:tx(C)>r} = {fx:X(lx,A»)>r}.

By Corollary 3.10, the last set is in the desired a-field.
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