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THE COORDINATIZATION OF ARGUESIAN LATTICES

BY

ALAN DAY1 AND DOUGLAS PICKERING2

Abstract. We show that the auxiliary planar ternary ring of an «-frame in an

Arguesian lattice, n > 3, is indeed an associative ring with unit. The addition of two

weak necessary conditions allows us to coordinatize a hyperplane of this »-frame.

This generalizes the classical work of von Neumann, Baer-Inaba, Jónsson and

Jónsson-Monk.

1. Introduction. The classical coordinatization theorem for (Desarguean) projective

geometries was vastly extended by von Neumann in [17] where he showed that every

complemented modular lattice of order n> 4 was isomorphic to the lattice of

principal (left) ideals of a regular ring. An analogous coordinatization result was

proven by Baer [2] and Inaba [8] for primary modular lattices of order n > 4. They

showed that any such lattice was isomorphic to the lattice (!) of finitely generated

submodules of F" for some completely primary, uniserial ring F.

In [10], Jónsson introduced a lattice identity strictly stronger than the modular

identity which reflected the Desarguean axiom of projective geometry. He properly

called this identity the Arguesian law and in a series of (sometimes joint) papers,

Jónsson (et al.) proved many important consequences of it (see the bibliography). In

particular, Jónsson [11] extended von Neumann's result to complemented Arguesian

lattices of order n > 3, and Jónsson and Monk [15] extended the Baer-Inaba result

to primary Arguesian lattices of order n s* 3.

Since all submodule lattices are indeed Arguesian (Jónsson [10]), von Neumann

and Baer-Inaba's deep results tell us that certain modular lattices of order n > 4 are

Arguesian. However, one needs only Frink [4] (as presented in Crawley and

Dilworth [3, Theorem 13.1, p. 105]) and G. S. Monk [16] to obtain these results

without any heavy coordinatization machinery. It is reasonable then to start with an

Arguesian lattice of order n > 3 and develop the theory of coordinatization from

there.

2. Preliminaries. A lattice, (L; +, ■ ), is called Arguesian [10] if it satisfies the six

variable equation

(arg): (fl„ + b0)(ax + bx)(a2 + b2) < a0(ax + c) + b0(bx + c)
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where c = c2(c0 + c,) and c, = (ay. + ak)ibj + bk), {i, j, k} = {0,1,2}. (Strictly

speaking this is not an equation but modulo the theory of lattices, p < q if and only

if p = p ■ q if and only if p + q — q.) That this equation models Desargues's axiom

requires some more definitions. A triangle in Lis a triple a = (a0, a,, a2) E F3; two

triangles a, b in L are called centrally perspective if ( a0 + ¿>0 )( a, + bx) ^ a2 + b2 and

axially perspective if c2(a, b) < c0(a, b) + cxi&, b) where, as above, c,(a, b) = c, =

iüj + ak)ibj + bk), {i, j, k} = {0,1,2}. A lattice, (F; +, • ), is called Desarguean if

any centrally perspective pair of triangles in F is also axially perspective. The

following results are in Jónsson et al. [5,14 and 15].

(2.1) Theorem. (1) Arguesian iresp. Desarguean) lattices are modular.

(2) A lattice is Arguesian if and only if it is Desarguean.

(3) The dual of an Arguesian lattice is again Arguesian.

(4) For triangles a, b in L, an Arguesian lattice, a and b are axially perspective if and

only ifia0 + b0)iax + bx) < (a0 + a2)iax + a2) + (¿>0 + b2\bx + b2).

We will call two triangles a, b in a lattice L doubly centrally perspective (or just

doubly CP) if both of the pairs (a,b) and (a0, a2, ax), (¿>0, b2, bx) are CP. In an

Arguesian lattice, this will imply that c2 + c0 = c, + c0. They will be called triply

centrally perspective if they are CP for any permutation of the indices. In an

Arguesian lattice this will (of course) imply c2 + cx = c2 + c0 = cx + c0. Finally a

and b will be called normal if a2 = (a0 + a2)(ai + ai) ana D2 ~ (^o + ^2X^1 + b2).

From Theorem 2.1(4) we obtain that normal triangles are CP if and only if they are

AP ( = axially perspective).

In our coordinatization theory we use Huhn's notion of an «-diamond rather than

the (definitionally equivalent) notion of a (homogeneous) «-frame due to von

Neumann. In §4, we will discuss their equivalence and examine our results in the von

Neumann setting. We feel that the «-diamond approach more naturally generalizes

the classical geometric approach. Hopefully the reader will agree.

An n-diamond in a (modular) lattice, L, is a sequence d = idx,.. .,dn+x) in F"+1

satisfying

(«Dl) v = 2(dj-.j^i),   alii

and

(nD2) u = drI(dk:k^i,j),   alli^j.

If u — 0L and v — lL, d is called a spanning «-diamond.

A spanning «-diamond formalizes the idea of (« — 1) + 2 points in general

position in a projective geometry of (projective) dimension (« — 1). We have called

the concept an «-diamond (rather than an (« — l)-diamond as in Huhn [7]) in order

to make the natural number agree with the homogeneous dimension of coordinatiz-

able projective geometries (PGn„,(F) ~ £(F")) and with von Neumann's (same

natural number)-frame.

If (L; +, • ) is a modular lattice with a spanning «-diamond then we say L is of

order n and denote the particular spanning «-diamond very asymetrically as x =

(x,,...,*„_,, z, t). We define (and think of) hx = 2(x,:  1 < i < n — 1) as the
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hyperplane at infinity; A = {p E L: p + hx = 1 and p • hœ — 0} as the associated

affine space; w — hj^z + t) as the infinity point on the Une z + t; D — {a E A:

a< z + t} = {p E L: p + w — z + t and p ■ w = 0} as the affine points on the

diagonal z + t. Naturally all of the above definitions depend on the given «-

diamond, x.

The above definitions allow one to "coordinatize" the "affine plane" A in that

there is a natural bijection A -* D"~x given by: p ~* ((z + t)ix:+ /?)) where

x¡ = 2ixj-.j ¥= i). The inverse of the above map is the function a ~* Uixl + a¡). We

will abbreviate this last expression as (1; a). Thus A = {(l;a): a E D"~x}.

We illustrate with two examples.

(2.2) Example A. A projective plane can be considered as an affine plane with a

line at infinity.

Here (x, y, z, t) is the spanning 3-diamond with hœ = x+y = x + w=y + w,

the Une at infinity.

(2.3) Example B. The (Arguesian) lattice £(ÄF").

Let {e0, ex,... ,e„_x} be the standard basis for the (free) left F-module, RR". We

define xx = Rex,...,xn_x = Re„_x, z = Re0 and t = F(e0 + 2(e,: 1 </<« - 1)).

Then

(i)«oo = <e,,...,e„_,>, the submodule generated by {e,,...,e„_,},

(ii)A = {R(e0 + la¡e¡): a E R"~x},

(iii)w = Rilei),

(iv) D = {F(e0 + aile,)): a E F}.

If (x, y, z, t) is a spanning 3-diamond in a modular lattice, L, then the projective

isomorphism [0, z + t] = [0, y + z] maps D onto D0 = {p E A: p + y = y + z and

py = 0} by b = b0 = iy + z)(x + b). These are the 7-intercept points with coordi-

nates (1; (0, b)). We define v = t0.
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x z

Similarly the two-step projective isomorphism [0, z + t] = [0, y + t] = [0, x + y]

X z _

mapping b = bx = bx defines the set of slope points at infinity Dx = {q E L:

q + y = x + y and qy = 0} via the set Dx = {r E A: r + y = y + t and ry = 0}.

These "points" allow us to define the ternary operator, addition and multiplication on

Dby

Tia, m, b) = iz + t)(x + (y + a)(mx + b0)),

a@b= T(a, t, b) = (z + t)(x + (y + a)(w + b0)),

a®b = T(a, b, z) = (z + t)(x + (y + a)(z + bx)).

Since F is modular, these are indeed operations on D. In Example A they are the

classical operations and in Example B, with « = 3 and ä = R(e0 + a(ex + e2)),

T(a, m,b) = a X m + b.

Finally if x = (*,,... ,xn_,, z, /) is a spanning «-diamond in a modular lattice L

with « > 4, then we may form (« — 1) 3-diamonds (x¡, y¡, z, t) spanning [0, z + t +

x¡] where y¡ = x,(z + t + x¡). All of these 3-diamonds have the same diagonal, D,

and diagonal point at infinity, w. These produce (« — 1) ternary operators T¡:

D3 ^ D. Now let F = {ip,q): w = (p + q)(z + t) and p(z + t) = qiz + t) = 0}.

Each ip,q) E P defines a ternary operator3 on D by

T(P,q)(a>m'b)

= (z + t)(p +(q + a)[(p + q)(z + (q + t)(p + m)) + (q + z)(p + b)]).

Since F is modular, if (/?, q) - (r, s) (i.e. are comparable in (F, <), T(p q) = T(r s).

Now ix¡, y¡), (x,, x,), (yit x,), x„ x,) and (x,, xy) for i ¥=j are all in P. Since

« — 1 > 3, the ternary operators produced by all of the above pairs are identical.

This also supplies a unique definition of multiplication and addition.

In the following we will define other functions using a 3-diamond (x, y, z, t) and

D. The above discussion will apply to these functions as well if a larger «-diamond is

present.

(2.4) Lemma. Let L be a modular lattice of order n, then (£); ©, z) is a loop with left

and right difference operations defined by

cArb = (z + t)(y + (x + c)(w + b0)),

a,Lc = (z + t)(x + (y + z)(w + (y + a)(x + c)))

ii.e. c = a®biffa = cArb iff b = a,Ac).

In general, multiplication is not so well behaved. We define Inv(F) — {a E D:

z + a = z + t and z • a = 0} and two divisibility functions from D1 into [0, z + t]

by

c/b = (z + t)(y + (x + c)(z + bx)),

a\c = (z + t)(x + (y + t)(z + (y + a)(x + c))).

3 See Appendix 1.
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(2.5) Lemma. Let Lbe a modular lattice of order n; then:

(1) t is the unit and z is the zero of ®.

(2) If a E lnv(D), a\b andb/a E D.

(3)4 a E lnv(D) iff there exists b,c ED with b®a = t = a®c.

(4) For a E D, the functor a ® — : [0, z + t] -> [0, z + t] has as left adjoint a\ - .

That is, for allp, q E [0, z + t], a\p < q iff p <a® q.

(5) For b ED, the functor - ®b: [0, z + t] -* [0, z + t] has a right adjoint —/b.

That is, for allp, q E [0, z + t], p ® b < q iff p < q/b.

We close by noting that in Example B, a\c = R(ae0 + c(2e¡)) and c/b — {xe0 +

y2et: xc — yb}.

3. The auxiliary ring (D;®,z,®,t). In this section we will assume L is an

Arguesian lattice of order 3 with a fixed spanning 3-diamond (x, y, z, t), and show

that the associated "diagonal" F is a ring under the operations defined in §2. By

using Example A and a standard text on projective geometry, the reader will notice

that some of the initial lemmata are well known. This is not always true as geometric

proofs can assume that the meet of distinct points is 0. In some cases, we have found

only slightly more circuitous proofs. Our proof that © is commutative, however,

requires essential use of the multiplicative unit, t. This is definitely not required in

Example A and, it seems to us, should be a flaw. We (obviously) know no other

approach.

(3.1) Lemma. The ternary operator T: D3 -» D is linear ii.e. Tia, b, c) - (a ® b) ©

c).

Proof. The triangles (y, c0,(y + a)(bx + c0)> and (a ® b,w, x) are normal

and their CP statement is equivalent (via modularity) to our claim. They are,

however, axially perspective since

[y + (y + a)(bn + c0)][a ® b + x] +[c0(y + a)(bx + c0)][w + x]

= (z + bx)(y + z + a)

and

[y + c0][a ® b + w] = z.    D

(3.2) Lemma. ® is left distributive over ©.

Proof. In light of (3.1), we need only show a ® Tit, b, c) = F(a, b, a ® c). This

is equivalent to showing iy + a\z + iy + /)(*«, + c0)) < bœ + (a ® c)0. Since the

above is the CP statement for the normal triangles (iy + a)(x + a ® c), z, (a ® c)0)

and (y, i y + t)ibx + c0), bx), we need only check their axial perspectivity. For

q2=[(y + a)(x + a®c)+ z][y + (y + t)(bx + c0)] = cx(y + z + a),

qx=[(y + a)(x + a®c) + (a® c)0][y + bj = x(y + z + a),

q0=[z+(a® c)0][(y + t)(bx + c0) + bj = c0(x + z + cx(y + z + a)),

we obtain q0 + qx = (x + c0)(y + z + a)(x + z + q2)> q2.    D

"See Appendix 2.
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(3.3) Lemma. ® is right distributive over ©.

Proof. Again in light of (3.1), it is enough to show (a © b) ® c — Tia, c,b® c).

Moreover, Tia, c, b ® c) < (a © b) ® c iff x + (y + a)(cx + (¿> ® c)0) < x +

iy + a © b)iz + cx) iff (y + a © b\x + iy + a)icx + ib ® c)0)) < z + cx. This

last inequality is precisely the CP statement for the normal triangles (x, a® b, z)

and ((y + a)icx + ib ® c)0), y,cx). The equivalent AP statement for these trian-

gles is

iy + a)(w + b0) <w(x + z + (y + a)(w + b0)) + (x + z)(cx + (b ® c)0)

iff ( y + a)(w + b0)^w + (x + z)(cx + (b ® c)0)

iff b0<w+(x + z)(cx+(b®c)0).

This inequality is easily implied by the AP statement for the triangles (x, b, z) and

((b ® c)0, y, cx) and these triangles are indeed centrally perspective. Therefore

multiplication is right distributive over addition.

(3.4) Lemma. For any x, y *£ « with x + w—y + w = x+y = h and x-w — y-w

= x-y = 0,

a®b = (z + t)(x + (y + a)(z + (y + t)(x + b))).

Proof. The given properties for x and y are sufficient to define a "multiplication"

® : D2 -» D for which a ® b < z + b. This multiplication is independent of the y

since the triangles (a, yx, y2) and (z,(yx + t)(x + b),(y2 + t)(x + b)) are (dou-

bly) centrally perspective at r(z + a). This multiplication is also independent of the

x by considering the (doubly) normal triangles

(b,xx,x2)

and

(z,(y + a)(z + (y + t)(xx + b)),(y + a)(z + (y + t)(x2 + b))).

Now for a given x, y, e = iy + t)iw + v) and ë = iy + t\w + v), the normal

triangles (z,(y + a)(z + ë),(y + a)(z + (y + t)(x + b))) and (b, h(ë + b), x)

are axially perspective and we have a ® b — (z + w)[(e + z)(y + a) + (ë + b)h\.

Now the doubly CP triangles (a, y, y) and (z, e, ë) give us w + (y + a)(z + e) =

w + (y + a)(z + ë) and the normal triangles (z, b, ë) and ((z + e)(y + a),

h(e + b),w) produce

a ® b = (z + w)[(e + z)(y + a) + h(e + b)]

= (z + w)[(ë + z)(y + a) + h(ë + b)] = a® b.

This last part of the proof is, by letting y = x (hence ë = v),

(3.5) Corollary. a®b = (z + w)[(y + z)(x + a) + h(v + b)].

(3.6) Theorem. Multiplication is associative.

Proof. Using x = h(v + c) and y = h(v + c © r), we obtain

a® (b®c) = (a® b) ® c

iffx+ (y + a)(z + (y + t)(x + b®c)) = x + (a ® b)0

iff (y + a)(z +(y + t)(x + b ® c)) < x + (a ® b)0.
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This is the CP statement of the normal triangles

(a, z,ia ® b)0)    and    (y, iy + t)(x + b ® c), x).

Therefore ® is associative iff q2 < q0 + qx where

q2- (a + z)(y + t) = t(z + a),    qx = h(a + (a ® b)0)

and

q0 = (z + (a ® b)0)(x + b®c) = (z + (a® b)0)(y + z)(x + b0)

= (z + (a ® b)0)(x + b + y(v + c)),

by choice of x. This inequality follows from the central perspectivity of the triangles

(z, a,(a ® b)0) and (bx, y, x).

We are now left with the associativity and commutativity of addition. It is well

known that, modulo the multiplicative unit and the distributive laws, associativity

implies commutativity (compute it ® t) ® ia ® b) and use cancellation). In our case

the converse also holds modulo the lattice structure.

(3.7) Lemma. a®b = iz + t)[iv + w)iy + a) + (u + b)h\

Proof. Consider the triangles (b, w, v) and (x,iy + a)iw + b0), y).

(3.8) Lemma. Let L be an Arguesian lattice; t.f.a.e:

(1) For any spanning 3-diamond (x, y, z, t) and a, b E D(xyzt), a® b = b © a.

(2) For any spanning 3-diamond (x, y, z, t) and a, b, c E D(xyzt), a © (¿> © c) =

ia © b) © c.

Proof. As previously mentioned (2) implies (1), and to show the converse it is

sufficient to proof (Z> © c) © a = (¿> © a)© c on the diagonal of any spanning

3-diamond. By (3.1), (6 © c) © a - Tit, Tit, b, c), a) and we obtain ib © c) © a =

ib® a) © c if and only if

( y + t)[(y + z)(bx +c)+ h(z + ä)] =(y + t)[(y + z)(bx + ä) + h(z + c)]

where ä = i y + í)(a0 + bx) and c = i y + t)ic0 + bx). This is a commutativity

statement c ® 5 = ä ® c for the spanning 3-diamond (x, y, z, t) = («, z, bx,

iy + t)iv + bx)) and the © as in (3.7).

We are now left the proof of commutativity, a proof whose length would ideally

be shorter. The first lemma provides the result in Desarguean projective planes by

replacing t by an arbitrary b in D and observing that in a projective plane for

a, b E D, a^z + b or b<z +a.

(3.9) Lemma, a © / = t © a.

Proof. The triangles (z, t,(y + t)iw + v)) and (a0, x,w) yield the inequality

(y + a)(w + a0) *£ (w + a0Xz + ( J + 0(w + v))- This, in turn, yields the desired

result from the triangles

(y,(y + a)(w + a0),w)    and    (v, (y + t)(w + v), t).

Since (y, x, z, t) is a spanning 3-diamond with the same coordinatizing diagonal

D, we may define a new addition E : D2 -> D by

a m b = iz + t)(y + (x + a)(w + (x + z)(y + a))).
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By defining a2 — (x + z)iy + a) and u = (x + z)iy + t) — t2 we have by symme-

try and (3.9) that a E t = t E a.

(3.10) Lemma. For a, b E D,

il) hia0 + a2) < v + u,

(2) h(b0 + b2) = h[iy + a)iw + b0) + (x + a)iw + b2)],

(3) t © a = t B a.

Proof. (1) follows using the triangles (a, x, y) and (z,v,u); (2), the triply CP

triangles (a, x, y) and (w, b2, b0). To show (3) we have / © a — t E a iff

[x+(y + t)(w + a0)][.y + (x + t)(w + a2)] <z + t.

The triangles (x, y, z) and (iy + t)iw + a0),(x + ¿Xw + a2), t) are normal and,

by (1) and (2), centrally perspective.

(3.11) Lemma. For a, b E D, a © b = a EH b.

Proof. As in the proof of 3.10 (3), we have a ® b = a B ¿> iff

[x+ (y + a)(w + b0)][y + (x + a)(w + b2)] < z + t = (a ® t) + a.

We therefore need to show that the normal triangles

(x, y,a® t)

and

((y + a)(w + b0),(x + a)(w + b2), a)

are axially perspective. This, however, follows from 3.9, 3.10 and the fact that

(v, u, w) and (yiz + x + b), xiy + z + b), a) are centrally perspective.

(3.12) Lemma. For a, b E D, the following expressions are equal.

(1) h[b © t + (x + b)iw + a2)}.

(2) h[t + a2].

(3) «[(x + t)iy + a) + iy + t)iw + v)].

i4)h[a + iy + t)iw + a0)].

(5) «[(x + b)iy + a) + iy + r)(w + M-

Proof. Since all expressions are complements of x in the interval [0, «] we need

only show comparability. For (1) and (2), use 3.10 to get the central perspectivity of

(y,x,u) and (b ® i,(x + b\w + a2), w). For (2) and (3) use (x,w,v) and

(a2, t, y). For (3) and (4) use (x, w, v) and (a,iy + t\w + a0), y) and finally

use (x, w, bQ) and (a,i y + t)iw + a0), y) for (4) and (5).

We are finally at the end.

(3.13) Theorem. Let L be an Arguesian lattice with spanning 3-diamond (x, y, z, t).

Then (F; ffi, z, ®, t) is a(«) iassociative) ring with unit.

Proof. All that is left is commutativity of ©.

a®b = b®aiff[x+ (y + a)(w + b0)][y + (x + b)(w + a2)] <w+ (b®t).
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Since (x,(x + b\w + a2), b ® t) and (iy + a)(w + b0), y, w) are both normal,

this is equivalent to

(x + b)(y + a) < (x + t © b)(w + b0) + h((x + b)(w + a2) + b © t)

iff (x + b)(y + a) < (y + t)(w + bQ) + h((x + b)(w + a2) + b © t)

iffh[(x + b)(y + a) +(y + t)(w + b0)] < h[b ® t +(x + b)(w + a2)]

and this follows by (3.12).

We close this section with the analogue of (3.3) for ©.

(3.14) Lemma. For any x, y < h with x+y = x + H'=y-r-w = « and x ■ w =

y ■ w = x-y = 0,

a®b = (z + w)[x + (y-r a)[w+ {y + z)(x + b)]].

Proof. Using the projectivity [0, z + /] = [0, «] we may assume that x = «(ü + c)
A

for some c E D. Since (F, ©, z) is an Abelian group, we may write a ® b = c ® (a

© b 9 c) and using (3.7) obtain a ® b = (z + t)[x + (w + v)iy + a®b® c)].

Using the normal triangles

(y,(y + z)(x + b),x)    and    (a, w,(w + v)(y + a © b 0 c))

we obtain a®b = a®b if and only if

z<(w + v)(x + b) + h[a + (w + v)(y + a ® b © c)].

Now for any d E D, d = c © (d © c) and (3.7) give us

(w + v)(x + d) = iw + v)iy + d®c).

Using Ar in (2.4) and the triangles (e\(w + u)(j> + e Qf), w) and (x, y, f0), we

obtain h[e + (w + v)(y + e ©/)] = «(/+ v) for any e, f ED. This produces

h[a + (w + v)(y + a Q (c Q b))] = h[c ® b + v]

= h[z + (w + v)(y + b ® c)] = h[z + (w + v)(x + b)].

Therefore a ® b = a © b.

4. von Neumann coordinatization. Although we have worked and will continue to

work with the «-diamond concept, it might be of interest to put our results in the

framework of von Neumann's classical work. A spanning «-frame in a (modular)

lattice F is an independent sequence (a,, a2,...,a„) with 2¡"a, = 1 and for all /',

a^lj^iOj — 0. An «-frame is called homogeneous if there exists ctj = cjt for / ¥*j

such that a¡ + ci} = a¡ + ai and a¡c¡j = a¡üj (= 0) for all /' ¥=j, and cik =

(a; + a^iCij + Cjk). If (a,., Cjj-, i ¥=j = 1,...,«) is a homogeneous spanning «-frame

then L¡j = {p: p + uj = a¡ + aj and paj = 0}. An L-number is a sequence a E I1F,7

such that, for all /', j, k, aik = (a, + ajt)(i',7 + ajk) ~ (a¡ + ak)(cjk + a</)- Multipli-

cation of F-numbers is defined by (a 13 ß)ik = (a¡ + ak)ia¡j + ßjk) and addition

on each L¡¡ is given by

at] E ßtJ = (a¡ + aj)((cik + aj)(ak + aiy) + (cik + ß(J)(ak + ay)).

Let L be an Arguesian lattice with spanning 3-diamond (x, y, z, t). By defining

a, = z, a2 = w, a3 = y, cX2 — t, c23 = x and cX3 — v = (y + z)(x + t), we obtain a
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von Neumann homogeneous 3-frame for which LX2 = D. Moreover by (3.7), the von

Neumann addition on F12 agrees with ours. By (3.5), we have that our multiplication

on D is given by the von Neumann formula on LX2.

(4.1) Lemma. An L-number, a, is uniquely determined by any a, .

Proof. We need only show that the two functions

/: [0, z + t] = [0, y + z] = [0, x + y] = [0, z + t],

g: [0, z + t] = [0, x + y] = [0, y + z] = [0, z + t]

agree on D.

Since the triangles (h(t + a0), v, t) and (w, z, u) are doubly CP at>>(z + t + a0)

(recall u = (y + t)(x + z)), we get fia) = (z + t)ix + (w + u)(t + a0)). Similarly

the doubly CP triangles (a,v, x) and (w, y, u) produce

g(a) = (z + w)(x + (y + z)(t + (w + u)(x + a))).

Next,  the doubly CP triangles  (iy + z)(w + w), t, u)  and  (a0,w, x)  produce

y + [y + (y + z)(w + u)]lw + aol = y + (w + "X* + a)- This last statement

makes the triangles (t, a0,(w + u)(x + a)) and (iy + z)(vf + u), w, y) doubly CP.

The fact that a E D implies a(x + y) = 0, produces

x + (w + «)(/ + a0) = x + (j + z)(i + (w + «)(x + a))

and hence/(a) = g(a) for all a E [0, z + r] with aw = 0.

We should note that von Neumann showed / = g if L is modular and of order

n > 4. The above is enough for F-numbers in our case but we feel that the full result

should hold.

(4.2) Lemma. The addition of L-numbers is an L-number.

Proof. In our notation we need only show, for a, b E D,

(1) a © b = (z + t)[x + iy + z)[iy + t)(w + a0) + hit + b0)]] and

(2) a © b = iz + t)[v + h[b + (w + v)(z + h(v + a))]].

For (1), use commutativity of addition and the normal triangles (b, w, x), (y,

(y + t)(w + a0J,(y + z)[(y + t)(w + a0) + h(t + b0)])._

For (2), let x = h[b + (w + v)(z + h(v + a))]. Since x + w = h and x • w = 0,

we can find ay < « so that the conditions of (3.14) prevail. This gives us (2) if and

only if i y + a)iw + i y + z)(x + b)) *£ v + x. This last statement follows by con-

sidering the normal triangles (y,iy + z)(x + b), x) and (a, w, v), and the defini-

tion of x.

(4.3) Lemma. The pointwise multiplication of L-numbers is an L-number agreeing

with the von Neumann multiplication.

Proof. In our notation, the proof reduces to showing, for a, b E D,

(1) a ® b = (z + t)[x + (y + z)(a + h(t + b0))] and

(2) a ® b = (z + t)[v + h[b + (y + z)(x + g(a))]].
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Now (1) follows from considering the normal triangles (y,bx,x) and (a, z,

iy + z)ia + hit + b0))). For (2) let x = h[b + iy + z)(x + g(a))] and note that

x + w = h and x • w — 0. By choosing y < « so that the conditions of (3.4) hold, we

have that (2) holds if and only if iy + a)(z + iy + t)ix + b)) = iy + a)(x + v) if

and only if iy + a)ix + v) < iy + t)ix + b) + z. This last statement follows by

considering the normal triangles (y, x,iy + t)ix + b)), (a, v, z) and the definition

of x.

5. The coordinatization of the hyperplane. In this section we let F be an Arguesian

lattice of order « + 1, « > 2, with a given spanning (« + l)-diamond

(x,,...,x„, z, t). We will establish a coordinatization function F: [0, h] -* £(flF»")

which, under reasonable extra conditions, will be a lattice isomorphism onto the

sublattice of £(0F") generated by all finitely generated submodules of D.

By examining Example B, we see that the following definition should work for all

P E [0, «].

aEF(/?)    if and only if   h(z + (l;a)) </?.

We must show, therefore, several properties of F.

(5.1) Lemma. For every a,b,c E D", «((1; a) + (1; b)) = «((1; a © c) + (1; b © c))

= «(z + (l;a©b)).

Proof. By symmetry it is enough to show that

«[(l;a) + (l;b)] = h[(xx + ax © ¿>,)^(l) + (x, + z)F(l)]

where ,4(1) = W2'n(xi + a¡) = x, + (1; a) and F(l) is similarly defined. Now using

the several possible expressions for © and © in F we obtain

ax ®{b2Qbx) = {ax © bx) ® b2

= (z + t)[xx + (x, + ax)(w + (xx + bx)ix2 + b2))]

= (z + t)[xx + (x, + (ax © bx))(w + (x, + z)(x2 + b2))].

The above implies that the triangles ((1; a), (1; b), x,) and (x,, w + x,x2,

(x, + (a, — bx))iw + (x, + z)(x2 + b2))) are (doubly) centrally perspective. Since

L is Arguesian we have

*[(1; ») +(1; b)] <(*,+a, 0 *,)(*,+ (1;«))

+ (w+ (x, + z)(x2 + b2))(xx + (l;b))

= (x, + a, © bx)A(l) +(w +(x, + z)(x2 + b2))(x2 + b2)B(l)

= (x, + ax © bx)A(l) +(x, + z)F(l).

(5.2) Corollary. For any p E [0, h], F(p) is a subgroup of D".

Proof. If a,bEF(/>) then h[z + (I; a © b)] = «[(l;a) + (l;b)] < h[z + (l;a)]

+ h[z + (l;b)]<p.

The proof that F(/>) is closed under scalar multiplication is more intricate. We

first observe that a = k ® b iff k < a/b which implies w + a/b = z + t. Moreover

for a,b E D", a = kb iff k < W^iajb^ which implies w + II,''"(a,A) = z + t.
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(5.3) Theorem. h[z + (1; a)] < h[z + (1; b)] if and only ifw + II(a,-A) = z + t.

(5.4) Corollary. For any p E [0, h], Fip) is a submodule of DD".

Proof of theorem. We have

«[z + (l;a)] <«[z + (l;b)]     iff (l,a) < z + (l;b)

iff(l,a)<¿(l)(z + (l;b))

iff ax ^ (z + t)[xx + A(l)(z +(l;b))]

and

w + n(a,A) = z + t    iff z « h(z + t) + n(a,A)

iff 1 = h + (x, + (x, + ax)(z + (x, + t)(xx + bx)))R(l)

iff 1 = « + (x, + ax)(z +(x, + t)(xx + bx))(xx + R(l))

iff x, + ax< (xx + R(l))(z +(xx + t)(xx + bx))

iff a, < (z + t)[xx +(xx + F(l))(z +(x! + /)(*, + bx))]

whereF(l) = n,2'"(a,A,).

Our theorem is proven once we show

(5.5) Theorem. For anyia2,...,a„),ib2,..., b„) E D"~x ande ED,

(z + t)[xx + A(l)(z + (xx + c)B(l))]

= (z + t)[xx + (x, + F(l))(z + (xx + t)(xx + c))]

where A(l) = n,2'"(x, + a,\ F(l) = n,2'"(x, + bt) and F(l) = II2'n(a,A,).

Proof. We first observe that, using the a¡/b¡,

R(l) = (z + t)[xx + A(l)(z + (xx + t)B(l))]5

and that both sides of our desired equation X = p are complements of « in the

interval [«(c + zF(l)), h + ^l(l)(z + 5(1))]. Therefore we need only show X < p.

Since the triangles

(w,A(l)[z + (xx+c)B(l)],xx)

and

(z, x,, (x, + F(l))(z + (x, + t)(xx + c)))

are normal, we have X < p if and only if p2 < p0 + px where

Pi = (*i + z)[w + A(l)[z + (x, + c)5(l)]],

px = (w + x,)(z + x, + F(l))(z + (x, + t)ixx + c))

= h(z + t + x,)(z + (x, + t)(xx + c))(z + x, + F(l)),

Po=[xx+A(l)[z + (x, + c)5(l)]][x, + F(l)][z + x, + (x, + *)(*, + c)]

= A(l)[xx + z + (x, + c)5(l)][x, + ^l(l)[z +(xx + /)5(1)]]

= ^(l)[z+(x,+05(l)].

5 See Appendix 3.
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Therefore X < p iff p2 < p0 + p, iff

(x1+z)[w + ^l(l)[z + (x1+c)5(l)]]

<h[z+ (xx + t)(xx +c)] +A(l)[z+ (x, + i)5(l)].

Now consider the normal triangles ((x, + z)(x2 + t), w, hiz + (x, + t)ixx + c)))

and (z, Ail)[z + (x, + c)5(l)], Ail)[z + (x, + 05(1)]>. Since F is Arguesian we

obtain X *£ p iff q2 < fl0 + a, where

fl2 = [z + ¿(l)][z + (x, + c)5(l)][w + (x, + z)(x2 + i)],

qx=[z + A(l)][z + (x, + r)5(l)][(x, + z)(x2 + t) + h(z + (x, + t)(xx + c))},

qQ = h(z + t+ (x, + t)ixx + c)){A(l)[z + (x, + c)5(l)]

+A(l)[z+(xx+t)B(l)]}

= x,[z + (x, + c)5(l) + A(l)[z + (x, + /)5(l)]](x, + í + c).

Since ö0 < x, < z + ^l(l) and qx, q2 < (x, + c)5(l) + [z + A(l)][z + (x, + r)5(l)]

we get q2 < q0 + qx iff

q2 < x,(x, + í + c)

+ [z + (xx + i)5(l)][(x, + z)(x2 + t) + h(z + (x, + t)(xx + c))].

Finally consider the triangles

<z,(x, + c)5(l),(x, + i)5(l))

and

((x, +z)(x2 + t),w,h(z + (x, + i)(*i +c))>.

By defining, for i = 2,...,«,

c, = ft, G c = (* + /){x, + (x, + z)[w + (x, + c)(x,. + è,)]}

and noting that (x, + z)[w + (x, + c)5(l)] < C(l) and h[z + (x, + t)(xx + c)] =

n[(x, + i)5(l) + (x, + z)C(l)], by (5.1) we have that they are centrally perspective.

Since F is Arguesian, we have r2 < r0 + rx where q2 = [z + Ail)]r2,

rx =[z + (x, + 05(l)][(x, + z)(x2 + t) + h(z + (x, + r)(x, + c))],

r0 = h[z + t + {xx + t){xx +c)]{5(l)(x, + c) + 5(l)(x, + 0}

< xt(x, + t + c).

Therefore X — p and the theorem is proven.

(5.6) Corollary. F: [0, «] -* £iDD") is a(«) iarbitrary) meet-preserving function

with (a>< Fih[z + (1; a)]) for every a E D".

In order to strengthen this corollary and make F at least a lattice homomorphism

we seem to need the extra property of upper complementability for joins of elements

in our spanning (« + l)-diamond: if g = 2M for some M E {z, t, x,,...,x„} and

p + g — 1 then there exists s EL, s <p, s + g= 1 and s ■ g — 0. This property is

called FC(ft) in [18] and holds for all geometric elements of a primary lattice

[15,5.2]. It also holds in Example B.
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(5.7) Lemma. Let L satisfy iUC); then a < z + b if and only ifw + a/b — z + t if

and only if a = k ® b for some k E D.

Proof. Since w + a/b = w + aiz + b), the first equivalence is clear. If w + a/b

= z + t then « + a/b = 1 and there exists k E A with k < a/b < z + t. Therefore

k E D and a = k ® b.

(5.8) Lemma. Let L satisfy (Í/C); then for a,b E D", h[z + (1; a)] < h[z + (1; b)] if

and only if there exists ak ED with a = kb.

Proof. (5.7) and (5.3).

(5.9) Theorem. If L satisfies (Í/C), then F: [0, h] -» £(0F") is a lattice homomor-

phism with Fihiz + (1; a))) = (a) for every aEfl".

Proof. We need only show that F preserves joins. If a E Fip + q) then

«(z + (l;a))</7 + a. Lets = (z + /7X(l;a) + q).

h + s = h+p + q + s = h + iz + /> + a)((l;a) +p + q)

= h + (l;a)(z +p + q) = h+ {!;*) = I.

By (UC), there exists b E D" with (1 ; b) < s. Now

h(z + (l;b))<h(z + s)<p,

*(z+ (l;aeb)) = A((l;a) + (l;b))< A(0;«)+ *)<«■

Therefore a = b © (a © b) E Fip) + F(o).

(5.10) Corollary. // F satisfies {UC) and either [0, h] is simple, or any proper

congruence on [0, h] must identify two distinct elements of the form h[z + (l;a)],

a E D", then F: [0, h] — £(DF»") is a lattice isomorphism onto a sublattice oftiDD")

containing all finitely generated submodules of DD".

If F is primary, then so is [0, «] and any primary lattice is simple. Therefore F will

be an embedding into tiDD") and in fact an isomorphism. If F is complemented

then F is injective iff F~'(0) = {0}. This will occur if and only if F | [0, w] is injective

since Fip) = F(0) implies F(w(x, +/»)) = F(0) for every /' = 1,...,« and p > 0

forces at least one of w(x,. + p) > 0. Since F | [0, w] is injective if F is complemented

we again get F to be an embedding. Therefore our theorem covers the known results

as far as the hyperplane is concerned.

6. Concluding remarks. Following von Neumann's Case II and using extensions of

(5.1) and (5.5) one can easily complete the isomorphism L « £(DFn) when F is a

complemented Arguesian lattice of order « > 3. By repeating three sections of

Jónsson and Monk, one can produce the desired isomorphism in case F is a primary

Arguesian lattice of order n 3= 3. We omit these important proofs, however, since we

are unable to present any unified perspective on them. Each proof, at present,

requires a different structural analysis. Whether a common generalization does

indeed exist is, in our view, a challenging open problem.

Finally we would like to thank Professors Ralph Freese, H. Peter Gumm,

Christian Herrmann, Andres Huhn and especially Bjarni Jónsson for much direct

and indirect stimulation in the development of this work.
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Appendices. We include here, at the suggestion of the referee, some modular

calculations that were omitted from the main text. Hopefully these will aid the

reader's understanding of the material.

1. T(p,q)(a, m, b) E D,

w + T(pq)(a,m,b) = z + t    iff a< w + T(p q)(a,m,b)

iff a^(p + w)(q + a) + (p + q)[z+(q + t)(p + m)] + (q + z)(p + b)

iff a < q + (p + q)[z + (q + t)(p + m)] + (q + z)(p + b).

Now

q + (q + z)(p + b) = (q + z)(q + p + w + b) = q + z,

q + (q + t)(p + m) = (q + t)(q + p + w + m) = q + t.

These give

q + (p + q)[z + (q+ t)(p + m)] +(q + z)(p + b)

= q + z + (p + q)[z + (q + t)(p + m)]

= (p + q + z)(q + z + t)> a

as desired.

w ■ T(p,q)(a> m,b) = (p + q)- T(pq)(a, m, b)

= (z + t)[p + q[(p + q)(z + (q + t)(p + m)) + (q + z)(p + b)]]

= (z + t)[p + q[z +(q+ t)(p + m) + (p + q)(q + z)(p + b)]]

= (z + t)[p + q[z + (q + t)(p + m)]]

= (z + t)(p + q)(p + m) = 0.

2. Lemma 2.5(3). For a,b,c E Dwe have

z + b®a=(z + t)(z + x + (y + b)(z + ax))

= (z + t)(z + x + ax(y + z + b))

= z + (z + t)(x +(x + a)(y + t)(y + z + b))

= z +(z + t)(x + a)(x+y + t(z + b))

— z + a(w + t(z + b)) < z + a.

Similarly z • a ® c = z(a + w(t + zb)) > za.

Now if a E Inv(O) then by (2), t/a and a\t E D. Easy computations give, if

a E Inv(F»), (t/a) ® a = t — a® (a\t). Conversely if b ® a = t = a ® c for some

b,c E D then z + a<z + t = z + b®a<z + a and 0 < z- a < z- a ® c = z-1 =

0. Therefore a E Inv(F).

3. Theorem 5.5. For each i — 2,...,n we have, using (x¡, x,),

a,A = (z + t)(xx + (x, + a,)(z + (x, + *)(*, + b,)))

= (z + t)(xt + (x, + 0i)(z + (x, + t)(x, + ft,))).
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Moreover, for i =£j, x, < x-• x, < (x, + a,)(z + (x, + i)(xy + ft,-)). Therefore

l.n

F(l) = (z + 0 • II U +(x, + a,)(z + (x, + t)(xt + ft,)))

= (z + 0

(z + t)

2,n 2,n

2 x, + u (x, + a,)(z + (x, + f)(x, + ft,))

2;n

xx+A(l)U(z + (xx + t)(xi + bi))

(z + t)[xx+A(l)(z + (xx+t)B(l))].
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