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Ix, THE HYPERSPACE OF FUZZY SETS,

A NATURAL NONTOPOLOGICAL FUZZY TOPOLOGICAL SPACE

BY

R. LOWEN

Abstract. Let A" be a uniform topological space, then on the family Ix (resp. 4>( X))

of all nonzero functions (resp. nonzero uppersemicontinuous functions) from X to

the unit interval I, a fuzzy uniform topology is constructed such that 2X (resp.

<S( X)), the family of all nonvoid (resp. nonvoid closed) subsets of X equipped with

the Hausdorff-Bourbaki structure is isomorphically injected in Ix (resp. 4>( X)). The

main result of this paper is a complete description of convergence in Ix, by means of

a notion of degree of incidence of members of Ix. Immediate consequences are that

first it can be shown that this notion of convergence refines some particular useful

notions of convergence of fuzzy sets used in applications, and that second it follows

from its construction and properties that for each ordinary uniform topological

space X there exists a natural nontopological fuzzy uniform topology on Ix.

1. Introduction. This work was motivated by two major problems in fuzzy set

theory which at first apparently are not linked to one another. The first problem is

the following:

Given a topological space X, does there exist a "natural" notion of convergence for

fuzzy sets on X( functions from X to 1)1

When we say natural this implies several things:

(I) The structure on Ix should be such that the subspace {1^: x E X} is

isomorphic to X.

(II) It should not be of the usual function space type determined by 7 and

providing for a vertical notion of convergence, but it should be a structure de-

termined by the structure on X thus providing for a horizontal convergence of fuzzy

sets.

These two points are inspired by applications [3,4,7 and 12] as well as by more

theoretical work [9].

In [3 and 4] Dubois and Prade construct a semigroup of functions in 7R (which we

shall not describe) containing the family (1^: x G R} and such that on this family

the semigroup structure reduces to the ordinary addition in R. In [7] Feron

constructs several metrics—all in some sense derived from the Hausdorff metric—on

the family ?F of all uppersemicontinuous functions with compact level sets in 7R",

with the purpose of studying random variables with values in S\ In [12] Kloeden
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considers, on a locally compact metric space X, the family S of all uppersemicontinu-

ous functions with compact supports in Ix. On § a metric is defined in terms of the

Hausdorff metric on 2XX! on the family §' = {s(^i) | ¡ti E §} where s(fi) = {(x, r) \

fi(x) > 0, u(x) > r > 0}. In [9] Höhle axiomatizes nonnegative [0, l]-fuzzy real

numbers as follows. Let ÖD' be the set of all distribution functions on R+ and let T

be a left-continuous i-norm on 7 X 7 [20], then (fy+ , tt, <) becomes a commutative,

completely lattice ordered semigroup by putting

tt(F,G)=   sup   T(F(rx),G(r2)),       F,GE^}+.
r,+r2<r

The elements of ty+ are called nonnegative fuzzy real numbers. On this space f.i. the

Levy metric is used.

All these examples show, in specific cases, the need for a notion of convergence

fulfilling (I) and (II). ((I), however, is irrelevant for the fourth example [9].)

A third point we would like to call natural is the following:

(III) The structure should take into account that the functions on which it is

defined represent fuzzy sets. This, among other things, means that of such functions

the lower levels are less important, to the point where a cutoff level may be chosen

below which the shape or the precise values of the fuzzy sets are no longer of

importance. Thus the structure should be sufficiently subtle to say something about

the closeness or the convergence of fuzzy sets with undetermined lowerparts.

While the first problem is a concrete mathematical one the second is of a more

philosophical nature:

Are fuzzy topological spaces natural objects to studyl More precisely, do there exist

many natural—not of the "counterexample-type"—nongenerated fuzzy topologies or

are the only concrete ones generated, i.e. consisting of the family of lowersemicontinu-

ous functions for some ordinary topology"]

Most spaces encountered in applications of fuzzy set theory are indeed usual

topological or even metric or normed spaces. This makes generated fuzzy topologies

interesting insofar as one studies the topological behaviour of fuzzy-set-like notions

rather than of set-like notions, f.i. the closure of a fuzzy set rather than of a set, the

limit of a prefilter in Ix rather than of a filter on X, a.s.o.

The merit of fuzzy topology here lies in having provided a good extension of the

machinery of topology for sets to fuzzy sets. However, the need for a general theory

of fuzzy topological spaces can only be justified by the existence of natural

nongenerated spaces.

In this paper we show that a solution to the first problem in very general

terms—X may be any uniform topological space—entails an answer to the second

problem in that it at once shows that for each uniform topological space X there

exists a nongenerated fuzzy uniform fuzzy topology on Ix such that 2X with the

Hausdorff-Bourbaki hyperspace structure is canonically inbedded in Ix.

The main part of our paper is §§3 and 4. In §3 we construct the fuzzy

(hyperspace) uniformity 7""(%) on Ix (Propositions 3.1 and 3.2), study its basic

properties with regard to specific subspaces and to 2X (Propositions 3.3 and 3.6 and
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Theorems 3.4 and 3.5) and show that it is not generated (Theorem 3.7). In §4 we

prove the two main results of this paper (Theorems 4.1 and 4.2). Theorem 4.1

completely describes what convergence " to a certain degree a E I " means and

Theorem 4.2 shows that convergence to degree 1 is an ordinary topological conver-

gence in a uniform topological space. In §5 this uniform topology is easily char-

acterized.

In §5 we further give some possibilities of generalizing our construction and we

also point out some possible alterations to our structure. A study of the relations

between properties of X and those of Ix such as E. Michael did for X and 2X in [19],

and a study of applications with relation to the work in [7,9,12] and especially in [3

and 4] would lead us far beyond the scope of the present paper and will be presented

in subsequent work.

We would, however, like to take this opportunity to state that many analogies, but

also some departures from classical results with regard to the relations between X

and Ix, have been established, while results with regard to applications are of a very

positive type such as, for instance, the fact that the semigroups in [3 and 9], which

we considered earlier, when equipped with our structure become continuous semi-

groups.

2. Preliminaries. The unit interval is denoted I, 70 stands for ]0,1] and 7, stands

for [0,1[.

Filters are denoted by capital script letters; prefilters by capital Gothic letters;

and fuzzy sets, or values in 7, by lower case Greek letters.

If X is a set and Y E X then we denote the characteristic function of Y by lY. R+

stands for the nonnegative real numbers.

Although not wanting to deviate too much from standard notations both in

hyperspace theory and in fuzzy set theory we would however like to warn the reader

that throughout this paper the following conventions hold.

If X is a set then

2X = {E E X| E nonvoid},

Ix= !>: *^7|/i^0};

if X is a topological space then

<5(X) = {EE 2X\ E closed};

and if .Y is a fuzzy topological space then

<&(X)= {ju EIX: n closed}.

For definitions and results on prefilters and on convergence of prefilters we refer to

[13 and 15].

If S3 is a prefilterbase then we denote by 33 the prefilter

33 = L E Ix\3(ße)teIo E%'°,p> sup (ßt -e)\.

For more details on this saturation operation see [15] and U. Höhle [8].

For definitions and results on fuzzy uniform spaces we refer to [16] and to U.

Höhle [10 and 11] (also called probabilistic uniform spaces there).



550 R. LÖWEN

Let us, however, recall that a fuzzy uniform space is a pair (X, It) where 11 fulfills

the following conditions:

(FUI)It is aprefilter onvXI

(FU2) Ü = It.
(FU3) For all ? E U and x E X: v(x, x) = 1.

(FU4) For all r E It: ,»» £ It.

(FU5) For all v E IX and for all e G 70 there exists veElX such that ve ° vE — e < v,

where sv is defined by ^(x, y) = viy, x) and v ° v' by v ° v\x, y) = supzeAV(x> z)

A viz, y).

The members of 11 are called fuzzy entourages. sl\ denotes the set of those v E LI

for which sv = v. The fuzzy topological structure derived from a fuzzy uniformity is

determined by the neighborhood system ([15] and U. Höhle [8]) iVtix))xex where

for all x G X, lt(x) = {v(x)\ v E 11} and where, for any v G It and ¡i E Ix, v(p)

is defined as p(/i)(x) = supyeXpiy) A viy, x) and v(x) is short for v(lx). The

fuzzy closure operator is then given by jS = inf„eU ¡>(n).

The (fuzzy) topology derived from a (fuzzy) uniformity (It) % is denoted (f(lt))

Ti%).

A basic reference for hyperspace theory is E. Michael [19]. Some elementary

results concerning the Bourbaki-Hausdorff uniformity can also be found in N.

Bourbaki [2] and in R. Engelking [5].

If ( X, % ) is a uniform space then the Bourbaki-Hausdorff uniformity on 2x is

determined by the basis {U\ U E %} where

Û= {(A,B) E2XX2X\AE U(B),BE U(A)}

and is denoted by 2  .

It is well known that the category of topological spaces and continuous maps is a

full reflective subcategory of the category of fuzzy topological spaces and continuous

maps through the identification of a topology ?T on X with the family ui'ö) of all

l.s.c. maps from X to 7. Fuzzy topological spaces of type iX, ui'ö)) are called

topological(-ly generated) or, in M. D. Weiss [22], induced.

The same situation presents itself for fuzzy uniform spaces. If iX, 6ll) is a uniform

space then we put

«„(%) = [v E Ixxx: v~x]e, l]elVG 7,}.

Identifying % with wu(%) the category of uniform spaces and uniformly continuous

maps becomes a full reflective subcategory of the category of fuzzy uniform spaces

and uniformly continuous maps [16]. We shall call a fuzzy uniform space of type

(X, «„(%)), uniform.

The following proposition is an immediate consequence of Theorem 3.1 in [16].

Proposition 2.1. If iX, It) is uniform then iX, /(U)) is topological.

That the converse does not hold is to be expected and is shown by the following

counterexample.
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Let ( X, 5" ) be a topological space, uniformizable by % and by %', where % C 6li'.

Let

it= {p G Ixxx: v~x]e, 1] G%VeG [0, £[ and y-'Je, 1] G %' Ve G [i,l[},

then it is easily verified that t(U) = 5" although clearly It is not uniform.

If € is a filter on X then we denote, by u{^), the prefilter

«(§") = {/xG7*:3FGf lF<n}.

3. Construction and fundamental properties of 7Wu(tH We begin by introducing

some more notation.

If /x G Ix and a E R+ then we denote by /x © a the truncated sum, i.e.

u©a(x) = (/i(x) + a) A 1    for all x G X.

If iX, %) is a uniform space, then for any [/ G % and ¡u, £ G 7* we define

z)(r/,M) = {ôgr+: ^©«(u)^, il/e8<É>>M}.

Proposition 3.1. If ( X, °ll) is a uniform space, then for any U E % and p,%Elx

we have:

ii) DiU, /x, O * 0 «* sup^e^juix) = supxe;r£(x).

(ii) Z>(Í7, /x, £) ^ 0 => 7)([/, jtt, ¿) = [d, + oo[ /or some ¿ G 7.

Proof, (i) If, for instance, supxeA.ju(x) < supx6A-£(x) then, for any 8 E R+ and

for x0 G X chosen such that supxEjr/x(x) < £(x0), it follows that

lu®S(n){x0) = sup/x(x) A(lt/(x,x0) + 8)

< supii(x) <ê(x0)

which proves that 8 E £)({/, /x, £).

Conversely, if sup^^-u^x) = supxe;f £(x), then for all x G X

lu®l(p)(x) = sup m(>0 >*(*)•
JE/

Interchanging /x and £ proves that 1 G D(l7, ix, £).

(ii) Since, obviously, 5 G DiU, fi, £), 8' > 8 => 8' £ 7J>(t/, u, £), we only need to

show that d = inf DiU, p, £) G D(f7, /x, £). Since ¿ + e/2 G £>([/, /x, £) for all e G

70, it follows that 1^ © id + e/2)(ix>> £, which in turn implies that for all x G X

there exists y E X such that

V(y) A (W, x) + d+ e/2) > £(x) - e/2

^P(y)^(lu(y,x) + d)>i(x)-e.

Since this holds for all e E 70 we have ^©¿(/x)^. Interchanging /x and £ ends

the proof.

The following notion plays a key role in our description of convergence in §4.

For any /x, £ G 7* we define

*(u, |) = inf{« | V|B > a, ß~x]ß, I] = £"']/?, 1]}.
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Intuitively, e(p, £) is the lowest level above which the graphs of the fuzzy sets p and

£ coincide. Some immediate consequences are contained in the following proposi-

tion, the verification of which is straightforward but rather tedious and dreary and

which we shall therefore omit.

Proposition 3.2. For any p, £, 8 E Ix we have:

(i) eip, £) = min{a | Vj8 > a, p'l]ß, 1] = £"■]/?, 1]}.

(ü)   supx£Xp(x) ¥= supxeA-£(x) =» e(p, £) = supxeA./x(x) V supx6Ar£(x)   and

suPxexM(^) = supxeA-£(x) =» eip, £) « supx(EA-/x(x).

(iii) if for some x E X, /x(x) V £(x) > eip, £), then /x(x) = £(x).

(iv) eip, £) < eip, 0) V e{6, £).

For any symmetric entourage U £ % we now define î^ G I(I x/;f) by

j Íl-min7)(c/,u,£)    if £>((/, u, £) * 0 ,

17    ' [l —e(/x,£) otherwise.

Proposition 3.3. For any p, £ G 7* a«í/ 1/ £ %, Usymmetric,

lv(p, i) > 1 - «(/», £).

Proof. If supxeA-/x(x) ^ supxeA-£(x) there is nothing to prove. Otherwise we

have to show that min D(U, p, £) < eip, £) which is equivalent to eip, £) £

D{U, p, £) which in turn is equivalent to:

l°l£/©e(M,£)<u>>£and

2°lu®eip,i)a)>p.
For Io let x £ X, then if £(x) > eip, £) it follows from Proposition 3.2(iii) that

£(x) = /x(x) and we have

lu®e(p,Î){p)(x)^p(x) = ï(x),

and if £(x) < e(/x, £) we have

ly © eip, i){p)(x) = snpp(y) A (lv(y, x) + e(,x, £))
yex

>lsupp(y)\ Ae(/x,£)>£(x).
Vex '

Since 2° is obtained by simply interchanging p and £ this proves the proposition.

Theorem 3.4. 7/( X, %) « a uniform space then

/w„(%) = (î^; ry e %, Usymmetric}'

is a fuzzy uniform structure on Ix and the map

i:{2x,uu(2^))^(Ix,I»^):A^lA

is a uniform imbedding.

(From now on we shall denote the family of symmetric entourages in % by flL.)

Proof. By [16, Proposition 2.1] it suffices to show that (1^: U E^} is a fuzzy

uniform basis. (FUB1) follows from

(a) Vt/ Efll and V/x £ /*, l^p, p) = 1, which at once proves (FUB2) and from
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(b) VÍ7, U' Efli, V/x E Ix, VS £ R+ and Vx E X,

lu®ô(p)Alu,®ô(p)(x)

=   sup p(y) A p(z) A (lv(y, x) + 8) A (lv,(z, x) + 8)
y.zex

>supp(y)A(luAlu,(y,x) + 8)
yex

= (luAlu,)(B8(p)(x)

from which it follows that, for all p, £ £ Ix,

Io if supxexp(x) = supxeA-£(x) then

la A \v,(p, £) = 1 - min D(U, p, £) n D(U', p, £)

> 1 -min7J>(C/n [/',/*,£)

= l£/ÂV(/x,£),

2° if supx6A-/i(x) ¥= supxeA-£(x) then by definition

Îî/(/x> £) = îf^/x, £) = îynt/^/x, £).

(FUB3) follows at once from the definition. To prove (FUB4) let U Eßl and

choose V E^IL such that V ° V E U. Now let p, £, 8 E Ix be arbitrarily chosen.

Io If supxe^(x) = supxe^£(x) = snpxex8(x) take8 £ D(V, p, 8) n D(V, 8, £),

then for all x £ X we have

lu®8(p)(x)= supp(y) A(lu(y,x) + Ô)
yex

>supp(y)A(lvo lv(y,x) + 8)
yex

=   sup p(y) A (lv(y, z) + 8) A (lv(z, x) + 8)
y.zex

= suplK©8(/x)(z) A lv®8(z,x)
zex

>sup8(z) A lv®8(z,x)
zex

= V©8(0>(x)>£(x).

Interchanging p and £ proves that 8 £ D(U, p, £). From this it follows that

\v{p, 8) A lv{8, Ç) = 1 - min £>(F, ju, 8) n 7)(F, 0, £)

<l-min7)(c/,íx,£) = Íí/(íx,£).

2° If supxe^./x(x) t^ supxEA-f?(x) and supxeA-f7(x) ^= supx6A-£(x) then by Prop-

ositions 3.2(iv) and 3.3 we have

lvip, £) > 1 - e(fx, £) > 1 - e(p, £) V e(0, £)

= lv(p,8)Alv(8,i).

3° If supxeA./x(x) ¥= supxex8(x) and supxeA-0(x) = supxejr£(x), then it follows

by Proposition 3.1(i) that D(U, p, £) = 0 and consequently, to prove lv(p, £) >

ly(p, 8) A ly(8, £), by straightforward calculation that it suffices to show eip, £) <

eip, 8), which, considering cases, the reader can easily verify himself.
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This proves that lv° ly< lv.

To prove the second assertion, remark that a basis for wu(2*) is given by {1¿;:

U Efll}. A straightforward calculation shows that for all U Efll, 8 £ R+ and

A £2^,

1l/® 80a)=  lU(A)®S-

Consequently, it is easily seen that for all U Efä, and A, B £ 2X we have luilA, 1B)

= 1¿(A, B), which, together with the obvious fact that /' is an injection, proves the

theorem.

We shall denote the restriction of the structure I"»^ to the subspace of closed

fuzzy sets, i.e. of uppersemicontinuous functions, 5>( X), by $(«„(<&,)).

An important relation between Ix and <&iX) is then given in the following

theorem.

Theorem 3.5. If iX, %) is a uniform space, then the structure 7W"(%) on Ix is the

reciprocal structure o/($(A'), $(«„(%)))/or the mapping c: Ix — 3>(X): p -> p.

Proof. By Theorem 4.2 [16] a basis for the reciprocal structure

(cXc)-x(*(uu(%)))

is given by the family

{(cXcY^y.UEfH}.

Let U Eß, and choose V Efll such that V o V E U.

Assertion. For all p, £ £ Ix,

i\)DiV,p,l)EDiU,p,i),

(n)DiV,p,i)EDiU,p,l).
To prove (i) let x E X and 8 E D(V, p, £), then

lv® 8(p)(x) = sup p(y) A (lu(y,x) +8)
yex

>  sup p(y) A (lv(y, z) + 8) A (lv(z, x) + 8)
y.zex

= sup lv® 8(p)(z) A (lK(z,x) + 8)
zex

^ sxxpp(z) A (Iv(z,x) +8)
zex

= lv®8(p)(x)>t(x).

Interchanging p and £ we are done.

The proof of (ii) is perfectly analogous so we omit it. From (i) it follows that if

suPxsxl^*) = suP*ex£(*)then

l^p, £) = 1 - min D(U, u, £) > 1 - min D(V, p, £) = lv(p, £);
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while if supxeXp(x) t^ supxex£(x) we have

»[/(M. I) = ! - e(f-> 0 = 1- SUP f*(*) v SUP £(*)
xex xex

= 1 — supjü(x) A sup£(x)
xex xex

= 1 - e(p,l) = \v(p,l),

and analogously from (ii) it follows that lv(p,\)>lv(p,i). This proves the

theorem.

We shall now introduce some subspaces of Ix which we shall study in greater

detail in the sequel.

For any s E 70 we denote

//= \p Elx: supp(x) =s\
1 xex '

and <PsiX) = If n ®iX). The restrictions of the fuzzy uniformity 7W"(%) to these

various subspaces shall be denoted respectively 7"u(%) and $s(w„(%)).

Since, however, all spaces shall always be equipped with the same structures, we

shall often refrain from explicitly mentioning them.

Proposition 3.6. For any s E 70 we have

(i) Ui(x) < hÁx) v (1 - s),

(Ü) hÁxy = l<s>Áxy v 0 ~ *)•

Proof. For (i), if jx £ <ps( X) then we have

14»,(X)(rt)=   inf      sup   lv(p, £)
^^ ¿eo/x)

=  inf      sup   11 — sup p(x) V sup£(x)l
uefti íe4>í(x)V        jeï xex        '

= 1 — s V I sup ix(x)J < 1 — Í,

while (ii) is shown analogously.

The following theorem gathers the most important connections which exist

between the various spaces introduced. In it <j> stands for the closure in (X, %), i.e.

§(A) = A andj (or/') stands for the canonical imbedding/(x) = j'(x) = {x}.

Theorem 3.7. If iX, %,) is a uniform space, 2X is equipped with the Bourbaki-

Hausdorff uniformity 2*, Ix with the fuzzy uniformity 7W»(%') and all subspaces with the

relative structures, then the diagram

X     i        2X - Ix Í If

\
\ l<t> lc lc\,x
ys*

<${X)       -      *(*)       -       %(X)
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is commutative, the maps j, i, is, i\$(X) and ¡^¿x) are uniform imbeddings, and the

maps <j>, c and c \,x are retractions. Moreover, in case (X,%) is Hausdorff, j' replaces

j-

Proof. That the diagram is commutative is clear. The results for j, j' and ¿> are

well known and can, for instance, be found in E. Michael [19]. That / is a uniform

imbedding was shown in Theorem 3.4.

From this and the fact thatyl C A'is closed if and only if 1^ is uppersemicontinu-

ous it follows that i \^X) is well defined and also a uniform imbedding. For is and

/-i|*,(X) mere is nothing to prove since they are inclusions. That c is a retraction

follows from Theorem 3.5 and the fact that c leaves 4>( X) pointwise fixed. Finally,

since supxeXpix) — s implies supxfEXp~ix) = s it follows that c \¡x is well defined

and also a retraction.

Following the terminology of E. Michael [19], the fact that /' ° / is a uniform

imbedding means that 7Wu<%) is an admissible structure on Ix.

The notion of 1-Hausdorffness was introduced by U. Höhle in [11].

Definition 3.1 (U. Höhle [11]). A fuzzy uniform space (X, It) is 1-Hausdorff if

and only if for all x ¥= y £ X there exists v E It such that v{x, y) < 1.

It is weaker than the notion which was introduced in [14] and which was shown in

[16] to be equivalent to the following definition in the case of fuzzy uniform spaces.

Definition 3.2. A fuzzy uniform space (A", It) is Hausdorff if and only if for all

x ¥= y E X and e E 70 there exists v £ It such that p(x, y) < e.

Proposition 3.8. IfiX, <?t) is a uniform space then O(A') is l-Hausdorff.

Proof. If u, £ E $iX) such that supxeA./x(x) = supxeA-£(x) and x E X such

that, for instance, /x(x) < £(x), then since u is closed there exists U Efll and e £ 70

such that lv(p)ix) + e < £(x). Consequently, lvip, £) *S 1 - e. If supxeA-/x(x) ¥=

supxeA-£(x) then for any U Efll

Ít/ÍM.í) = 1 - supix(x) A sup£(x) < 1.
xex xex

Remark. The result of the previous proposition is best possible in a way. To

illustrate this let iX, %) be a Hausdorff uniform space, let x ¥= y E X, let a E 70

and put p= lx and £ = lx V aly. Then, consecutively, for any 8 £ R+ and U £,%,

lu®8{p)>ï~lu®8(p){y)>a~luix,y) + 8>a

which implies that for all U Efll,

\v{p, £) = 1 - min{8 E R+ : ljx, y) + 8 > a}

= (lu(x,y)+ l-a)Al>l-a.

Letting a -* 0 this proves our point.

Theorem 3.9. If iX,6^) is a nontrivial uniform space then both ^(X) and if are

not topologically generated for all s E 70.

Proof. It is obviously sufficient to show this for ^(Z). Moreover, since both

1-Hausdorffness and Hausdorffness are good extensions [14],  it  follows from
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Proposition 3.8 that it suffices to show that O/A') is not Hausdorff. Choose U0 Es%

and x0, y0E X such that (x0, y0) £ U0. Then from

^x0(y0) =  ini^lu(slXQ)(y0) = M^s A lv(x0, y0) = 0

it follows that il   ^j/2Vsîr. However, for all U EflL, 8 E R+ and x E X we

have

lv ®8{slXo)(x) = sup   inf  suPilXo(z) A lK(z, y) A (lv(y, x) + 8)
yex ^e*zex

= sup  inf s A ly(xQ, y) A (lu(y, x) + 8)
yex ^e*

>s A(l[/(x0,x) + S)

from which it follows that for all U Es%,

î^sÂ Xo,^V si Xo) = I - min{8 ER+ : lv® 8(SÄ Xo)>±VsA Xo)

>l-minÍ8£R+:  inf lv(x0, x) + 8 > j)

= (l-f + jMl^Xo.x)) Al»l-|,

which proves that 0J(A') is not Hausdorff.

4. Characterization of convergence in ilx, 7u>u(<îl)). We are now in a position to

proceed with a more detailed study of Ix. However, it follows from Theorem 3.7 that

we can restrict ourselves to ^(A'), for a fixed s E 70. As we explained in the

Introduction, basically we are interested in studying the convergence of sequences,

or more generally of filters, of fuzzy sets defined on a uniform topological space.

Taking into account our previous remark this means we shall be looking at filters on

$siX). However, the structure on <t>siX) is not topological, it is essentially fuzzy

topological, and in order to be able to use it, it is necessary to imbed the set

theoretical framework on $J(Ar) into the fuzzy framework by means of the map i:

2X -» Ix. This means that with each filter ^on $5(X) we associate the prefilter ui$)

defined in the preliminaries. Theoretically it is now possible to study the conver-

gence of this prefilter and the rest of this section will be devoted to just that.

Theorem 4.1. Let (A", %) be a uniform space and consider the space

(Oi(Ar), ^(«„C^L))). Let f be a filter on ®siX), and let p, p0 £ $J(Ar) be such that

limw(?F)(ix0) > 1 — eip, p0). Then limw(íF)(ix) = 1 — e(/x, p0).

The proof of this theorem requires some preliminary work which we shall

subdivide into four lemmas.

Lemma 4.1.1. For all £ £ í>í(Ar), U E %, W(a, ß) EIX [0,s[wehave

[X if a > ß.
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Proof. If a < ß then

lv ® a(£)-1])S, 1] = {x: 3y £ A", Z(y) A(lv(y, x) + a) > ß}

= {x:3yEX,(y,x)EU,e(y)>ß}

= C/(¿-']/3,l]).

If a > ß then we have, for all x E X,

lv® a(£)(x) = supt(y) A (l^y, x) + a)
yex

> sup£(^) Aa = s Aa> ß
yex

which proves that 1^ © «<£>-']/?, 1] = X.

Lemma 4.1.2. For all p, £ E $i(A'), U Eßanda £ I0 we have

V/?E[0,i[n[l-a,l],

(£-']y8,l],M-1])8,l])£i7.

Proof. Let ¿7 = min 7)([/, p, £), then consecutively

Ít/(u,£)>a«l-a^J«l-aE7)(í/,fx,£)«l[/©(l -a)(í)>M

and ly © (1 — a)(/x)> £. For the first inequality we have 1^ © (1 — a)(£)> p <=>

V/S £ [0, i[ ly © (1 - a)(C)'x]ß, 1] D ¡tr1]/?, 1] which by Lemma 4.1.1 is equivalent

to Vß E [0, s[ D [1 - a, 1] l7(£-1]j8, 1]) D ju-']/3,1]. Interchanging p and £ the result

follows.

Remark (a). If o < 1 — í then the condition of Lemma 4.1.2 is vacuously fulfilled

which means that for all p, £ E 0/ A") and {/ E^ we have lyip, £) > 1 — s.

Lemma 4.1.3. If 9 is an ultrafilter on O^ A") then for all p E $si X) and a £ 70 we

have

lu(p,0>a

l\mu(^)(p) >a

VF E f, Vf/ E^, Ve E]0, a[

3£ E F such that V/J £ [0, s[ fl[l - a + e, 1]

(^lU-'RiDe!/.

Proof. Clearly, uC$) is a primeprefilter so that lim«C¿F) = adhuC^i). It now

suffices to write out adh uC§)(p), i.e.

adhw(^)(/x) = inf   inf     sup    1F(£) A î[/(£, /x)
Fe? ueß,cGq,AX)

and to apply Lemma 4.1.2.

Remarks, (b) If a = 1 then we find

limu($)(p) = 1

VFEfWc/E/^VeEJO, s[

3£EFsuchthatV/?E [e, s[

(u-1]yS,l],£-']/3,l])£ÍJ.

(c) If a < 1 — s the condition is again vacuously fulfilled which means that

limw(^) 3= 1 - s.
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Lemma 4.1.4. For all p, p0 E $S(X) we have inf^gs^lyip, u0) = 1 — eip, p0),

i.e.

(i) VÍ/ Es%, lvip, p0) > 1 - eip, <x0),

(ii) Ve £ ]0, eip, p0)[ 3U Es% \vip, p0) < 1 - eip, p0) + e.

Proof, (i) This follows from Proposition 3.3.

(ii) If eip, /x0) = 0 there is nothing to prove. Otherwise choose e £ ]0, eip, p0)[.

By definition of eip, p0) we can find 8 £ ]e(p, p0) — e, e(p, p0)[ and x £ X such

that, for instance, p0(x) < 8 < p(x).

Since p0 £ ^(A") we have that p'0x[8,1] is closed and since x £ p'0x[6,1] there

exists U Efll such that also x £ U(p'0x[8,1]). Obviously then too, x £ U(p'0x]8,1]),

which by Lemma 4.1.1 implies that x £ 1^ © 8(p0)~x]8,1]. Since x £ p~x]8,1] we

have consecutively

lv © 8(p0)^ p - 8 £ 7)(í/, ja, /lo) =» Ît/(M, u0) < 1 - 0 < 1 - e(,x, p0) + e.

Proof of Theorem 4.1.

First case: fis an ultrafilter. To prove the inequality lim u(^)(p) s* 1 — e(p, p0)

notice that if e(p, p0) = s this follows at once from Remark (c). If e(p, p0) < s then

from Remark (b) it follows that for all F £ f, U Gs% and e £ ]0, s - e(p, u0)[ (we

can of course restrict ourselves to arbitrarily small e's) there exists £ E F such that

(p'Qx]ß, I], r1]/?, 1]) Ê Û for all ß E [e, s[. Now since, for all ß E [e(p, p0) + e, s[,

we have p~0x]ß, 1] = p~x]ß, 1], it follows that for all F E f, U EflL and e £ ]0, s -

e(p, /x0)[ there exists £ E F such that for all ß £ [e(p, pQ) + e, s[,

(p'x]ß, 1], fl]ß, 1]) E Û. By Lemma 4.1.3 it follows that lim«(^X/0>l-

e(p,Po)-

To prove the other inequality we may suppose that e(ix,/x0)>0; otherwise there

is nothing to show. Suppose now that the inequality does not hold and let a he such

that

(1) limw(f ) >a > 1 - eip, u0).

Then choose e E 70 such that

(2) 2e < a — 1 + e(p, p0)

and

(3) limu(§)(p)>l -e(p,p0) + 2e.

From Lemma 4.1.4 we can choose U Efli such that

(4) lv(p,p0) < 1 - e(p, /x0) + e.

Now choose V Efll such that V ° V E U.

From [15, Theorem 6.4, Proposition 7.3] and (3) it follows that there exists F0 E ?F

such that

(5) F0 Clv(poyX[l-e(p, p0) + e,l].

Further from (1) and Lemma 4.1.3 it follows that there exists £ £ F0 such that

(6) lyU, p) > a - e.
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From (5) it then follows that also

(7) ly{£,p0)>l - e{p,p0) + e.

Together, (2), (6)and (7) now imply that

'i/(M, p0)>(a-e) A(l - e(p, p0) + e) = 1 - e(p, p0) + e

which is in contradiction with (4).

Second case: fis an arbitrary filter. First notice that fm(«(f )) = {u(§):§Df,§

ultra}. Consequently, if limw(f )(ix0) > 1 — eip, p0) then for all § D f, § ultra,

also lim ui§)ip0) > 1 — eip, pQ). Consequently, it follows from the first case that

limw(f)(/x) =  inf limu{§){p)

S ultra

=  inU1 ~e(p,Po))
§D<3

S ultra

= 1 - e(p,p0).

This ends the proof of the theorem.

To make the description of convergence of filters on $j(A") more complete we

now give a theorem which says when limu(f )(p0) = 1. However, we shall prove

this result in very general terms and then derive the theorem as a specific case.

Theorem 4.2. Let iX, %) be a uniform space and consider the space

i$si X), 0,( &>„(%))). Let <3 be a filter on $s( X). Then the following are equivalent:

(i)lim<o(fXrio)=l-

(ii) f-> p0 in ¿(í(í>s(to„(%)))), the topological modification of the fuzzy topology

associated with <f>siuuifyl)).

(in) W(f) D ̂ KC^DX/Xo).

Lemma 4.2. Let (A", (33(x))xeA- be a fuzzy neighborhood space [15] and let f be a

filter on X. Then the following are equivalent:

(i)limw(f)(x)= 1.

(ii)f^x in t(r( SB)).

(in) i(¥) D 33(x).

Proof, (i) =* (ii). If one simply writes out the fact that limw(f )(x) = 1 then one

sees that this means that V§ n f, % ultrafilter, VG E §, Ve £ 7, and Vv E 33(x) =»

G D p_1]e, 1] ̂  0. By [15, Theorem 6.1], this means that Vg D f, S ultrafilter,

% D t(33(x)), t(33(x)) being the neighborhood filter of x in t(r( 33)). Consequently,

f^xint(i(2$)).
(ii) => (iii). Let p E 33(x) and e E 70, then from (ii) it follows that there exists

Fe E f such that Fe E v'x]l — e,l]. Consequently, lF — e < v which proves v E

uyj).
(iii) => (i). Let e E 70, then from (iii) it follows that for all @ D f, S ultrafilter, and

for all »» E 33(x) there exists G„ E§ such that 1G — e/2 < v which implies G„ C

i/"']l - e, 1]. Consequently, for all G E S, 0 ¥= G n G„ E G D v'x]l - e, 1]. Finally,
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this implies that

limw(f )(x) = inf inf    inf    supl<~Ap(j)
1p9 Ge$ pe%(x) y£X
ultra

= inf inf     inf    sup v{y) > I — e.
âDïceg Keas(jc) ye(j
ultra

Since e E 70 is arbitrary this proves the implication.

Proof of Theorem 4.2. Replacing X by ®siX) and (33(x))xeA- by

(0J(wu(%))(/x))tie$j(A.) this becomes merely a special case of Lemma 4.2.

Interpretation. The fact that $S(A") is 1-Hausdorff implies that for any filter f,

lim w(f)(/x0) = 1 in at most one point p0 E <£>/ A"). This means f has only one real

limit. The fact that we can consider this as being a limit in the classical sense is

precisely the result of Theorem 4.2(ii). Theorem 4.1 then says that the degree with

which f converges to any other p £ 0J(A') is determined simply by how long,

starting to count from the top level 1, the graphs of p and p0 coincide.

Remark that "degree of belongingness" here is not some hypothetical value but a

precise mathematical quantity.

5. Generalization and concluding remarks. I. The construction of 7""(%) at no point

requires that the underlying space would be a classical uniform space. We can just as

well start with a fuzzy uniform space. We shall sketch how such a generalization may

work. Given a fuzzy uniform space (A", It) then for all v E^tt and p, £ E Ix let

D{v,p,è) = {8ER+\v®8(p)>£, v®8(£)>p}

and

*(M)
1 - minZ)(i',/x,£)    if sup p(x) = sup£(x),

xex xex

1 — e(p, £) otherwise.

Replacing «„(%) by It, and using these new definitions of D and one can prove

that many results hold true.

For Theorem 3.4 we have that 7U = {v: v ESU} is indeed a fuzzy uniform

structure on Ix but one has to replace the second assertion by

h: (A", It) -» {lx, Iu): x -» lx is a uniform imbedding.

Only the proof of (FUB4) needs to be adapted by means of an e-argument in the

sense that one can only show that given v £ It, e E 70 and vE £ It such that

vt ° vt — e < v, then for all p, £, 9 E Ix,

8 £ D{ve, p, 8) n D{ve, 8, £) -» 8 + e E D{v, u, £).

The proof then continues with the usual technique of showing inequalities up to e for

all e £ 70 and using the saturation operation  .

Theorem 3.5 too remains true but in the proof the assertion has to be adapted to

read

(i) S £ D(vt, p,l)^8 + eE D{v, p, £),
(Ü) S E DivE, p, £) =» 8 + e £ 7)(r, p, £)
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where again ve, v E It and e £ 70, such that ve ° ve — e < v. In Theorem 3.7 the

diagram has to be replaced by

h i.
X     -        Ix - 7/

\
v

\ ic lc\,x

h'\

's|»,( X)

$(X)       -       05(A-)

but further it remains unchanged.

The only result which changes in a surprising way is Theorem 3.9. Whereas

starting with an ordinary uniform space guarantees that all spaces Os( X) and If will

be nontopological, starting with a nonuniform fuzzy uniform space can imply that

some spaces $siX) and if are topologically and even uniformly generated. How-

ever, as we shall show, only in a very trivial way.

Theorem 5.1. If iX, U) is a fuzzy uniform space and if we put m =

infpeuinîxyexvix, y) then

l°ifO<m<s< 1 both <&si X) and if are not topologically generated,

2° ifO<s^m< 1 both $siX) and If are trivial.

Proof. Io. The proof of Io goes entirely the same as that of Theorem 3.9 except

that one chooses v0 £ It, x0, y0 £ X and a £ 7 such that v0ix0, y0) < a < s and

then considers si    and a Vil    E <£>(^0-x0 x0 s\      /

2°. It suffices to show that 7/ is trivial. For any v £SU, p, £ E 7/, 8 £ R+ and

x E X we have

v®8{i)ix)= supiiy) A(v(y,x) + 8)>(supè(y)) A (m + 8)
yex vyex '

— s A (m + 8) = s > p(x).

Consequently for all v Es\X,v \¡x = 1 which means If is trivial.

Some results of §4 can be shown to hold true in general as well but we shall not do

this here.

II. The fact that, for all UEs%, lv^ 1 - s on <bsiX) (see Lemma 4.1.2 and

Remark (a)) may seem a little disturbing. However, an interpretation might be the

following: In order to make some p E §siX), "ÍZ-close" to £ £ ^(A") for some

U Efll—by this we mean I yip, £) = 1—the pointwise change you may have to

perform on p never exceeds s. Since the degree of {/-closeness—i.e. the value of

l y—varies between 0 and 1, and allowing for some kind of additivity argument this

may be interpreted by saying that they always already are [/-close to a degree 1 — s.

A small technical surgery can, however, if necessary, remove this phenomenon.

Let \p: [s, 1] -> [0,1] be an order isomorphism and let

then the reader can easily verify that this is a fuzzy uniformity on <£>/ A") which is not

isomorphic to Q>siuui%)) in a classical sense (they are, however, isomorphic in a
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more general sense, see M. A. Erceq [6]) and which does no longer have the property

that all the fuzzy entourages exceed 1 — s. All results remain essentially the same

except for some scaling.

III. The topological modification mentioned in Theorem 4.2(h) is not so hard to

describe as it may seem at first. Indeed it follows from [16, Theorem 3.1(vi)] that this

is nothing else than the topology derived from the uniformity

i,,(*,(«il(%)))=[{£ir|l'e,%,ee/I}]

where

U: = {(p, £) | p, £ E $,(X), Vj8 £ [1 - e, l[ (p'x]ß, l], £-']/?, 1]) £ Û).

Roughly speaking, (u, £) E U* if and only if all level sets above 1 — e are (/-close.

It should be noted that this uniformity is strictly coarser than the one obtained by

taking as a basis the collection {U* \ U Es%} where

i/f = {(fx, £) | p, £ £ 9S(X), VjB E [0, s[ (p'x]ß, 1], t'l]ß, 1]) E Û)

and which we shall denote by %*.

Then now, (p, £) E U* means that all level sets are ¿/-close. It can easily be seen

that not only the uniformities t „($,(<«>„(%))) and %* are strictly different but also

the topologies derived therefrom. One may ask why, since %* clearly is simpler and

also very natural, it might not have been better to look for a fuzzy uniformity on

$j( A") whose uniform modification would have been %*.

The simple reason why it is just the other way round is the following: From a

fuzzy set theoretic point of view, those points with high degree of membership, for a

certain fuzzy set, are the most important. Points with a degree of membership below

a certain level may often be neglected. If 8 £ 70 is this level, e— 1 — 8 and

p, Í £ $S(I), then for a certain U Es% one may for instance decide that if

ip, £) E U* then they are close enough. Indeed those parts of the graphs of p and £

above the level 8 will then be {/-close and the other parts are considered to be

irrevelant. The structure 6ll* is much too fine to allow for this kind of reasoning.

IV. In this work we have explicitly chosen for a purely horizontal convergence.

This means that at no point the topology of 7 intervenes. This is the reason why the

spaces Ix and $( A") "fall into pieces" if and «^(A"), 5 E 70. It is possible to alter

our structure such that it takes into account not only the topology on X but also the

usual topology on 7. One then obtains a more omnidirectional or global type of

convergence. The investigation into such a type of structure and its relation with the

structure introduced here will appear in future work.
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