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COCYCLES AND LOCAL PRODUCT DECOMPOSITION

BY

JUN-ICHI TANAKA1

Dedicated to Professor Haruo Sunouchi on his 60th birthday

Abstract As an application of cocycles, we establish a relation between the classical

Hardy spaces on the real Une R and simply invariant subspaces on a quotient of the

Bohr group. When this result is specialized suitably, it yields the well-known results

concerning the elements of invariant subspaces. We also study, by using Gamelin's

representation theorem, unitary functions which are the values of cocycles.

1. Preliminaries. Let K be a compact abelian group, not a circle, dual to a

subgroup T of the discrete real line Rd. For each t in R, et is the element of K

defined by e,iX) — e'Xt for all X in T. Choose and fix a positive y in T, and let Ky be

the compact subgroup consisting of all x in K such that x(y) = 1. Then K may be

identified measure-theoretically, and almost topologically, with Ky X [0,2 77/7) via

the mapping y + es to iy, s). We suppose for simplicity that 2ir lies in T in this

section, and §§2 and 4. Thus K may be regarded as K2v X [0,1). Let 0 and a, be the

normalized Haar measures on K and K2„, respectively. Then we may consider

do = dox X dt on K2„ X [0,1).

Our objective in this note, by using this local product decomposition, is to show

the fact that a certain class of analytic functions on K2„ X R has a close connection

to simply invariant subspaces on K. In the next section, our characterization of

simply invariant subspaces, Theorem 2.1, is obtained. In §3 we investigate the values

of cocycles and answer a question of Helson. We close with some remarks in §4.

For any simply invariant subspace 9H of L2(a), we define

(<31t) + = H Xx*   and    (91L)_= the closure  U Xx*,
X<0 X>0

where Xx denotes the character on K determined by X in T. Then 91L is called to be

normalized if 9H = CD1L)+ . Complex-valued functions of modulus one are said to be

unitary functions. A cocycle is a unitary Borel function Aix, t) on K X R which

satisfies the cocycle identity

(1.1) A{x, t + u) = A{x, t)Aix + e„ u)
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for all x in K and s, t,u in R. A cocycle is trivial (resp. a coboundary) if it has the

form e'r'p(x)p(x + e,) (resp. pix)p{x + e,)) for some r in R and some unitary

function p on 7C There exists a one-to-one correspondence between normalized

simply invariant subspaces and cocycles [4, Chapter 2].

We denote by Hp(o) and Hp(dt), 0 <p < oo, the usual Hardy spaces on K and

7?, respectively. It is known that Hxidt) is the space of all functions in Lxidt) whose

Fourier transforms vanish on the negative real line. We let H°°(dt/(l + t2)) =

H°°(dt), that is, the space of all the boundary functions of bounded analytic

functions in the upper half-plane. The closure of 77°°(¿7//(l + t2)) in Lpidt/il + t2))

is denoted by Hp(dt/(l + t2)), 0 < p < oo. Recall that the class of continuous

function «¡> in Hp(dt) with | 4>(t) | = 0(t~2) (as 11 | -> oo) is dense in Hp(dt), 0 < p <

oo (cf. [3, Chapter II, §3]). Also recall that <f> lies in Hp(dt/(l + r2)) if and only if

<pit)it + i)-2/p liesin H"idt).

We refer the reader to [4 and 2, Chapter VII] for further details of analyticity on

compact abelian groups and to [1 and 3] for results about classical Hardy spaces.

The following lemma is a minor variation of [4, Theorem 17] so the proof will be

omitted.

Lemma 1.1. Let Gy\LA be the normalized simply invariant subspace of L2(a) associated

with a cocycle A. Then for any fin L°°(a), the following are equivalent:

(i) flies in 91t,;
(ii) the function of t, Aiy, t)fiy + et), lies in Hx(dt/(l + t2)) for ax-a.a. y in

K2t; and_

(iii) the function oft, A(y, t)f(y + et), is orthogonal to Hx(dt)for ax-a.a. y in K2v.

We next consider certain spaces of analytic functions on K2„ X R. Let % he the

space of all bounded Borel functions fiy, t) on Kl7r X R which satisfy

(1.2) the function of /, fiy, t), belongs to Hx(dt) for a,-a.a. y in K2„, and

(1.3) ess.supd/Xj, i) | ; (y, t) in K2w X [n, n + 1)} = 0(n~2).

We denote by %p, 0 <p < oo, the closure ofïn Lpidax X dt) in Lpidox X dt),

where we use the ordinary metric on Lpidox X dt) when 0 < p < 1. Let Biy, t) be a

unitary function on K2v X R. Then for each / in %, we define a bounded Borel

function <f>Bif) on K by

(1.4) 9B(f)(y,s)=    2    B(y-en,s + n)f(y-en,s + n)
n = -oo

for each iy, s) in K27r X [0,1). Then $fi is a linear mapping of % into L°°(a).

Moreover, for any p, 0 < p < 1, it can be easily seen that the restriction of 0S to

% D Lp(dax X dt) may be extended to a bounded linear mapping of %p into Lp(o)

(cf. [7, Lemma 1]).

2. Cocycles and the space %. We may now state our main result.

Theorem 2.1. Lei ctJ\iA be the simply invariant subspace of L2(o) associated with a

cocycle A. Then <S>A(%) is dense in (GJfLA)_.
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Proof. We first note that, for each y- = (y, 0) in K2„ X [0,1),y + e, = iy,0) + et

— iy + e[lX, t — [t]), where [i] is the largest integer not exceeding t. It follows from

the cocycle identity (1.1) that

Aiy, t)A(y - e„_[t], n + t- [t]) =A(y, t) A(y - en_{l], n - [t]) A(y, t)

= A(y-e„_[l], n-[t])

for each (y, t) in K2„ X R. Hence if fiy, t) lies in %, then we obtain

A{y, t)<t>A(f)(y + et) = A(y, t)<bA(f)(y + e{i], t - [t])

=    2    A(y-en_[t],n-[t])f(y-en_[l],n + t-[t])
n — -oc

by (1.4). Let <t> be any function in H\dt). Then the property (1.3) assures that

/oo A(y,t)<S>A(f)(y + et)4>(t)dt

00     rk+v
2      2/      A{y-en_[t],n-[t})f(y-en_[t],n + t-[t])<p(t)dt

00      rk+i-

=    22   / '" A(y-en_k,n-k)f(y-en_k,t + n-k)<b(t)dt
« = -oo k = -oo   *

00 fk+x_
=    2       2    j      A(y-eR_k,n-k)f(y-en_k,t + n-k)<¡>(t)dt

m —-oc n~k~m   *

CO 00 _

=    22   /   ' A(y-em,m)f(y-em,t + m)4>(t)dt
m — ~oo k~-oo    "■

~ _     ,00

=    2    A(y-em,m)j   f(y - em, t + m)<b(t) dt = 0
m~-co °°

for a,-a.a. y in K2v. Therefore, by Lemma 1.1, <bAif) belongs to GÏÏLA. Let p be a

function in 911^ which is orthogonal to $Ai%). We set giy, t) = piy + et). Then it

can be seen that

[ pJ7)^A(f)(x) do(x) = if        'gJy~t)A(y,t)f(y, t) dox(y) X dt = 0
JK JJK,„XR

for each / in DC. This implies that the function of t, A(y, t)p(y + et), lies in

H2(dt/(l + t2)) for a,-a.a. y in Kl77. On the other hand, since the function of t,

A(y, t)p(y + et), lies in H2(dt/(l + i2)), it must be constant. Hence |p \ is constant

on 7C From this, we may assume that p is a unitary function on 7C Thus we have

A(x, t) = p(x)p(x + e,) and GJ\LA = pH2(o). This completes the proof.

We collect some corollaries following from Theorem 2.1. Recall that a cocycle

A(x,t) is continuous if A(y, t) is continuous on K27I X R as a function of iy, t)

[4, Chapter 5]. Let C0(7C2w X R) denote the space of all continuous functions on

K27r X R which vanish at infinity. We notice that % H C0{K2X R) is dense in % as
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a subspace of Lx(dax X dt), and that $Aif) hes in C(7C ) for any/in

%nCQ(K2vXR).

These facts easily imply the following.

Corollary 2.2. Let A and 6y(LA be as in Theorem 2.1. If A is continuous, then

(<51L/4)_nC(7c:) is dense in (91l,)_.

We next give another proof of Helson's existence theorem [4, Theorem 16; 8,10].

Corollary 2.3. Let A and ctR,A be as in Theorem 2.1. Then cÖ\iA contains a unitary

function.

Proof. Define a function wit) in Lxidt) by

w{t)

-2
on [n, n + 1), | n \> 1,

3 2 j'2    on [0,1).
7=1

It is easy to see that log wit) belongs to L'(J//(1 + t2)). Hence there is a function ¿>

in H\dt) such that |<M»| = w(t) (cf. [3, Chapter II, Theorem 4.4]). If we set

fiy, t) = <¡>it), then <bA(f) hes in 911^ and | ®A(f)\>2?=xj'2 on 7C Thus it follows

from Szegö's theorem that C$\LA contains a unitary function.

Corollary 2.4. Let A and cdïiA be as in Theorem 2.1. Then there exists a function f

in 911^ satisyfing:

(i) the function oft, fiy + et), can be extended analytically to {z; Im z > — v/3~/2}

for each ox-a.a. y in K2„;

(ii) log | fix) | belongs to Lx(a); and

(iii) for any positive X in T, f does not lie in XxP^a-

Proof. Let h(y, t) = 4/(2/ - 1 + /3 i)2. Then | h(y, t) \> 1 on K2w X [0,1], and

I h(y-> 0 |< 1 otherwise. So by Theorem 2.1 we may choose an integer m such that

the function g, = $A(hm) in <ÜtA satisfies (i) and | gxiy, s) |> 1 on K2„ X [|, f ). It

may be assumed that g, has property (iii). Similarly, we can construct a function g2

in <DtA which satisfies (i) and | g2iy, s) |> 1 on 7C2„ X ([0, f ) U (f, 1)}. It follows

from Jensen's inequality and Fubini's theorem that

^-f f2,Tlog\gxix) + eieg2{x)\do{x)d8
¿IT JKJ0

> ( max(log|g,(x)| ,log\g2ix)\)da{x)>0.
JK

Thus there exists a 8 in [ 0,2<n) for which/ = g, + e'9g2 has the desired properties.

The above corollary is the main step in the proof of [4, Theorem 26].

We may easily choose a unitary function B on Kl7r X R such that the closure

[0B(DC)]2 of $>Bi%) in L2(a) is a doubly invariant subspace, so it is worthwhile to

note a condition under which [0B(DC)]2 is simply invariant.
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Theorem 2.5. Let B be a unitary function on K2„ X R. Then [$B(%)]2 is simply

invariant if and only if there exists a cocycle A(x, t)for which

(2.1) the function of t, A(y, t)B(y, t), belongs to Hœ(dt/(1 + /2)) for ax-a.a. y in

*2„-

Proof. Suppose that there exists a cocycle A with property (2.1). Then 47?/lies in

% for each / in %. Since $B(/) = ®A(ABf), it follows from Theorem 2.1 that

[i>B(DC)]2 is a simply invariant subspace. Conversely, suppose that [$B(%)]2 is

simply invariant, and let A be the cocycle of ([$b(3l)]2)+ • Let <bh be a function in

% which is the product of a function u> in Hx(dt) times a function h in C(K2n). We

notice that

A(y, t) = A(y, [t] - n)A(y + e[t]_n, t - [t] + n)

and

*B(<l>h)(y + et) = <PB{<j>h)(y + e[t], t - [t])

00 _

=    2    B{y + elt]-n,t-[t] + n)<b(t-[t]+n)h(y + e[l]_„).
« = -00

It follows from Lemma 1.1 and an argument similar to the proof of Theorem 2.1

that

/OO
A(y,t)$B(<i>h)(y + el)4>(t)dt

-00

00

=    2   A(y,-m)h(y-em)

/oo -
A(y -em,t + m) B(y ~em,t + m) </>(/ + m)^(t) dt

-00

= 0

for each \p in Hx(dt). Since h is arbitrary in C(K27T), we have

/OO -
A(y ~em,t + m) B(y - em, t + m)<?(t + m)^(t) dt - 0

-00

for each integer m. This implies that A satisfies (2.1).

3. Cocycles and unitary functions. Let A(x, t) be a cocycle on K. In [5, §4], Helson

has shown that if the function of x, Au(x) = A(x, u), lies in H2(a), then it must be

constant. This odd result grew out of a basic problem concerning spectrum of

cocycles. We provide, by using Gamelin's representation theorem, some remarks on

this theorem.

In this section we do not assume 2it belongs to T. Let Ky be as in §1 for a positive

y in T, and put u — 2m/y. We denote by %(ATy) and %(7i ) the classes of all unitary

functions on Ky and K, respectively. We first recall the definition of cocycles

introduced by Gamelin (see [2, Chapter VII, §11]). For any ß in %(7C7) the cocycle
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BB(x, t) is given explicitly for positive t by

1 onKyX[0, u),

(3.1) Bß(y,t)= \m~l ,     ,,n
[[ ß(y + eJU)     on Ky X[mu,(m + l)u)

7=0

for each positive integer m, and ^(y + es, t) — Bßiy, s + t) for 5 in [0, u). Then Ti^

is trivial if and only if there is an / in %(A"Y) and some r in R for which ß can be

expressed in the form ßiy) = e'rfiy)fiy + eu) for a.a. 7 in Ky [4, Chapter 4, §9].

Gamelin's representation theorem [2, Chapter VII, Theorem 11.1] asserts that every

cocycle A on K has the factorization A = T^C, where ß is a function in %(7CY), and

C is a coboundary.

The following theorem shows vaguely which unitary functions on K are the values

of cocycles and settles a question posed by Helson [5, §1]: Is the class of all Ax on K

different from the class of all A 2?

Theorem 3.1. For any positive u in R, let y = 2it/u, and let {Au} denote the class

of all the values Auix) = Aix,u) of cocycles A. Then we obtain the following

properties:

(i) if y belongs to T, then every Auin {Au} has the form

Au(x) = ß(y)q(x) q(x + eu)

for o-a.a. x = iy, s) in Ky X [0, u), where ß is a function in %(7iy) and q is a

function in^iK);

(ii) for each positive integer m, {Au} contains {Amu}; and

(iii) if y belongs to T, then for any v in (0, u), there exists an Av in {Av} which does

not lie in {Au}.

Proof, (i) is a direct consequence of Gamelin's representation theorem, so it is

enough to show (ii) and (iii). We notice that if A(x, t) is a cocycle, then so is

A(x + x0, t) for any fixed x0 in K, and the product of two cocycles is also a cocycle.

For any positive integer m, we set

74(x, t) = A(x, t)A{x + eu, t) ■ ■ ■ A(x + e(m_X)u, t).

Then it follows from the cocycle identity (1.1) that 7?(x, t) is a cocycle which satisfies

B(x, u) = A(x, mu). Thus we have (ii). On the other hand, by Gamelin's representa-

tion theorem, we may choose a function ß in %(7<TY) for which BB is a non tri vial

cocycle. We now show that for each v in (0, u), BB(x, v) cannot belong to {Au}. By

Definition (3.1), it can be seen that

fl forx = {y,s)inKy X [O, u - v),

(3.2) BB{x,v)=\^)    ioTX = (ysymK^[u-v,u).
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Suppose to the contrary that BBix, v) belongs to {Au}. Then by (i) there are

functions a in <$L(Ä" ) and p in %(7C) such that

BB(x, v) = a(y)p(x)p(x + eu)

for a-a.a. x = iy, s) in Ky X [0, u). Therefore it follows from (3.2) and Fubini's

theorem that there is an s in [0, u — v) such that a(j) = p((y, s))püy + eu, s)) for

a.a. y in Ky. From this fact, we can easily see that /?(y) = 8iy)8iy + eu) for some 8

in %iK ), so 77g must be trivial. Thus we have a contradiction, and this completes

the proof.

From (ii) and (iii) of Theorem 3.1 we have

Corollary 3.2. Iftr belongs to V, then {Ax} contains strictly {A2}.

4. Remarks. We recall that a Borel function /on K2n X R is automorphic if

fiy, s + I) — fiy + ex, s) a.a. on 7C2„ X 7?, and any Borel function on K — K2„ X

[ 0,1) can be extended uniquely to be automorphic on K2v X R [2, Chapter VII, §6].

(a) Let 77°°(a) be the space of all automorphic extensions of functions in 77°°(a).

The following question is interesting and probably difficult:

For any cocycle A, does there exist an f in % for which (/ + ^'({0})) • 77°°(a) is

dense in%xl

This is related to the old problem of whether every simply invariant subspace is

generated by one of its elements. Indeed, if we could choose such a function /, then

<&A(f) would be a single generator of (^ll^)..

(b) We know that the dual space of Hpio), 0 < p < 1, has dimension one [7,9]. By

the argument of [7], Theorem 2.1 provides an extension of this result:

Let 911 be a simply invariant subspace of Lp(o), 0 < p < 1. Then the dual space of

911 has at most dimension one.

(c) Let 911 be a simply invariant subspace of L2(a). For any/in 91L, let/denote

the automorphic extension of / to K2v X R. Then we may easily verify that there

exists a unitary function q on K2n X R such that the closure [/3C], of f% in

Lx(dax X dt) coincides with q%x. Let p(x) = p(y, s) be the restriction of q to

K2n X [0,1), and set ß(y, s) = q(y, s + l)q(y + ex, s). Since /is automorphic, ß

defines a unitary function on K2„. We denote by CB the cocycle defined by (3.1).

Then it can be seen that the cocycle CB(x, t)p(x)p(x + e,) corresponds to the

simply invariant subspace generated by / (cf. [5, §3]). Similarly, let 91L denote the

space of all automorphic extensions of functions in 9H. Then it is not hard to see

that [911-3C], = q%x for some unitary function q on K2„ X R. Thus in the same

manner, we may find the cocycle associated with i31t. This provides another naive

definition of cocycles (cf. [4, Chapter 2]).
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