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SEPARATRIX AND LIMIT CYCLES OF
QUADRATIC SYSTEMS AND DULAC’S THEOREM
BY
CARMEN CHICONE' AND DOUGLAS S. SHAFER?

ABSTRACT. Separatrix cycles for a planar quadratic vector field are studied. The
results obtained are used to show that in any bounded region of the plane a
quadratic vector field has at most a finite number of limit cycles.

1. Introduction. The second part of Hilbert’s sixteenth problem [8] to find a bound
for the number of limit cycles of the general polynomial vector field X(x, y) =
P(x, y)3/0x + Q(x, y)d/0y in terms of the maximum degree of P and Q, remains
one of the most famous and most challenging problems in nonlinear differential
equations. As a first step toward the solution of Hilbert’s problem one would like to
know that, given a specific pair P and Q, X has at most a finite number of limit
cycles. If this is not the case there must be infinitely many limit cycles accumulating
on either a periodic orbit, a critical point, or a separatrix cycle, or there must be a
sequence of points, each on a distinct limit cycle, tending to infinity. In his 1881
Memoir [10] (which inspired Hilbert’s problem) Poincaré introduced his loi de
conséquence, now called the Poincaré return map, and used it to show that the first
case cannot occur, i.e., limit cycles cannot accumulate on a periodic orbit. The
argument is very simple. If p denotes the return map on a local section  transverse
to the periodic orbit y of accumulation, then choosing a local coordinate x on =
observe that f(x) = p(x) — x is an analytic function whose zeros correspond to the
periodic orbits of X near y. However, an analytic function which has an accumula-
tion point of its zeros is identically zero, so the periodic orbits near y are not limit
cycles.

Dulac in a lengthy article [6] claimed to have excluded the remaining cases.
However, it is now widely recognized that his proofs are not complete. Thus, for an
analytic vector field it is unknown if a critical point or a separatrix cycle can be the
accumulation set of infinitely many limit cycles. We wish to thank Jorge Sotomayor
for pointing out to us that Dulac’s argument is correct (see §4) in the special case
when the analytic vector field has a separatrix loop at a hyperbolic saddle point.
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In this paper we study quadratic polynomial vector fields. For these quadratic
systems it is impossible to have limit cycles accumulate at a critical point. In fact, if
such a critical point exists the linear part of the vector field at the critical point
vanishes identically or has pure imaginary eigenvalues. The first case is impossible
because a homogeneous quadratic vector field has no limit cycles. The second case
can be excluded for any analytic vector field [2, p. 254]. Thus, if a quadratic system
has infinitely many limit cycles they accumulate on a separatrix cycle or they have
an accumulation point at infinity.

Our work began by asking if a quadratic system can have even one limit cycle
surrounded by a separatrix cycle (see the conjecture in §5). This led us to examining
the separatrix cycles themselves, with the, perhaps surprising, results stated in
Theorems 3.1 and 3.2. These results exploit special properties of quadratic systems
and they establish that infinitely many limit cycles may not accumulate on separatrix
cycles. We note that the main arguments of Poincaré, Bendixson and Dulac were
made for analytic systems. They used the fact that the vector field is a polynomial
only to obtain an analytic extension to the Poincaré sphere and to be certain that
there are only finitely many critical points.

The first part of §2 lists special properties of quadratic systems. We also state and
prove a new result on structure near a critical point, and list several immediate
consequences for separatrix cycles. §3 lists the two main results characterizing
separatrix cycles containing more than one critical point, and §5 concludes with
examples and questions.

Our results offer some progress toward the topological classification of the
possible phase portraits of a quadratic system in a region surrounded by a separatrix
cycle. In particular, we obtain, as an application, the following partial solution of
Dulac’s problem.

THEOREM A. If a quadratic system has infinitely many limit cycles then the limit
cycles have an accumulation point at infinity.

We remark in closing this section that in what follows, if C is a simple closed
curve we let int C denote the (open) bounded region of the plane as divided by C.

Both authors wish to thank the referee for his very careful reading of the first
version of this paper.

2. Quadratic systems. A quadratic system is one of the form

x:P(x’y)’ y:Q(x’y)’
where P and Q are relatively prime polynomials of degree at most two (and one of
degree two). Equivalently we may consider the vector field X(x, y) = P(x, y)d/dx
+ Q(x, y)0/dy on R% In any event we will refer to the system as X. We also let
1(z, p) denote the unique trajectory of X starting at p, let o (x) denote the positive
semiorbit of x, o_(x) the negative semiorbit, and o(x) the orbit of x.

We begin by stating, without proof, three fundamental results of the theory of
quadratic systems; the proofs and appropriate references can be found in Coppel’s
survey [4].

The first result is elementary but is undoubtedly the most useful tool in the theory.
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THEOREM 2.1 (TUNG’s LEMMA). (a) Three critical points of X are never collinear.

(b) If lis a straight line which is not invariant, then the total number of critical points
and contacts of X on [ is at most two. If there are two such points then on the finite
segment of | cut off by them X points into the opposite side of | from that into which it
points along either infinite segment of I.

THEOREM 2.2 (BERLINSKII’S THEOREM). If X has the maximum number, four, of
critical points, then they are all elementary (i.e., the Jacobian determinant at each one
is nonzero). In particular, every saddle point is hyperbolic. Moreover, if the quadri-
lateral with vertices at the critical points is convex then two opposite vertices are saddles
and the other two are antisaddles (nodes, foci or centers). But, if the quadrilateral is not
convex then either the three exterior vertices are saddles and the interior vertex is an
antisaddle or the exterior vertices are all antisaddles and the interior vertex is a saddle.

THEOREM 2.3 (CENTER THEQREM). The system X given by
x=y+bx*+ (2c+ B)xy + dy?,
y = —[x + ax*+ (2b + a)xy + cyz],

has a center at the origin if and only if one of the following three conditions is satisfied:
MDa+c=b+d=0,
(I a(a+ ¢) = B(b+ d),aa® — (3b + a)a®B + (3¢ + B)aB?> — dB> =0,
My a+5b+d)y=B+5a+c)=ac+ bd+ 2a®>+ d?)=0.
Moreover if (1), (1) or (I11) holds then X has an integral (expressible in terms of
elementary functions), hence does not have a limit cycle.

A special case of the following theorem is presented in Chicone-Tian [3]. We give
here the general statement with a complete proof.

THEOREM 2.4 (CHICONE-SHAFER-TIAN). Let p be a critical point of X.

(a) If the eigenvalues of the linear part dX of X at p have nonzero imaginary part
then p is a focus or a center.

(b) If the eigenvalues of dX at p are real, then there is a null solution at p (i.e., a
trajectory tending to p as t — + 00 or as t » —o0). For every null solution o at p there
is a line | such that either (i) o C [, and | is X-invariant along its entire length, or (ii) ¢
is tangent to | at p, X has no critical points or contacts on [ besides p, and X points to
the same side of | all along |. Moreover, in case (b) either there are one, two or three
lines 1}, 1,, I such that every null solution lies in or is tangent to one of them (the case
of three lines occurs only if X is homogeneous (has no linear part in coordinates such
that p = (0,0)) and 1, 1,, I; are invariant), or there is a unique null solution in every
direction at p, in which case p is a hyperbolic source or sink and one, two or three
invariant lines pass through p.

PROOF. Part (a) is well known. Translating p to (0, 0) and making a linear change
of coordinates we may put X into the form

X(x, y) = (ax — by + P)(x, y))3/3x + (bx + ay + Q,(x, y))3/dy

where b # 0 and P, and Q, vanish together with their first partials at (0,0). It is a
straightforward exercise involving estimates on § and 7 near (0,0) to show that
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trajectories of X near (0, 0) cross every ray from (0, 0) infinitely often. As noted in
the introduction, a rotation point of a quadratic system must be a center, so part (a)
is established.

Hence, suppose that the eigenvalues of dX at p are real. Translating p to (0,0) we
may assume X has the form

X(x, y) = (ax + by + ex? + fxy + ky?)d /dx
+ (ex + dy + mx? + nxy + py?)d /3y,

hence

dx(0,0) = (‘C’ Z).

The tangential component 6 of X at the point with coordinates (x, y) 5 (0, 0) is

6(x, y) =[yP(x, ) = xQ(x, »)] - (x* +y2)"
=[cx2 +(d —a)xy — by? + h(x, y)] - (x? —1-)12)_l

=[g(x, y) +h(x, »)] - (x*+y?)"
where h(x, y) is a homogeneous polynomial of degree three in x and y.

The discriminant of g is (d — a)? + 4bc, which is precisely the discriminant of
dX(0,0), hence by hypothesis is nonnegative. Thus g(x, y) has at least one line
through (0, 0) along which it vanishes. Since A(x, y) is a homogeneous cubic, it too
vanishes along a line through (0, 0).

If g and A vanish together along a line / through (0, 0), then / is invariant for X and
each portion near (0, 0) is a null solution at (0, 0). If 4 is nonzero on every radial line
! along which g vanishes, then X has no critical points or contacts on /, and since 4 is
a cubic X points to the same side of / all along /. Moreover, there exist distinct lines
/, and /, such that g vanishes along /,, h vanishes along /,, and g- 4 # 0 in two of the
sectors a and o', opposite one another, which are the interiors of the angles formed
by /, and /,. In fact (since g-h has odd degree) g-# < 0 in one sector, say a, and
g-h >0 in the other. Let p, and p, denote the half-lines bordering on a. Then 6 has
opposite sign along p, and p,, hence a is positively or negatively invariant, say
positively (replacing X by —X if necessary).

Let C be any circle about (0, 0) isolating it from other critical points. If there is no
point on p, or p, in int C whose positive semiorbit tends to (0,0), the Poincaré-
Bendixson Theorem implies that the positive semiorbit of every such point must
permanently leave a N [C U int C]. Then choose any sequence {x;}?2, C p, tending
monotonically to (0,0) and for each j let x; be the /last intersection of the positive
semiorbit through x; with C. There is an accumulation point x € a N C of the
sequence {x;}2 |, and an argument as in Hartman [7, p. 167] shows that the negative
semiorbit through x exists on (-0, 0] and tends to (0, 0) as  —» —oo. This establishes
the existence of a null solution.

If o is a null solution at (0, 0), it cannot spiral about (0, 0) because of the behavior
of X along the line (or lines) where g vanishes, as described above. Neither can o
oscillate back and forth across two distinct radial rays repeatedly, since to do so
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would require more than two contacts of X on each ray, which is impossible by
Tung’s Lemma (2.1). Thus o has a tangent at (0, 0).

But now if I: § = @, is the tangent line for a null solution o, then clearly g, the
lowest order terms of 6, is zero along /. For this a straightforward estimate involving
6 and i = rk(r, 8), k smooth, shows that if g(cosf,,sinf,) > 0, then there exists
€ > 0 such that the positive semiorbit through any point on the line /_: § = 6, — ¢,
sufficiently close to (0,0), crosses the line /,: 6 = 8, + ¢ with monotonically
increasing @ coordinate, hence there is no null solution tangent to /. But now if g
vanishes along /, then the behavior of X along / must be as claimed.

If g = 0 the last assertion of the theorem is immediate. If g = 0, then when a # 0
the last assertion is [1, Theorem 64, p. 331], and when a = 0 then X is homogeneous,
h Z 0 (else X is scaled linear) plays the role of g, and the result follows similarly.
Q.E.D.

The following useful lemma describes the restrictions that existence of an elliptic
sector at a critical point places on a nonhomogeneous quadratic system.

LEMMA 2.5. If X is nonhomogeneous and has an elliptic sector at an isolated critical
point p, then there is exactly one hyperbolic sector and exactly one elliptic sector at p,
every null solution at p is tangent to a line | which is X-invariant and contains no
critical points besides p, and X has at most one critical point besides p.

ProoOF. This result follows primarily from the classification theorems of Andronov
et al. [1, Chapter IX]. We may translate p to (0,0), where X must have a nonzero
linear part with trace and determinant zero. Thus by a linear change of coordinates,
if necessary, X has the form

X(x, y) =[y + ax* + bxy + cyz]a/ax -i-[dx2 + exy +fyz]a/8y,
so that
(x*+y?)-0(x, y) = g(x, y) + h(x, y)
=2 +[dx> + (e — a)x?y + (f— b)xy> — &°];

g(x, y) vanishes only along the line /: y = 0, so by the proof of Theorem 2.4 every
null solution is tangent to /.

X is vertical along the curve y = ¢(x) =0+ 0-x — ax* + ---; the nonzero
coefficient of 3 /9y along this curve is therefore Y(x) = dx* + - - - . By Theorems 66
and 67 of Andronov et al. [1, pp. 357, 362], d = 0. But then § vanishes along /, along
which X is now X(x,0) = ax23/dx, vanishing only for x = 0.

Since (e, f) = (0,0) is impossible X has precisely one or two critical points.
Q.ED.

The intuitive notion of a separatrix cycle is clear; a separatrix is a trajectory which
forms part of the boundary of a hyperbolic sector at some critical point, and a
separatrix cycle is a simple closed curve consisting of separatrices and critical points,
which is traversed by the flow in a definite direction. While any separatrix cycle
surrounding a limit cycle must also surround a critical point, a general separatrix
cycle need not do so. For example, the interior of the separatrix cycle could be filled
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with paths which form an elliptic sector at one critical point on the cycle. It is clear
that infinitely many limit cycles can accumulate on a separatrix cycle on a given side
only if the Poincareé return map is defined on that side for a transverse section at any
noncritical point of the cycle. (If a separatrix cycle S, surrounds and partly includes
a separatrix cycle S,, so that every point of S, is an accumulation point for the set of
points on the limit cycles, but only some of the points of S, are (e.g., part of S,
bounds parabolic sectors at two points of S, so int(S,) & int(S))), then we say that
the limit cycles accumulate on S, but not on S,.) Therefore we make the following
definition.

DEFINITION 2.6. Let S be a separatrix cycle, dividing the plane into R, and R,.
Then S is a continuable separatrix cycle if for every p € S there is an arc without
contact 2, aind a subarc 2 , C 2, containing p such that the Poincaré return map is
defined on 2, N R, into 2, (or similarly for R, and every point p in §).

THEOREM 2.7. Any separatrix cycle of a quadratic vector field X contains either one,
two or three critical points.

PROOF. A quadratic system has at most four critical points. If a separatrix cycle
contains four critical points Berlinskii’s Theorem implies that at least one is a node,
focus or center, a contradiction. Q.E.D.

THEOREM 2.8. If S is a continuable separatrix cycle of a quadratic vector field X and
D, q are two critical points on S, then the line segment L joining p and q is a portion of
S.

Proor. Tung’s Lemma implies that int S is a convex region. Hence, if the line
segment L is not contained in S, then L — { p, ¢} C int S. Since S is continuable a
return map will be defined on open segments of L near p and near g. But, this
implies that X crosses L with opposite orientations on these segments contrary to
Tung’s Lemma. Q.E.D.

LEMMA 2.9. Limit cycles accumulating on a separatrix cycle S of a quadratic system
do so from int S.

PROOF. This follows immediately from Theorem 2.4. Q.E.D.

We note in closing this section that major results for periodic orbits of quadratic
systems [3,4] are true, as well, for path-polygons (simple closed curves composed
entirely of trajectories, including critical points). Notably, if C is a path-polygon
then int C is a convex region and contains at most one critical point, which must be
a focus or a center (this follows from 2.4).

We also remark that every critical point of a quadratic system is isolated; for the
existence of infinitely many critical points implies that P and Q have a common
linear factor, hence X is a scaled linear system.

3. Separatrix and limit cycles. In this section we characterize separatrix cycles
which contain two or three critical points, and establish Dulac’s Theorem in these
cases.



QUADRATIC SYSTEMS AND DULAC’S THEOREM 591

THEOREM 3.1. Let S be a separatrix cycle containing three critical points.
Then S is a triangle with hyperbolic critical points at the vertices, there is a critical
point in int S, which is a center, and every other trajectory in int S is periodic.

PROOF. Let S contain critical points p, ¢ and r, and suppose the orientation of S
induced by the flow is from p to g to r (i.e., p is the a-limit set and ¢ is the w-limit set
of some point in S, and so on). We establish the existence of a critical point in int
by contradiction.

Hence, suppose S surrounds no critical point. Then it surrounds no closed orbit,
so by the Poincaré-Bendixson Theorem any point in int S tends to a critical point in
both forward and reverse time. Fix w € int § N int A pgr and for definiteness say
n(t,w) > past - +oo.

Case 1. n(t,w) - p as t - —oo. Then X has an elliptic sector at p, which is
impossible by Lemma 2.5.

Case 11. n(1,w) —» g as t » —o0. By convexity of int S the portion of S from p to ¢
either lies on the opposite side of the line / through p and g from r, or is the line
segment (including endpoints) L joining p and q.

Let S’ be the path-polygon formed by g, the orbit o(w) of w, p, and the portion of
S from p to ¢. Since int(S’) is convex, o(w) must lie on the same side of / as r.

If & N L= {p,q} then L divides int(S’) into two open regions, 4: that bounded
by L and o(w), and B: that bounded by L and the portion of S from p to ¢q. If
LCS,4+# @,B= @& and the flow is from p to ¢ along L.

The convexity of regions bounded by path-polygons shows S’ N L = {p, g} or
S’N L (ie. L CS). This together with convexity of regions bounded by path-
polygons and the impossibility of behavior as in Case I implies that for y € 4,
n(t, y) > past— +oo and (¢, y) > g ast — —oo, while for y € B, n(¢, y) — q as
t > +oo and (¢, y) » p as t - —o0. Moreover, L contains no critical point or
contact except p and g (Lemma 2.1).

Suppose B = & so that the flow on L is from p to q. Let z € L — {p, g} and
choose a small arc without contact X at z and a point v € £ N A near z. Then ¢ is
outside the simple closed curve C formed by z, the portion of 2 from z to v, v, 0 (v),
p, and the segment of L from p to z, whereas for ¢t <0, n(¢,v) is inside C,
contradicting the fact that n(¢, v) » g as t - —oo0.

When B is not empty, the direction of flow along L is not determined, but either
choice yields a contradiction. Thus Case II is impossible.

Case 111. 9(¢t,w) - r as t - —o0. By convexity of interiors of path-polygons either
w is in the line through p and r or is on the opposite side of this line from g,
contradicting the choice of w. Thus S surrounds a unique critical point which by 2.4
must be a focus or center.

By Berlinskii’s Theorem (2.2), p, ¢ and r are elementary critical points, hence are
hyperbolic saddles. It follows easily that S is continuable, hence by Theorem 2.8 is a
triangle with hyperbolic saddles at the vertices.

By a linear change of coordinates the vertices of the triangle can be placed at
(0,0), (0,1) and (1,0). Then the fourth critical point has coordinates («, 8), some «



592 CARMEN CHICONE AND D. S. SHAFER

and B satisfying 0 < a, 8, « + B < 1. Invariance of the coordinate axes and the line
with equation x + y = 1 implies that X has the form

_ l—a d
X(x, y) —ax(x-}-Ty 1)5—;+by(

1-8 _ )i
x X +y—1 3y
for some a and b satisfying aa + b8 = 0.
Scaling by } and translating (a, 8) to the origin gives X the form
l—«a d
_|_ _ _P 2 9
X(x,y)—[ Bx + (a— 1)y —x ( . )xy] PP

a
1-8
o

B _ ( ) z] KB

+[a(1 B)x + By + xy+y 3y

Applying the linear change of coordinates X = x, y = D™'[Bx + (1 — a)y], where
D = a?[B(1 — a — B)]'/?, in the new coordinates (dropping the overbars) X has
the form

D , at2B—1 D ,|o9
-1 * ala—1) Yoa—1” Ay’
By the Center Theorem (2.3), part (I) there is a center at the critical point inside the
triangle.

An integral for the system (whose existence is stated in the Center Theorem (2.3))
is I(x, y) =x"y*(1 —x —y), where r=a(l —a— B8)"' and s = B(1 —a — B)7,
hence X has no limit cycles and the periodic orbits surrounding the center fill up
intS. Q.E.D.

D 0
X(x, ) =[—Dy - ;xy]a + [Dx +-

THEOREM 3.2. Let S be a separatrix cycle containing exactly two critical points p and
q.
(a) If there is no critical point in int S then X has an invariant line through p; at p
there is exactly one hyperbolic and one elliptic sector; q is a hyperbolic saddle; and
every trajectory in int S tends to p in forward and reverse time.

(b) If there is a critical point v in int S, then either (i) one of p and q is a hyperbolic
saddle point, the other is a saddle node, v is a focus and S surrounds at most finitely
many closed orbits; or (ii) both p and q are hyperbolic saddle points and S is continuable
with S surrounding infinitely many closed orbits only if v is a center and every other
trajectory in int S is periodic.

PROOF OF 3.2. Suppose int S contains no critical point of X, and fix w € int S. By
the Poincaré-Bendixson Theorem 7(z, w) tends to either p or ¢ as ¢ tends to either
plus or minus infinity. For definiteness say n(¢,w) — p ast —» + 0.

Case 1. n(t,w) — p as t —» —oo. Then there is an elliptic sector at p, which we may
assume is (0, 0). By the proof of Lemma 2.5, X may be written (after a linear change
of coordinates, if necessary)

X(x,y)=(y+ax*+bxy + cy?)d/0x + (exy + fy*)d /0y

where a # 0. The x-axis is invariant.
The curve along which X is vertical is

y=¢(x)=0+0-x —ax>+abx>+ ---.
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The vertical component of X along y = ¢(x) is

¥(x) = —aex® + (abe + a*f )x* + - - -,
and the divergence of X along y = ¢(x) is

o(x)=Qa+e)x+---.

Applying Theorem 66 of Andronov et al. [1, p. 357] we must have ae > 0. Then q is
located at (x,, y,) = (efe, —e’a), where @ = (af > — bef + ce?)™!, and det dX(q) =
—e3a = ey, <0, hence g is a hyperbolic saddle. But then, for any point z € int S,
1(¢, z) does not tend to ¢ as ¢ tends to either plus or minus infinity, hence by the
Poincaré-Bendixson Theorem tends to p in each direction.

Case 11. 9(t,w) - q as t - —o0. Let L be the line segment (including endpoints)
from p to ¢q. If SN L= {p,q} then L divides int S into two regions, 4: that
bounded by L and the portion of S oriented by the flow from g to p, and B: that
bounded by L and the portion of S oriented by the flow fromp tog. f SN L =L,
one of A and B is empty and the other nonempty. By the convexity of regions
bounded by path-polygons w & B, and either (a) o(w) = L — {p, g} or (b) o(w) N
L = &. There is no elliptic sector at either p or ¢, in case (a) because the line
through p and q is invariant (violating Lemma 2.5), in case (b) because w € int S but
n(t,w) > p ast - +oo and n(f,w) —» g as t - —oo (violating the last statement in
Case I). But now the same sort of reasoning as in Case II of the proof of Theorem
3.1 yields a contradiction.

Thus only Case I occurs, establishing the statement of the theorem in the event
int S contains no critical point of X.

Now suppose there is a critical point v € int S. If S is not continuable then using
part (a) of this theorem just established clearly there is a parabolic sector at either p
or g having nonempty intersection with int S. Say the parabolic sector occurs at p,
and assume that p = (0,0). Then dX(0,0) is nonzero but has determinant zero. It
follows that S is not the accumulation set of infinitely many periodic orbits and that
p is a saddle node with tr dX(0,0) # 0. (If tr dX(0,0) = 0 use [1, Theorems 66, 67,
pp. 357, 362] to see that X has, after a linear change of coordinates, the form

[y + ax? + bxy + cyz]a/ax +[exy +jj)2]8/8y.

Thus, X has at most two critical points contrary to the assumption. If tr dX(0,0) # 0
use [1, Theorem 65, p. 340] to conclude that p is a saddle node.) Since v is
surrounded by S, 2.4 implies v is either a focus or a center. However, if v is a center,
the Center Theorem implies the existence of a first integral for X and, hence, p could
not be a saddle node. Thus, v is a focus. In this situation ¢ must be a hyperbolic
saddle point. In fact, if X is a quadratic system with three critical points then X has at
most one nonelementary critical point. This follows from the fact that the conics
P(x, y) =0, Q(x, y) =0 where X = (P, Q) intersect with multiplicity two at a
nonelementary critical point. Since v is a focus and S is not continuable, S
surrounds at most finitely many closed orbits. This establishes (b)(i) when S is not
continuable.

If S is continuable, by Theorem 2.8 it contains the line segment joining p and gq.
Since X is a polynomial vector field this implies that the line / through p and q is
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invariant. By an affine change of coordinates we may place v at the origin and make
[ the line with equation 1 + x = 0, so that

X(x, y) = (x + 1)(rx +sy)3/3x + Q(x, y)3/dy
where s # 0 (else the y-axis is invariant, contrary to the existence and position of S).
By the linear change of coordinates that fixes x and replaces y by -rx/s + y/s we
place X in the form

X(x, p) = (x+ l)ya—i + (mx + ny + ax* + bxy + cyZ)%
where ¢ # 0 (else there would be only one critical point on /). The linear part of X at

any point is

_ y x+1
(1) dX(x’y)_(m+2ax+by n+bx+2c‘y)'

Since X has a focus or a center at (0, 0), by (1),

det(o rlz) =-m>0

m
(since (m, n) = (0, 0) is clearly impossible). Also, at the critical points p and g on /,
(7 0
ax(-1,y) = ( * n—b+2cy)

so the eigenvalues are y and n — b + 2c¢y, where the ordinates of the critical points
are given by

b—n)=y(b—n) —4c(a—m =+
o L mm =il o)~ 4l )232!5_

The characteristic exponent of any closed orbit y: (x(¢), y(¢)) in intS is the
number

h, = %,/OrdivX(x(t), (1)) de

_ b (T 1+ 2c (T
—n+Tf0x(t)dt+ . foy(t)dz.

Since

Lﬂuﬁh=02{§%3¢:o

it follows that

(3) h,=n +%forx(t)dt.

Since the critical points at p and ¢ are not nodes, foci, or centers either one can
fail to be hyperbolic only if the linear part of X has a zero eigenvalue there. But
n — b+ 2cy = 0 is impossible since by (2) it implies that D = 0, contrary to the
existence of two distinct critical points on /. Thus there is nonhyperbolicity at p or ¢
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if and only if y = 0 in (2), which occurs if and only if @ = m and b #* n (else D = 0).
In such a case, after changing coordinates and rescaling, we find, by Theorem 65 of
Andronov et al. [1, p. 340), that m(b — n) # 0 implies that the critical point on S at
(-1, 0) is a saddlenode whose parabolic sector has empty intersection with int S (as it
must, if intS is to be convex); the eigenvalues of the linear part of X at the
remaining critical point of S are the nonzero numbers b — nand (b — n)/c, soitis a
hyperbolic saddle point. When a # m of course y # 0 in (2), so both p and q are
hyperbolic saddle points.

First consider the case that one of p and ¢ is a saddle node, so that a = m and
b # n. If b = 0 then by (3) every closed orbit in int § has characteristic exponent
n # 0. But n = tr dX(0, 0), hence every closed orbit in int S has the same stability as
the origin. Since this is impossible, int S contains no closed orbit when b = 0. If
b#0, set ¢ =min(|(n — b)/2b|,3) >0, K =sup{x|(x, y) €S}, and let I’ de-
note the line with equation x = -1 + ¢/4. By convexity of int .S and the choice
e <3, S N/ consists of two points u and w, the former with positive ordinate, the
latter with negative ordinate; w = (7, u) for some unique 7 > 0. Since the parabolic
sector at the saddle node lies outside S, any closed orbit y: (x(¢), y(¢)) in int S
sufficiently close to S must intersect /" exactly twice, once near u (leaving the strip
{(x, y)| -1 <x < -1 + ¢/4}) and once near w (entering the same strip). If T is the
least period of y and T, is the time of traversal of y from the point of crossing of /'
near u to the point of crossing near w, then for y sufficiently close to S, | T}, — 7|<'1
and T is so large that

On the other hand, choosing the motion on y so that (x(0), y(0)) € I’ near u,
-1 <x(t)<-1+¢/4 when T, <t <T, so that for y close enough to S, T is so
large that

1 (7 €
-1 <7 T.x(t)dt< -1 +5.

Combining the two inequalities,

1 T
—l—£<7,/0 x(t)dt<-1+e

so that, by our choice of ¢ and equation (3)
|(n = b) = k| <|(n = b) /2],

hence all closed orbits in int S sufficiently close to S have nonzero characteristic
exponent of the same sign as n — b # 0, and it is impossible for infinitely many
closed orbits to accumlate on S. But by hyperbolicity of one of p and ¢ and the
nonintersection of the parabolic sector at the other with int S, there is no other
separatrix cycle S’ in int S on which limit cycles can accumlate, so there are finitely
many limit cycles in int S. Again, presence of the saddle node implies v is not a
center, so S surrounds finitely many closed orbits. Hence, finally, let us prove that S
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surrounds finitely many limit cycles in the remaining case that a # m and p and ¢
are hyperbolic saddle points.

As before, if S surrounds infinitely many limit cycles they must accumulate on S,
which is then neither stable nor unstable on the inside. But it is well known (Dulac
[6], Reyn [11]) that such semistability implies that the product of the positive
eigenvalues of dX at p and g equals the product of the negative eigenvalues there. By
(2) this implies b = n. Then by (3), when n #* 0 the characteristic exponent of every
closed orbit in int S is nonzero and has the sign of n; since n = tr dX(0, 0), again
there can be only finitely many limit cycles when n % 0. But if » =0, then
b=n=0and Xis

X(x, y) = (x+ 1)yd/dx + (mx + mx? + cy?)3/3dy.

Integral curves are symmetric (as point-sets) with respect to the x-axis, so X has a
center at (0,0) and no limit cycles (or apply the Center Theorem (2.3)). Thus S
surrounds only finitely many limit cycles when p and ¢ are hyperbolic saddle points.

Finally, if S surrounds infinitely many closed orbits (but only finitely many limit
cycles), then these closed orbits have accumulation sets consisting of isolated critical
points, periodic orbits, or separatrix cycles. Since there are only finitely many critical
points and separatrix cycles at least one closed orbit y is an accumulation set for
closed orbits, and analyticity of the flow implies that y lies in a maximal open
annulus A consisting of closed orbits. The outer boundary 34" is an invariant set,
hence is either a closed orbit or a separatrix cycles S’. By analyticity of the flow 94"
is not a closed orbit; hence 94" = §’, and by reasoning previously given, in fact,
S’ = §. The inner boundary 04~ of A4 similarly cannot be a closed orbit, and by
Lemma 2.9 is not a separatrix cycle. Thus 34~ = o, which is thus a center, and every
other trajectory in int S is periodic. Q.E.D.

COROLLARY 3.3. If S is a separatrix cycle containing exactly two critical points, then
there are at most finitely many limit cycles in int S.

4. The separatrix loop. We consider in this section the case where the separatrix
cycle S contains a single critical point. Qur goal is to show that, for a quadratic
system X, S is not the accumulation set of infinitely many limit cycles. The next
theorem is analogous to the theorem of Reyn [11] on the stability of separatrix cycles
with hyperbolic critical points and it is a consequence of the ideas developed by
Andronov [2,§29]. This seems to be well known but not easily found in the
literature.

THEOREM 4.1. If S is a separatrix loop at a critical point p ( possibly nonhyperbolic)
of a smooth planar vector field X and if div X(p) # 0, then S is not the accumulation
set of infinitely many periodic orbits.

PROOF. Assume S is the accumulation set of infinitely many periodic orbits and
note that S must be continuable. Since div X( p) # 0, by considering —X if neces-
sary, assume div X(p) = ¢ > 0. Choose a disk D at p such that w € D implies
div X(w) > 6/2. Choose two local orthogonal trajectories of X, /, on the local
unstable separatrix forming the loop and /, on the local stable separatrix. Let p, and
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p, denote the respective intersections of /, and /, with S, assume p, and p, € D and
that integral curves starting on /, near p, stay in D until they meet /; n(7, py) = p;
for some unique 7 > 0. Define a coordinate u on /; so that p, has coordinate 0 and
such that a positive coordinate corresponds to a point on the inside of the loop. Let
P denote the Poincaré map P: [, — [, which is defined locally on the inside of S.

Since there are infinitely many periodic orbits accumulating on S they correspond
bijectively to a sequence u; on /; and lim #; = 0 as i — oo. It is well known [2, p. 293]
that

P'(u) = exp'/(;ridiv X(n(t, u;)) dt

where T, is the period of u,. If n(z;, u;) € [, (smallest such ¢, > 0) we have
4 T,
P'(u;) = exp(f"div X(n(t,u;)) dt +f "div X(n(z, u;)) dt).
0 t;

The second integral is bounded below by (7; — ¢;)o,/2. The first integral is converg-
ing as i —» oo to [jdiv X(n(¢, py)) dt. Since t; — 7 and T; — oo follows that P'(u;) —
+o0. In particular, near S all periodic orbits are hyperbolic and unstable, a
contradiction. Q.E.D.

The next two theorems begin the classification of the quadratic systems which
have a separatrix loop. In particular, if the separatrix loop occurs at a nonhyperbolic
critical point p with div X( p) = 0, then 4.3 shows that the loop does not surround a

limit cycle.

THEOREM 4.2. Let S be a separatrix loop at a critical point p of a quadratic vector
field X. Then S surrounds a critical point. If p is hyperbolic then S is continuable.

PrOOF. We may assume p is located at the origin. If det dX(p) <O then p is
hyperbolic, and it easily follows from Theorem 2.4 that S is continuable and
consequently surrounds a unique critical point. Hence, suppose det dX(p) =0. S
does not surround a critical point only if int S is an elliptic region for X at p. If
dX( p) vanishes this is impossible since then X is homogeneous, hence its sep-
aratrices lie in straight lines. If dX( p) does not vanish, impossibility follows directly
from Lemma 2.5, noting from the proof of the lemma that X does not change
direction on the invariant line /, hence separatrices of X at p lie either in / or on the
opposite side of / from the elliptic sector at p. Q.E.D.

THEOREM 4.3. Suppose S is a separatrix loop at a nonhyperbolic critical point p such
that div X( p) = 0, and let q denote the unique critical point in int S. Then, there is an
invariant line through p. Moreover, (a) if div X(q) = 0, then q is a center and the orbit
through every point in int S is closed; but, (b) if div X(q) # 0, then q is a hyperbolic
focus and the orbit through every point (except q) in int S runs from q to p in forward
(or reverse) time.

Proor. If p is nonhyperbolic then there is a separatrix loop at p only if
det dX(p) = 0. Suppose div X(p) = 0 as well. We may assume p is at the origin,
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and (by a linear change of coordinates if necessary) that X has the form
X(x, y) =[y + ax® + bxy + ¢»*]8/3x +[dx? + exy + fy?]3/dy.

We claim that d = 0. For if d # 0 then the curve along which X is vertical is
y=¢(x)=0-x —ax*+ ---, and the vertical component along y = ¢(x) is Y(x)
=dx?+ ---. Theorem 67 of Andronov et al. [1,p. 362] implies that the phase
portrait of X near p is the union of two hyperbolic sectors and two separatrices, and
that both separatrices are tangent to the same ray along the x-axis with initial point
p- But then the fact that X points to the same side of the x-axis along its entire
length implies that there is no loop at p. Thus d = 0, the x-axis is invariant and
X(x,0) points in the same direction for all x # 0. Moreover, there is only one critical
point g of X other than the one at p. By Theorem 4.2 there is one. By a linear change
of coordinates as in the proof of Theorem 3.2 we may move the invariant line to /:
x + 1 =0, move p to (-1, 0), and move q to (0, 0), giving X the form

X(x, y) = (x+ 1)(rx + sp)3/9x + (bx + ¢y + bx? + exy + f2)3/0y

where s # 0. But det dX(-1,0) = trdX(-1,0) = 0 forces r = ¢ — e = 0, hence re-
scaling by 1/s we have

X(x,y) = (x+ 1)y3/3x + (mx + ny + mx* + nxy + cy?)d/dy

for some constant m <0 (else (0,0) is not a focus or a center) and some new
constant ¢ # 0 (else the line x + 1 = 0 is critical).

To finish the proof recall that given a polynomial vector field X central projection
of the plane, regarded as {(x, y,z)|z =1} CR’, onto the sphere, regarded as
{(x, y,z)| x>+ y*+ 22 =1} induces a vector field X on the upper and lower
hemispheres which has an analytic extension, also denoted X, to the equator of the
Poincaré sphere. (The analyticity of the extension follows from the fact that X is a
polynomial vector field.) The equator is invariant for X and corresponds to the line at
infinity for X.

Consider the system

Y(x, y) = (x + 1)»3/9x + (mx + mx? + cy*)d /dy.

The critical points of Y are p: (-1,0) and g: (0, 0), and by the Center Theorem (2.3),
Y has a center at g. Moreover, the trajectories of Y are symmetric with respect to the
x-axis (as point sets). We are interested in the trajectories of Y in the half-plane
H = {(x, y)|x + 1 >0}. Applying the classification theorems of Andronov et al.
[1, Chapter IX] at p we have the following.

(I) When ¢ < 0: then p is a topological saddle point. The only critical points of Y
on the Poincaré equator are a hyperbolic source and sink at the ends of the line /:
x +1=0, so by symmetry p is on a saddle loop L surrounding gq. Every nonsta-
tionary orbit in int L is closed, and every orbit off /U L U int L tends from the
source at infinity to the sink at infinity.

(II) When ¢ > 0: there is an elliptic sector at p in the half-plane x + 1 <0, two
parabolic sectors at p, and a hyperbolic sector at p in the half-plane H. Every
trajectory tending to p in either forward or reverse time is tangent to / at p. To find
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the separatrices at p we directionally blow-up the critical point at p (i.e., apply either
the transformation x = x’, y = x’y’ or the transformation x = x’y’, y = y’) two
times. We find:

(a) When 0 < ¢ < 1: the separatrices bounding the hyperbolic sector at p lie in H.
Since the only critical points on the Poincaré equator are hyperbolic saddles at the
ends of /, by symmetry p lies on a saddle loop L surrounding g. Again every
nonstationary trajectory in int L is closed, but every trajectory in H \int L tends to p
in both forward and reverse time.

(b) When 4 < ¢ < 1: the separatrices bounding the hyperbolic sector at p lie in /.
The only critical points at infinity are hyperbolic (¢ < 1) or topological (¢ = 1)
saddles at the ends of /, so every nonstationary trajectory in H is closed.

(c) When ¢ > 1: again the separatrices bounding the hyperbolic sector at p lie in /.
Now, however, there are six critical points at infinity: a hyperbolic sink and source
at the ends of / and four hyperbolic saddles. The two saddle separatrices that lie in H
must by symmetry be the same trajectory, crossing the x-axis between p and ¢. Thus
there is a number k, -1 < k <0, such that the orbit through every point on the
half-open line segment = = {(x, y)| -1 <x <k, y = 0} tends to infinity in both
forward and reverse time without (again) crossing the x-axis, while the orbit through
every nonstationary point in H\o(2) is closed.

By the same computations applied to X we find that the phase portrait of X near p
is qualitatively the same as that of Y near p in each case: (I), (I) (a), (b), ().

If divX(q) = n =0, then Y = X and 4.4(a) follows. Hence, suppose n # 0. The
sine of the angle 6(x, y) from Y(x, y) to X(x, y) satisfies

1Y (x, y)I -1 X(x, y)llsinf(x, y) = n(x + 1)* y?

so that trajectories of X and Y cross at every point (including the x-axis) not on the
common invariant line /. We treat the case n > 0; the case n < 0 is similar.

In Case (I) (¢ <0) no point of the X-unstable manifold of p in H can be in
LuUint L. Forif r € L U int L then s = n(-1, r) is on a closed orbit y of Y, and
(taking into account the fact that the orientation of vy is clockwise) o_(s) C int ¥ so
o_(r) is bounded away from p. But if r € H\(L U int L) then o, (r) is bounded
away from p by the Y-orbit through r, so p is not on a separatrix loop of X.

Similar arguments show that p is not on a separatrix loop of X in Cases (II)(b) and
(II)(c). (Alternatively, directionally blowing up the critical point of X at p twice
shows that both separatrices bounding the unique hyperbolic sector at p lie in /)

In Case (II)(a), the same argument as in Case (I) shows that no point in L U int L
is in the X-unstable manifold of p. The proof will be completed by showing that the
X-stable separatrix at p lies in int L. To see this, consider the family of lines given by
y = —¢, for € >0, which meet / at r = (-1, —¢) and which meet L, closest to p, at
r* = (-1 + 8% -¢). For each such ¢ the vertical component of X on the segment
from r to r* computed at (-1 + 8, —¢) for 0 < & < 6* is

m(-1+8) —ne + m(-1+8)* — n(~1 + 8)e + ce?
=¢e*(c —n(8/¢e)) + mé(6 — 1).
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Since the origin is a focus for X it follows that m < 0 and since L is tangent to / at p
it follows that lim,_, 6* /¢ = 0. Hence, for ¢ sufficiently small the vertical compo-
nent of X on the segment is positive. But then the curvilinear triangular region A
bounded by the line segment in / from p to r, by the line segment from r to r* and
by the portion of L from r* to p is positively invariant, so all points in A are in the
X-stable manifold of p. That is, all points in A or its boundary lie on orbits of X
which are part of a parabolic sector of p. The X-stable separatrix bounding this
parabolic sector and the hyperbolic sector in H must therefore lieinint L. Q.E.D.

REMARK 4.4. In the previous proof if 0 < ¢ < § and if n > 0 is sufficiently small,
then X like Y has exactly two critical points at infinity, both hyperbolic saddles.
Hence, there must be an X-separatrix loop at p and we observe that the behavior in
parts (a) and (b) of 4.3 is realized.

We now treat the case that S is a saddle loop containing a single hyperbolic saddle
point. As mentioned in the introduction, Dulac validly showed that S is not the
accumulation set of infinitely many limit cycles. However, the generality in which he
sought to work makes his proof of this fact quite complicated. Thus, because his
proof is so difficult to read, as well as for the sake of completeness, we give a revised
proof here. First we state and prove a technical lemma.

LemMma 4.5. If a(x, y) is analytic on a neighborhood N of the square J =
{(x, )| —1<x<1, -1<y<1} then the vector field X(x, y)= xd/0x —
y[1 — ya(x, y)3/3y) has an integral in N expressible as a series H(x, y) =
3%_, y*h(x). H is continuous in N and differentiable at all points where x # 0.

ProoF. By hypothesis a(x, y) may be expressed as a series a(x, y) =
3%_.y*a,, (x), where for each k, a, (x) is analytic on a neighborhood of [-1, 1].
Thus there exist constants A4, ., > 0 such that | a, , ,(x)|< A,,, on a neighborhood
of [-1, 1] and such that A(y) = 2¥_,y*4,., converges there. Define a vector field Y
by Y(x, y) = xd/9x — y[1 — yA(y)]0/dy. An integral of Y may be obtained by
integrating dx/x = —(1/y)[1 — yA(y)]"'dy. But [1 — yA(y)]"' = 1 + ya/(y) where
a(y) is analytic on a neighborhood of [-1, 1] and all the coefficients of its power
series expansion about 0 are nonnegative. Hence an integral of Y is F(x, y) =
xye®?) = xy3®_ ykG, ., where G, = 1, G, >0 for k = 2. Define functions F,(x)
by F(x) = xG, for k = 1. Differentiating F(x, y) = ©_y*F,(x) term by term,
the fact that it is an integral of Y means the functions F(x) satisfy

k=1
xFi(x) = kF(x) = = X (k= j)A;F;(x), k=2
j=1

Define h,(x) = x. For k = 2 define h,(x) on (0, c0) as the unique solution of the
differential equation

k—1
(4) xhi(x) = kh(x) = = X (k= j)a,(x)h;_;(x)

Jj=1

with initial value A, (1) = 0. Similarly define A,(x) on (-o0,0) with initial value
h,(-1) = 0. Set h,(0) = 0. Certainly | h (x)|<| Fi(x)| on [-1, 1]. If this is true for
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Jj=1,2,...,k — 1, then on [-1,0)
x k—1
(=14 [ 4 B (k= )y (ke (1)
LA
x k=1
SB[ NS (k= DA Fe (o)

. k=1
=x"f 1V Y (k—j)A;F_(t) dt
-1 j=1

= -[1 =(=x)*"] F(x) < -F(x) =|F(x)],

and similarly |4, (x)|<|F(x)| for x € (0,1]. Hence by induction |h(x)|<
| F(x)|=| x| G, on [-1, 1]. Using this fact and the analyticity of F we see that the
series 3%_,y*h,(x) converges absolutely and uniformly on J, hence defines a
function H(x, y) there. It is clear that 32 ,d( y*h,(x))/dy converges absolutely and
uniformly on J as well. The differential equations for F, and h, imply | hj(x)|<
2kG,, so the same result holds for 22 ,d(y*h,(x))/dx when x # 0. Thus term-by-
term differentiation of H is valid, hence the condition that H be an integral of X
may be reduced to xh{(x) — h,(x) = 0 and to (4). Q.E.D.

THEOREM 4.6 (DULAC). Let S be a separatrix loop at the hyperbolic saddle point p of
an analytic vector field X. If S is the accumulation set of infinitely many periodic orbits
in int S, then the orbit through every point in int S sufficiently close to S is closed.

PrOOF. By Theorem 4.1 we know that infinitely many orbits in int S can
accumulate on S only if the eigenvalues of dX{( p) have equal moduli, hence we
assume that such is the case. Then by a change of scale, if necessary, and an affine
change of coordinates we may assume p = (0, 0) and

X(x, y) =[x+ P(x, y)]3/8x +[-y + 0(x, y)]3/3y,
where P and Q are analytic functions. Since the stable manifold (resp. unstable
manifold) of X at the origin is locally the graph of an analytic function x = a(y)
(resp. y = B(x)), the analytic change of coordinates near the origin given by
F(x, y) = (x — a(y), y — B(x)) transforms X to the form

X =x(1+p(x, »))3/ox — y(1 + q(x, y))3/dy
with p(0,0) = ¢(0,0) = 0 and both p and ¢ analytic near the origin. Define
n(x, y)=(1+p(x, y))"
and
n(x, y) = n(x, y)(1 + q(x, y)).

We observe that there is a disk D centered at the origin in which F, p, g, r,, r, are
analytic with r, expressible as

r(x, ) = 1+ xy'(x) +yb(x) +y%by(x) +---,



602 CARMEN CHICONE AND D. S. SHAFER

with y and b, analytic and such that (1 + xy’(x))™" is analytic in D. We multiply the
vector field by r, to obtain

X =x3/0x —y(1 + b(x, y))d/0y
with b(x, y) = xy'(x) + yb,(x) + y2by(x) + - - -. Define the analytic homeomor-
phism G: D - D’ by G(x, y) = (xe¥™), y) = (u, y). With this change of coordi-
nates X is expressible in D’ as

o0
X(u, y) = ull + xv'(x)]8/3u — y|1 + xv'(x) + T y*be(x) [3/y.
k=1
Hence by a change of scale, X appears (reverting to x and y for u and v respectively)
as

X(x, y) = x8/3x — y[1 — ya(x, y)]3/3y
where a(x, y) is analytic in D’. We may assume (by a change of coordinates of the
form u = cx, v = ¢y, with ¢ > 0 sufficiently small) that the function a(x, y) is
analytic on a neighborhood of J = [-1,1] X [-1,1]. As in the proof of Lemma 4.5
we may express a(x, y) as a series a(x, y) = 2P_,y*a, . (x), where a, . (x) is
analytic on a neighborhood of [-1, 1].
Define the functions ¢,(x) by ¢,(x) = 1, and for k = 2, ¢,(x) any solution of

k—1
(5) x¢i(x) = (k= Dey(x) + X (k= j)a,(x)9,_,(x) =0.

j=1
Thus for example ¢,(x) = —x/a,(t)/t* dt. Hence ¢,(x) is analytic in a neighbor-
hood of x = 0 if the linear term in a,(x) vanishes, but contains a term with In x as a
factor otherwise. Similarly ¢,(x), kK = 3, may not be analytic near 0 depending on
certain terms in a;(x),...,ad;_5(x), ¢5(x),...,p,_>(x). Suppose there exists an
integer m = 1 such that ¢,(x),...,¢,(x) are analytic but ¢, ,(x) is not. (The case
¢,(x) analytic for all k will be treated later.) Then replace ¢,,,,(x) by a solution,
also termed ¢, (x), of

XGpi1(X) = me,(x) + X (m+ 1 —5)a;(x)pi—,(x) = Cx™
j=1

where C is the coefficient of x™ in the sum on the left. The new ¢,,, ,(x) is then
analytic, so we may define an analytic function f(x, y) by f(x, y) = 2ty e, (x).
It follows that, since f(x, y) = [y + y%a(x, y)] for some analytic function a(x, y),

xf(x, y) = y[1 = ya(x, y)] f,(x, y) + f(x, y)

= Cx"y™ i (x, y)ym 2= Cxmf(x, )]+ m(x, y)ym T
where 7(x, y) is analytic on a neighborhood of J.
Expressing the analytic functions -ya(x, y) and 7n(x, y) as -ya(x, y) =
3%°_,x*b,(y) and n(x, y) = Z2_ox*c,(»), recursively define functions ¥,( y) by
1+ bo(2)]5(¥) + Yo(¥) = ™ 2eo( ),

k—1

I H b + (ke + D) = 57 e(y) +y B by (2)¥(9)
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for1 <k <m,and

1+ BOIA) + (n 4 DR0) = 97 e0(3) £33 by (0)
_C(y +)’2¢2(0) +oee +)’m+l¢m+|(0)
+C(y +7%6,(0) + -+ +y™19,.,(0) + ¥o(»))"" .

It follows directly by induction that that we may choose ,(y) so that §,(y) =
y™*2d,(y), where d,(y) is analytic on a neighborhood of J, 0 < k < m. Together
with the defining equations for y,(y), this implies that if we let g(x, y) be the
analytic function g(x, y) = 27 x*y,(»), then

xg(x, y) = y[1 — ya(x, y)]g,(x, y) + g(x, y)
= 9™ (co(y) +e(y)x + - e (y)x™)
+Cxm(y +y26(0) + -+ +y79,,,(0) + do( )

m+1
_(y+y2¢(0)+...+ym+1¢m+l(y)) ]
Fymiami(x, )
= ™ 2n(x, p) + Cx[(£(x, ) + g, )™ = (f(x, )]
+ym+2xm+1“(x’ y)
for some function u(x, y) which is analytic on a neighborhood of J.

Setting k(x, y) = f(x, y) + g(x, y), it follows that k is analytic in a neighbor-
hood of J and satisfies

xk,(x, y) = y[1 = ya(x, y)1k,(x, y) + k(x, y)
= Cx"k(x, )™+ xm Yy (x, ).

For | x| and | y | sufficiently small the transformation u = x, v = k(x, y) defines
an analytic change of coordinates. In the new coordinates

)m+l

)m+l

Uu=x=x=u,
o =%k (x,y) +yk (x,y) = xk(x, y) = y[1 = ya(x, y)]k,(x, y)
= —k(x, y) + Cx"k(x, )™+ x" 1y 2u(x, y)
= —o[1 — Cu™™ — u"* 0" i (u, v)]

since v = k(x, y) =y + y%a(x, y), a(x, y) analytic. If we finally transform by
X = cu,y = cv, for ¢ > 0 sufficiently small we have

X(x,y) = x3/0x — y[1 — Cxmy™ — x"+1ym*lu(x, y)]a /0y
where C # 0, and p(x, y) is analytic on a neighborhood of J.

By Lemma 4.5, X has an integral of the form H(x, y) = 3%_, y*h,(x). Computing
from (4) we have (with obvious modification if m = 1),

hy(x) = x,
h(x)=0, 2<s<m

hppii(x) = -Cx™*'In| x|,

b
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and, by induction, for0 <s<m — 1,

hrm+:(x) = xm+2 2 arm+s,k('x)(1n I X |)k’
k=0
where the functions «, ;(x) are analytic on a neighborhood of [-1, 1].

We may suppose that S lies in the first quadrant so that its separatrices lie along
the portion of the positive semiaxes in J. Choose ¢ > 0 so small that the line
segments =, = {(x,1)| —e <x <e}and 2, = {(1, y)| —& <y < ¢} are arcs without
contact for X. The section map y = 7(x) from 2 = {(x,1)|0 < x <¢} to =F =
{(1, )| 0 <y < ¢} satisfies

(6) r(x) = H(L, 7(x)) = H(x,1) = kghk(x).

The Poincaré return map p: Z,” - =, does not depend on any analytic change of
coordinates, hence we may change coordinates back to the original form of the
vector field to obtain an analytic section map ¢’: 2} — |, where 2 and Z, are the
images of the sections 2, and 2, under the change of coordinates. Returning to the
coordinates in which 7 is defined, ¢’ will be expressed as some analytic map o:
S, - Z,. The Poincaré return map p: 2 > =, iso o .

A point on =, , with coordinates (x, 1), is on a closed orbit of X in int S if and
only if x satisfies o o 7(x) = x, hence by (6) if and only if

[oe]

() 2 hi(x) =07'(x).

k=1
If we express the analytic function o~! as o¢7'(x) = 2¥_,a,x*, then using the
formulas for 4 ,(x) displayed above, condition (7) on the coordinate x is

o0
x— Cx" 'lnx + x"2®(x) = Y a,x*,
k=0

where ®(x) is such that lim _ o, x®(x) exists and is finite. Since ¢~(0) = 0 and the
coordinate x cannot be zero, we may divide through by x in this last expression, so
that a point p = (x,1) in =" is on a closed orbit of X in int S if and only if the
coordinate x satisfies

o0
(8) 1—Cx"Inx +x""'®(x) =a, + Y ax*".
k=2

Suppose there exists a sequence of points p, = (x,,1) on =, each on a closed
orbit of X in int S and such that lim,,_, ., x, = 0. Since (8) then holds for each x,,
letting n tend to infinity we conclude that a; = 1. Hence we may subtract 1 from
each side of (8) and divide through by x again. Again the resulting equality holds for
each x,, hence passing to the limit we have @, = 0. Similarly a, =0 for3 <k <m
and condition (8) reduces to ~Cln x + x®(x) = a,,, | + _,,,,a,x* ™", which
holds for each x,. But now passing to the limit we have a contradiction, so it is
impossible that there be infinitely many closed orbits in int S accumulating on § if
an integer m as described above exists.
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Thus we turn to the case that all the functions ¢,(x) satisfying equation (5) are
analytic on a neighborhood of [-1,1]. We now define f(x, y) as f(x, y) =
3%_,y*¢,(x) and we will show that f(x, y) is analytic. To this end it is advanta-
geous to use complex variables. Since a(x, y) is real analytic on a neighborhood of
the square J, a(x, y) is analytic as a function of two complex variables on | x |< 1
and |y|< L. If ya(x, y) = 32_ yka(x), ay(x) = 22 a,,x" it follows that | a,(x) |
<20l |= A, for | x[< 1.

By (5), f is a formal solution of the partial differential equation

) xf, = y(1 —ya(x, y))f, + f=0.
Define a( y) = Z¢_,y*4, and consider the auxiliary equation
(10) xf, =y(1—a(y))f, +f=0.

There is an analytic function B(y) defined for |y |< 1 such that yeP") = 3%_, y*B,
is the solution of (10) which is independent of x. From equation (5) we compute

1 k—1
(%) = [ 29T (k= )y (2)éy,(2) dz
X j=0

integrating along any pathin {x € C|0 <|x|<1}.
A straightforward estimate along the path
y(¢) =[(1 = r)t/12 + r] et /128
shows

1 — k k—1
2 (k —NA; 0| i
Jj=0

4
I¢k+](x) |<E 1—r

for x = re’® and | x |< 1. If | x | < 1, we obtain
|¢k—j(x) |<E 2 (k —J)A4,5 |¢k—j(x)|
j=0

and an easy induction argument using (10) shows
| dpr1(x) < 8By <8*'B, .

Since ¢,(x) = 2% op.,x", the Cauchy estimates imply |, |< 8%B,. The formal
power series f(x, y) = 3%, 3%_ ¢,y x" satisfies (9). Also
00

0 o0 o0
2 ZlomllylIxl"<s 2 Z 8By |x|"
n=0 k=1 n=0 k=1
and the second series converges for | x |< §, | y|< . Hence, the solution f of (9) is
real analytic in a neighborhood of the origin.
The transformation u = x, v = f(x, y) defines an analytic change of coordinates
near the origin, and by (9) in the new coordinates X is

X(u,v) = ud/du — vd/dv.

The transformation x = cu, y = cv for ¢ > 0 sufficiently small makes this expression
valid on a neighborhood of J. Reverting to the letters x and y for u and v
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respectively, an integral is H(x, y) = xy, so that (6) is now 7(x) = x. Thus although
7 is defined on Z; only, i.e. for x € (0, ¢) it has an analytic extension to [0, ). The
argument referred to in the introduction now shows that if 6 © 7(x) — x = o(x) — x
= 0 infinitely often in [0, §], 6(x) = x, hence the orbit through every point in int S
sufficiently near S is closed. Q.E.D.

THEOREM 4.7. Let S be a separatrix loop of a quadratic vector field X . If S
surrounds infinitely many periodic orbits, then S surrounds a center and the orbit
through every nonstationary point in int S is periodic.

PROOF. If S surrounds infinitely many periodic orbits, then as in the proof of 3.2
we observe that infinitely many of the periodic orbits accumulate on a separatrix
cycle, hence on S. By 4.1, div X( p) = 0. If p is not hyperbolic the result follows from
4.3. If p is hyperbolic the result follows from 4.6 and, as in 3.2, from the fact that the
annulus of periodic orbits near S must extend to the critical point in int S. Q.E.D.

THEOREM 4.8. If X is a quadratic system and S is a separatrix loop at the critical
point p, then S is not the accumulation set of infinitely many limit cycles.

PROOF. By 2.9 periodic orbits surrounding the critical point in int S must be in
int S. Hence 4.8 follows from 4.7. Q.E.D.

5. Examples and questions. In this section we provide examples of various
quadratic systems realizing the behavior described in the previous sections, and pose
several unanswered questions.

ExAMPLE 5.1. A quadratic vector field with a separatrix cycle as described in
Theorem 3.1 is

X(x,y)=x(x+3y—1)3/3x — y(3x +y — 1)3/dy.

The three saddles are at (0, 0), (0, 1), and (1,0) and the center is at (3, 3).
EXAMPLE 5.2. A quadratic vector field with a separatrix cycle as in Theorem 3.2,
part (a) is

X(x,y)=(y+ x>+ »?)d/dx + xyd/dy.

The only two critical points are p: (0,0) and g: (0, -1). The x-axis is invariant, and
an application of the procedure sketched in Andronov et al. [1,p. 365] shows that
there is an elliptic sector at p in the lower half-plane (and a hyperbolic sector in the
upper half-plane). The critical point at g is hyperbolic, and by symmetry of
trajectories with respect to the y-axis the stable and unstable eigenspaces through g,
lines L* and L¥, meet the positive and negative x-axis respectively, say at points s
and u. By Theorem 2.4, the direction of flow across L’ at s determines the direction
of flow across L° near g, so by hyperbolicity of g the stable separatrices of g lie
above L°. Thus there is a stable separatrix meeting the interior of triangle gsu.
Similarly an unstable separatrix at ¢ meets the interior of triangle gsu, and it easily
follows that each separatrix runs between p and gq.
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ExaMPLE 5.3. A quadratic vector field with a separatrix cycle as in Theorem

3.2(b)(1) is
X(x,y)=(x+ l)y%+ (—x +%y - x? +%xy —%yz)%.

In the terminology of the proof of the theorem, since a =m and b —n # 0, it
suffices to verify that the parabola ¢ with equation x? — 2xy + y> +2y — 1 =10
passes through the point with coordinates (-1,0) and is invariant under the flow
induced by X. Then the portion of & in the half-plane {(x, y)|x > -1} forms a
portion of a separatrix cycle joining the saddle node at (-1,0) and the hyperbolic
saddle at (-1, -4).

ExAMPLE 5.4. Consider the family of quadratic vector fields

X,(x, y) = (x*+bxy — (1 + b)y?)d/0x + (y — 2x> + 4xy — 3y?)3 /0y,
-1<bh<Ss.

We will show that, for certain values of the parameter b there are members of the
family exhibiting a noncontinuable separatrix cycle as in Theorem 3.2(b), part (i), a
noncontinuable separatrix loop at a saddle node, and a continuable separatrix loop
at a saddle node (a concrete example of this case is [ y(x — 1) + x2 + y2 — 1]9/0x
— x(x — 1)d /3y, discussed by Andronov et al. [2, pp. 433-436]).

It is simple to verify that for all b > -1, X, satisfies: (1) the point p: (0,0) is a
saddle node with stable separatrix o tangent to the x-axis and in quadrant two near
p, and unstable separatrices tangent to the y-axis and lying in the left half-plane; let
p denote the unstable separatrix at p having nonempty intersection with the upper
half-plane (see (5) below); (2) the point ¢: (1, 1) is a hyperbolic saddle point with
unstable separatrices tangent at g to the line y = 1 and lying below it (see (6)
below), and with stable separatrices tangent at g to the line through ¢ of slope
(3 +b)/(2 + b) > 1 and lying to its left (compute X at the crossing of this line with
the x-axis and apply Theorem 2.4); let T denote the unstable separatrix at g in the
left half-plane formed by this line; (3) the sole remaining critical point is v:
(-(1 + b)D, D), D=(2b*>+8b+ 9)!, andis a

stable node for -1 < b < b, = -.8474,

stable focus for b, < b < b, = .6861,

unstable focus for b, < b < b, = 4.0975,

unstable node for b, < b < 5;

(4) X is horizontal on an ellipse E with horizontal tangents at p and g; the flow of X,
is out of (respectively, into) int E on the portion of E from ¢ to v (respectively, v to
p); (5) for x # 0, X(x,0) points into the lower half-plane; (6) for x # 1, X(x, 1)
points into the lower half-plane formed by the line y = 1; (7) for y # 0, X(0, y)
points into the left half-plane; (8) by (1), (2), (6) and (7), the stable separatrix at ¢ in
the half-plane y < 1 tends to p in reverse time; and (9), there are two critical points
at infinity, a hyperbolic source and a hyperbolic sink, located at the ends of a line
with positive slope greater than 1.

For every number 0 < ¢ <1 let /. denote the portion of the line y = ¢ to the left
of E; it is an arc without contact for X, all b > —1. When they exist let S, = S(b)
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denote the abscissa of the first intersection in reverse time of ¢ with /,, and
T. = T(b) the abscissa of the first intersection of = with /.. Given b, clearly S.(b)
exists for ¢ < D(b) + ¢/(b), some & >0 and T(b) exists for ¢ > D(b) — &,(b),
some &, > 0.

The angle 0(x, y) from X,(x, y) to X,(x, y) satisfies

I X,(x, )l - 1 X, (x, p)lsin@(x, y) =[y — 2x2 + 4xy — 3p2](x — y)(b — b')y.
Thus as b monotonically increases, 6(x, y) is negative throughout a region con-
taining the portions of ¢ and 7 from p and g to /. respectively, so that S/(b)
monotonically increases and T,(b) monotonically decreases, each varying continu-
ously with b. It follows that if S(b) exists, so does S(b") for -1 < b’ < b, while if
T(b) exists, so does T(b") for b < b’ < 5.

When b = b,, 0 must tend to the source at infinity in reverse time, else it tends to
p, forming a separatrix loop at p surrounding the node at v, which is impossible (see
the remark at the end of §2). Then 7 must tend to v, s0 S, ,,(b) < T ,,(b,), hence by
continuity S, ,,(b) and T, ,,(b) exist and

(E,)) Sy /2(b) < T, ,5(b) forby<b<by+e

for some ¢ > 0.

At b =35, v: (-6/99,1/99) is an unstable node, hence it is not surrounded by a
closed orbit, so 7 must tend to the sink at infinity, and o (in reverse time) to v. Thus
T 1(5) < 801(5), T () and S,(b) exist and

(Ez) T (b) <Sq(b) forb,—8<b<S5

for some ¢ > 0.
Clearly we may choose .01 = ¢, <c¢; < ---<cg=3 and intervals [mg, n,),
., [my, n,] such that t, and Sjenst on[m;n ], 0<j<K,m;<n.,0<j<K

— 1, ny=15, and mx" by. T(b) <S/b) 1mphes T.(b)<S, (b) for every ¢’ at
which the latter values exist (as seen by applying the Jordon Curve theorem to
portions of ¢ and 7 from p and ¢ to y = ¢ and y = ¢’ together with the saddle
separatrix between p and ¢), and similarly with inequalities reversed. Hence by (E,)
and (E,) and construction of the c; and [m;, n;] there exists a ¢, such that
S, (m;)<T(m;) and T (n;) <S(n,), hence by continuity S_(b*) = T (b*) for
some b* € (m,, n;). This X,. has a noncontinuable separatrix cycle as described in
Theorem 3.2(b), part (i). If R (b) similarly denotes the abscissa of the first intersec-
tion of p with / , it is clear that R j, ,»(b*) exists and Sppe) < R p(;)(b*), so that for
b = b* + v, y > 0 sufficiently small, ¢ tends to p in reverse time, and Xj; exhibits a
noncontinuable separatrix loop at the saddle node p.

Finally, let s(b) and r(b) denote the points of first intersection of ¢ and p
respectively with the portion of E from v to ¢, which exist and depend continuously
on b for b* < b < b, (taking s(b,) = v). Then r( b) is closer to v (measured along E)
than s(b). But at b,, v is an unstable node, hence p tends to the sink at infinity, so
s(b,) is closer to v than r(b,). Consequently there exists b**, b* < b** < b,, at
which s(b**) = r(b**). This X,.. exhibits a continuable separatrix loop at the saddle
node p.
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REMARK. At b = b, v is a multiple focus; the third focal value is positive, hence a
unique unstable limit cycle collapses into v as b increases across b,. Since div X(0, 0)
= 1> 0, the separatrix loop of X,.. is unstable and as b increases across b** a
unique unstable limit cycle is created from the separatrix loop, onto which ¢ winds
in reverse time. Thus it is likely (and numerical integration indicates) that b** < b,,
so that we cannot conclude existence of a separatrix cycle surrounding a limit cycle
from this example.

EXAMPLE 5.5. A quadratic vector field with a separatrix cycle as described in
Theorem 3.2, part (b)(ii) and surrounding a center is any Hamiltonian system which
has as its Hamiltonian a cubic polynomial, one level set of which includes a straight
line and a parabola crossing at two points. A specific example is the vector field

X(x, y) =2(x + 1)yd/3x — (2x + y?)3/dy

which has as its Hamiltonian H(x, y) = (1 + x)(1 — x — y?). The saddles are at p:
(-1,v2) and ¢: (-1,-v2), and there is a center at v: (0, 0).

ExXAMPLE 5.6. A quadratic vector field with a separatrix cycle as described in
Theorem 3.2, part (b)(ii) and surrounding a focus is more difficult to obtain. We will
show that there is a value of the parameter n in the interval (- 3, 1) for which the
vector field

X(x,y) = (x+1)p3/0x + (—x + ny — 2x> + xp — 3»?)3/0y

gives the desired behavior.
For n € (-%,1), (0,0) is a focus (when n = 0, the Center Theorem shows (0, 0) is
not a center) and the line /: x + 1 = 0 is invariant. There are hyperbolic saddles at

p:
(L= +(n =17 +2/3 )

in the upper half-plane and at g:

(-L(r=1D =V —17+ 2/3)

in the lower half-plane (Berlinskii’s Theorem (2.2)). The stable manifold of p lies in
the invariant line /; denote that portion of its unstable manifold in the half-plane
x > -1 by 6. The unstable manifold of ¢ also lies in /; denote the portion of its
stable manifold lying in the half-plane x > -1 by 7. Let s(n) (respectively ¢(n))
denote the abscissa of the point of intersection of o(resp.7) with the positive x-axis.
Let X be the extension of X of the Poincaré sphere. For every value of n, X has a
single antipodal pair of critical points on the equator, a source at (0, 1,0) and a sink
at (0,-1,0). Thus X has a single source (in the direction of the positive y-axis) and
sink (in the direction of the negative y-axis) at infinity, for all n.
Now let

d 2 1 d d d
Y(x,y) = (x+ Dyz-+ (-x 3%’ - 5}’2)@ = -H,(x, y) 7+ H{x, y)‘a;



610 CARMEN CHICONE AND D. S. SHAFER

for the Hamiltonian

2 1 1 1 5
H(x,y)= —§x3 - Exy2 - Exz - Eyz + g

_ 2, 1, 5 .5
—<X+IW-9X 2 18x+18y

whose zero level set is the line /: x + 1 = 0 and the ellipse E:
4x* +9y2+5x —5=0,

which intersect at two points. Thus the portion of E in the half-plane x + 1 = 0 and
the portion of / in int E form a separatrix cycle for Y surrounding a center at (0, 0).
Call the interior of this separatrix cycle R. Note that E intersects the positive x-axis
at x = $[y105 — 5].

The sine of the angle 6(x, y) from Y(x, y) to X(x, y) satisfies

I X(x, y)I-1Y(x, y)lIsinb(x, y) = y*(x + 1)(x + n),

so that nonstationary trajectories of X and Y cross at every point of the plane not on
the vertical lines x = -1 and x = -n. This implies that X has no closed orbits in the
half-plane x > -1 when n = —2 < - {[Y105 — 5] and when n = 1, at which values
the line x = —n does not intersect R. This is because any closed orbit of X in the
half-plane x > -1 would have to surround (0, 0), hence cross the x-axis at a point
with abscissa between —1 and 0, hence cross some closed orbit of Y, which is
impossible. Thus at n = - %, since (0, 0) is a hyperbolic stable focus, either 6 = 7 or
in reverse time 7 tends to the source at infinity; hence s(- ) <#(- %). At n =1,
(0,0) is a hyperbolic unstable focus, and either 1 = ¢ or in forward time o tends to
the sink at infinity; hence S(1) = #(1).

Let n increase from - 3 to 1. For n, < n, the sine of the angle from X, (x, y) to
X, (x, y) is positive for (x, y) in the half-plane x > -1, so that as n increases
X(x, y) turns counterclockwise at every (x, y) with y 0 and x > -1. It is well
known that s(n) and ¢(n) depend continuously on n, and that since the positive
x-axis is an arc without contact for X and X is rotating counterclockwise, t(n) is
strictly decreasing while s(n) is strictly increasing. Thus there is a unique n, € (- 3, 1)
at which s(n,) = #(n,). This value of n clearly provides the example sought.

We remark that the stability of the separatrix cycle of X is determined by the
eigenvalues of dX at p and ¢, and for all n <1 is stable on the inside. Thus the
separatrix cycle is stable at n,. If one could determine that n, < 0, then one would
have established the existence of a limit cycle surrounded by a separatrix cycle.
However, we have numerically integrated X and our computations indicate that
ng > 0.

EXAMPLE 5.7. As usual it is simple to find an example of a saddle loop
surrounding a center. A quadratic vector field with a saddle loop surrounding a
focus is provided in Andronov et al. [2, p. 427]. By an argument like that of Example
5.6 they show that for a unique number p = p, € (-1, 3) the vector field

X(x,y)=y3/3x+ (—x + py + x2+ xy + »?)3/dy
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has a saddle loop at the critical point (1, 0) which surrounds a focus at (0, 0). In fact,
the saddle loop is unstable on the inside, so that if u, were nonnegative, (0, 0) would
also be unstable and the existence of a limit cycle inside the loop would be forced.
However, by a careful computation of the characteristic exponent of any closed
orbit, using the fact that y = X as in the proof of 3.2, we can show that if u = 0 then
every closed orbit is (hyperbolic) unstable, which is impossible. Thus p, < 0 and the
question below remains open.

Question. Is there an example of a quadratic vector field having a limit cycle
surrounded by a separatrix cycle?

Theorem 3.1 and the examples suggest:

Conjecture. The answer is “no”.

A polynomial vector field can have a limit cycle surrounded by a continuable
separatrix cycle. The following example was shown to us by David Hart.

ExAMPLE 5.8. The quadratic system

X(x,y) =yd/3x — (x* + x)3/9y

has Hamiltonian H(x, y) = 1x*> + 1x? + 1y? and corresponds to the second-order
equation

(11) i+ x2+x=0.

X has a hyperbolic saddle at (-1, 0) with a saddle loop surrounding a center at (0, 0).
The equation of the loop is H(x, y) = ¢ and H(x, y) = % is the equation of one of
the periodic orbits inside. Add a dissipative term to (11) to form

%+ x(H(x,y) = $)(H(x,y) — &) +x*+x=0
with corresponding vector field

Y(x, y) = yd/0x = [(H(x, y) = {)(H(x, y) — %)y + x + x2]3/dy.

Then, Y has a limit cycle corresponding to the curve H(x, y) = {; surrounded by
the separatrix cycle corresponding to the curve H(x, y) = ¢. Of course, Y is a
polynomial vector field of degree seven.

Finally, a polynomial vector field might have infinitely many limit cycles accu-
mulating at infinity. Here, as in the case with separatrix cycles, arguments previous
to those given here concentrate on the analyticity of the system.

In his paper Dulac [6] refers to polynomial (rather than merely analytic) vector
fields only because they have finitely many critical points and because they always
extend analytically to vector fields on the Poincaré sphere. Unfortunately, a quadratic
vector field which has a separatrix cycle containing an orbit at infinity does not
generally admit a change of coordinates which places the whole separatrix cycle into
the finite plane and which leaves the resulting vector fields a polynomial. This fact
prevents the immediate extension of our results to such separatrix cycles. These
considerations also point out a fundamental difficulty in Hilbert’s problem: where
does one use the fact that the vector field is a polynomial and not just an analytic
vector field?
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ADDED IN PROOF. After this paper was written Rodrigo Bamon proved the
existence of a quadratic vector field with a limit cycle surrounded by a separatrix
loop at a hyperbolic saddle point. Thus, the conjecture in §5 is false.
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