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THE DD7ISOR CLASSES OF THE HYPERSURFACE
z'm = G(xx,... ,x„) IN CHARACTERISTICp > 0

BY

JEFFREY LANG

Abstract. In this article we use P. Samuel's purely inseparable descent techniques

to study the divisor class groups of normal affine hypersurfaces of the form

zp = G(xx,.. .,x„) and develop an inductive procedure for studying those of the

form zT" = G. We obtain results concerning the order and type of these groups and

apply this theory to some specific examples.

Introduction. In this article we study the divisor class group of normal affine

hypersurfaces Fm E knk+x defined by equations of the form zp" = G(x,,.. . ,x„),

where the ground field k is assumed to be algebraically closed of characteristic

/?>0.
O. Zariski briefly considered surfaces of this type for the case m = 1, « = 2 in

[ZA]. Investigations of their geometry have been made by P. Blass [Bl, B2], who

introduced me to this project. P. Samuel in his 1964 Tata notes [SI] describes the

class group of several of these surfaces, such as zp — xy and zp = x' + y'. Results

from Samuel's notes and R. Fossum's book [FO] form the foundation of this work,

and a brief discussion of these appears in §1.

Facts concerning the order and type of the class group of F,: zp = G(x,,.. . ,x„)

appear in §2, together with the calculation of zp = 77(x,,... ,x„), where 77 is a form

of degree not divisible hyp.

The case m > 1 is attacked in §3. K. Baba in [BA] uses higher derivations to study

the class group of the hypersurfaces. We develop an alternate, inductive method of

attacking Cl(Fm: zp" = G). Again we collect results about the order and type of

these groups, ending this section with some examples.

In §4 the local behavior of C1(F,: zp = C(x,, x2)) is discussed. In §5 a description

of the class group of Krull rings A such that k[xpm,... ,xp"] E A E k[xx,... ,x„] is

given.

0. Notation. 0.1. /¿-algebraically closed field of characteristic p > 0, unless stated

otherwise.

0.2. A^-affine «-space over k.

0.3. Surface-irreducible, reduced, two-dimensional, quasiprojective variety over k.

0.4. The notation F: fixx,... ,xn) = 0 means

F=Spec(k}(X^-X"\-.FEA"k.
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614 JEFFREY LANG

0.5. If A is a Krull ring we denote by Cl(^4) the divisor class group of A.

0.6. If F is a surface we denote by C1(F) the divisor class group of the coordinate

ring of F.

0.7. For/(x,,.. . ,x„) G k[xx,.. .,x„] we denote by:

deg /—the total degree off.

deg., /—the degree of /in x,.

deg     .(/)—tne degree of/in the variables x, and x .

1. Preliminaries. P. Samuel's 1964 Tata notes [SI] and R. Fossum's The divisor

class group of a Krull domain [FO] form the framework for this article. What follows

is a brief discussion of some results from these works. We begin with Samuel's notes.

Definition. Let A be a domain. A is a Krull ring if there exists a family («,)iG/ of

discrete valuations of qt(v4) such that:

(1) A = r\jRv , where Rv denotes the ring of v¡.

(2) For every x ¥= 0 G A, vjx) = 0, for almost all / G 7.

Theorem 1.1. A Noetherian integrally closed domain is a Krull ring isee [SI,

p. 5]).

Definition. Let A be a domain with quotient field K. A fractionary ideal a is an

A -submodule of K for which there exists an element d E A id¥=0) such that

da E A. A fractionary ideal is called a principal ideal if it is generated by one

element, a is said to be integralif a E A. a is said to be divisorial if a¥=\0) and if a

is an intersection of principal ideals.

Definition. Let IiA) denote the set of nonzero fractionary ideals of the domain

A. On IiA) we define an equivalence relation by a ~ b <*> A: a = A: b. The quotient

set of IiA) by this equivalence relation is called the set of divisors of A, denoted by

DiA). For each a E IiA), we denote by ä the equivalence class of a in DiA).

Definition. Let A be a Krull domain. The composition law (a, b) ~* ab on IiA)

induces a well-defined operation on DiA), thus giving DiA) the structure of an

abelian group with identity element A (see [SI, pp. 1-4]). Hereafter we will write this

composition law additively. Thus 5 + b =ab for a, b G DiA). Let FiA) denote the

subgroup of DiA) generated by the principal divisors (equivalence classes of

principal ideals). We denote by Cl(^) the quotient group DiA)/FiA), called the

divisor class group of A.

Theorem 1.2. Let A be a Krull ring. Then:

(1) Cl(./4) is generated by the classes of the height one primes of A.

(2) A is factorial if and only ifCliA) = 0 isee [SI, pp. 6-7, 18]).

Notation. Let A E B be rings. Let p E A and q E B he prime ideals. We write q \ p

if q n A — p and we say that q hes over p.

Theorem 1.3. Let A E B be Krull rings. Suppose that either B is integral over A or

that B is a flat A algebra. Then there is a well-defined group homomorphism d>:

ClU) -> Cl(77) isee [SI, pp. 19-20]).
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Let us describe the homomorphism of Theorem 1.3. If q and /? are height one

primes of B and A with q | p, we let e( q : p ) denote the ramification index of q over /?.

Then for each height one prime p of A we define </>(/?) = 2q^e{q :p)p, the sum

taken over all height one primes in 77 lying over p. This sum is always finite since 77

is a Krull ring. We then extend </> by linearity. The hypotheses in Theorem 1.3 are

needed to guarantee that this map induces a well-defined map on divisor classes.

Theorem 1.4. Let A be a Krull ring and S a multiplicatively closed subset in A. Then

S'XA is an A-flat Krull ring and:

(1) <j>: Cl(^4) -* C1(S"U) is surjective; and

(2) // S is generated by prime elements then <b is bijective isee [SI, p. 21]).

Remark 1.5. In Theorem 1.4, ker<]> = 77 + F(^)/F(^), where 77 C DiA) is the

subgroup generated by those height one primes p of A such that p (1 S =£ 0.

Theorem 1.6. Let R be a Krull ring. Then R[x] is a Krull ring and <j>: C1(Ä) ->

Cl(7<[x]) is bijective [SI, p. 22].

Let A be a Noetherian ring and m an ideal contained in the Jacobson radical of A.

If we give A the m-adic topology, then i A, m) is called a Zariski ring. The

completion Â of A will also be a Zariski ring and is ,4-flat with A E A.

Theorem 1.7. Let iA,m) be a Zariski ring. Then if A is a Krull ring, so is A. Also

<¡>: CliA) -* Cl(i) is injective [SI, p. 23].

Throughout this article we will concentrate for the most part on the case where

qt(77)/qt(^4) is a purely inseparable extension. The following results are also from

Samuel's notes.

We let 77 be a Krull ring of characteristic p > 0. Let A be a derivation of qt(5)

such that A(77) C B. Let K = ker(A) and A - B n K. Then A is a Krull ring with 77

integral over ,4. Thus we have a map <j>: CliA) -» Cl(77).

Set £ = {r'Ai 11 E qt(73) and t'xAt G 77}. Note that £ is an additive subgroup of

77, called the group of logarithmic derivatives of A. Set £' = {u'lAu \ u is a unit in B}.

Then £' is a subgroup of £.

Theorem 1.8. (a) There exists a canonical monomorphism </>: ker<#> -* £/£'. (b) If

[qt(77): K}= p and A(77) is not contained in any height one prime of B, then <j> is an

isomorphism [SI, p. 62].

Theorem 1.9. (a) 7/[qt(77): K} = /?, then there exists a EA such that Ap = aA; (b)

an element t G 77 is in £ if and only if Ap~xit) - at + tp = 0 [SI, pp. 63-64].

Remark 1.10. We take a moment to describe the monomorphism <j>: ker ¿> -> £/£'.

Let ß E ker<i> C CliA). Then <j>iß) = tB for some t E qt(73). The map ¡j> sends ß to

t'xAt.

To see that t~xAt is in B, we write ß as a linear combination of height one primes

of A, ß — nxqx + • • • +nrqr, where the q¡ are height one primes of A and the «, are

integers. For each i, there is a unique height one prime Q, in 77 lying over q¡. By

definition <i>(j8) = nxexQ\ + ' ' ' +wrerôr' where ei denotes the ramification index of
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g,. 4>iß) = tB imphes that 77: gf' • • ■ Q"/- = 77: i77. Thus for each height one

prime g of B the ramification index of g divides vQit) where vQ is the valuation

corresponding to g. It follows that there exists an a G K such that uß(i ) = t?ß(a),

i.e. i = a« for u a unit in BQ. Thus r'Ai = a_1Aa + u~xAu - u~xAU. Since A(77e) C

Bq, we conclude that t'xAt E BQ for each height one prime g of 77. Since 77 is a Krull

ring we have that t'xAt G B (see [FO, p. 8]).

These facts are to be found in Fossum's book [FO].

Theorem 1.11. Let A = A0 + Ax + • • • be a graded Noetherian Krull domain such

that A0 is a field. Let m - Ax + • • •. Then CliA) -» Cl(^m) is a bijection [FO,

p. 42].

Theorem 1.12. Let A = AQ + Ax + • • • be a graded Krull domain such that A0is a

field k. Let k' be an extension field of k. Suppose A ®kk' = A' is a Krull domain.

Then A' is a faithfully flat A-module and the induced homomorphism C\A) -» Cl(^4') is

an injection [FO, p. 43].

The next theorem generalizes 1.8.

Theorem 1.13. Let § be a finite group of derivations of a Krull domain 77 of

characteristic p > 0. Let A be the fixed subring of§. Let Dx,.. .,Dr be a basis for § over

Z//?Z. Then the kernel of the homomorphism Cl{A) -* Cl(77) is isomorphic to a

subgroup of V0/V¿, where V0 and V¿ are the following subgroups of U,L — qt(77).

V0 = {it'xDxt,...,t'xDrt): t E qt(5) and t'xD¡t E B for all i = 1,...,/•} and V¿ =

{iu'xDxu,.. .,u'xDru): uEB*} with B* the units of B isee [FO, p. 92]).

Remark 1.14. The injection in 1.13 is analogous to that of 1.8. If 7 is a divisorial

ideal of A whose class is in the kernel of <j>: Cl(A) -* Cl(77), then 77: (77:777) is a

principal ideal, say x77, for some x G 77. We then map 7 to ix'xDxx,... ,x'xDrx) in

Vo/K

2. Properties of C1(F: zp = G). Throughout this article, unless stated otherwise, k

is an algebraically closed field of characteristic p > 0. Let G(x,,.. .,x„) E

k[xx,...,x„]\k[xf,...,xp] be a polynomial in « variables and FCA"t+l be the

hypersurface defined by the equation zp = Gixx,... ,x„).

Since G £ k[xf,...,xp] if and only if 3G/3x, ¥= 0 for some /' = l,...,n, we will

assume that 3G/3x, =£ 0.

We will also restrict our attention to hypersurfaces that are normal, or equiva-

lent^, to hypersurfaces F: zp = G for which the greatest common divisor of the

«-tuple of polynomials (3G/3x,,...,3G/3x„) in k[xx,...,xn] is 1 (see [MA,

p. 125]).
Thus we will hereafter assume that G satisfies the condition

M 3x7*°    and    gCd(3x-'---'3x;) = 1-

Lemma 2.1. The coordinate ring of F is isomorphic to A = k[xf,... ,xp, G].
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Proof. The coordinate ring of F is R = k[xx,... ,xn, z]/I, where 7 is the ideal in

k[xx,...,xn, z] generated by zp — G. Let $: k[xx,...,xn, z]-> A be the mapping

that sends each a G A: to a'', each x, to xf, and z to G. This is a surjective

homomorphism since k is perfect. Thus the kernel of $ is a height one prime

containing I. Since I is height one, I = ker $. Therefore R is isomorphic to A (note

that this isomorphism is not a ^-isomorphism).

2.2. For each i= 1,...,«— 1, let D¡: k(xx,...,x„) ^ k(xx,...,xn) be the k-

derivation defined by

3C     3       3G     3

'     3x,+1 3x!     3x, 3x,+| '

Lemma 2.3. n^'iV'iO) n k[xx,...,x„] = A.

Proof. We have that

k{xx,...,x„)3 Dxx{0)^ D2-x{0) n Z)f'(O)

^  ••• $ Dxx{0)n---nD„'lxiO)DqtiA),

because for each/ = 1,...,« - 1, xj+x E (i)f'(O) n • • • n7)/J,(0)) and Djixj+X) =¿

0. Since [kixx,.. .,x„): qt{A)] = pn'x, it follows that qt{A) = f)"~xD'xiO). Since A

is integrally closed, the result follows.

Lemma 2.4. Let V- {{t'xDxt,...,rxDn_xt): t G kixx,...,x„) and t'xD¡t E

k[xx,... ,xn]}. Then C1(F) injects into V.

Proof. By 1.13 C1(F) injects into V/V, where V = {iu'xDxu,...,u-xD„_xu): u

is a unit in k[xx,... ,x„]}. Since the units of k[xx,... ,xn] are exactly the elements of

k, V = 0.

We can strengthen 2.4 when « = 2.

Lemma 2.5. If n — 2, then the injection of 2.4 is also surjective.

Proof. By 2.1 and 2.3 the coordinate ring of F is isomorphic to A = k[xf, x%, G]

and A = Df'iO) n ^[x^ x2]. Note that D,(x,) = 3G/3x2 and DJx2) =

-3G/3x,. Thus the image of Dx restricted to k[xx, x2] is not contained in any height

one prime of k[xx, x2]. By 1.8(b), C1(F) == V.

Lemma 2.6. Let t E k[xx,... ,x„] be a logarithmic derivative of D¡. Then deg t <

deg G - 2.

Proof. We have that / — f~xDJ for some / G /c(x,,... ,x„). There exists «, g E

k[xx,...,xn] such that/= g'ph. Thus h'xD¡h = t. We have that D¡h = hxpx¡+í -

hx   Gx is of degree at most deg « + deg G — 2. This shows that deg t < deg G — 2.

Proposition 2.7. C1(F) is a p-group of type (/?,...,/?) of order pf, where /<

(« - l)g(g - l)/2, where g = deg G.

Proof. Let (i,,...,/„_,) G V. By (2.6), deg i, < g - 2 for each i*. We will show

that there are at most/?g(g-1)/2 such7, for each / = 1,...,« — 1. We begin with tx.

= 3C    3        3C   3
1     3x2 3x,      3x, 3x2 '
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We have that kixx,... ,x„) is a purely inseparable extension of Dx\0) of degree p.

By 1.9 there exists an a G k[xx,...,xn] n jOf'CO) such that D{ = aDx and tx is a

logarithmic derivative of Dx if and only if

(2.7.1) Df-'íf,)-*, =-íf.

We write i, = 2r+J<g_2arjx[x2 where ars E k[x3,...,xn\. Substituting this expres-

sion for r, into (2.7.1), we obtain on the left side of this equation a polynomial in x,

and x2 whose coefficients are hnear expressions in the ars with coefficients in

k[x3,...,x„]. Comparing the coefficients of x\px2p on both sides of (2.7.1) we see

that for each pair of nonnegative integers (e, m) with e + m < g — 2, aem must

satisfy an equation of the form

Fem = <m, where Lem is a linear expression in

the ars with coefficients in & [ x3,..., xn ].

There are a total of gig — l)/2 such equations.

Let L be an algebraic closure of A:(x3,...,xn). The ring R = L[...,ars,...] with

the relations Lrs = aps is a finite-dimensional L-vector space spanned by all monomi-

als in the ars of degree < (/? — l)g(g — l)/2. Thus R' is Artinian and has a finite

number of maximal ideals (see [A-M, p. 89]).

Therefore, the gig — l)/2 equations in (2.7.2) have a finite number of solutions in

L, which by Bezout's theorem [SH,p. 198] is at most/?g(g_I)/2. Hence, the equations

in (2.7.2) have at most/?g(g_1)/2 solutions in k[x3,... ,x„]. This imphes that there are

at most/?g(g_1)/2 possible i,'s.

Similarly, there are at most /?s(£-1?/2 possibilities for each t¡, i = 2,...,« — 1,

from which it follows that V has order pf where /< (« — l)g(g — l)/2. Since

V E k[xx,... ,x„], each element of V has p-torsion. By 2.4, C1(F) C V. The result

follows.

The next result, which I proved in [L2], is entitled "Ganong's formula". Several

useful conversations with R. Ganong [Gl, G2] led to its discovery. Although Ganong's

formula plays a minor role in this article, it is used extensively in [LI and L2]. For

the proof of 2.8 see [L2].

Theorem 2.8 (Ganong's formula). Let k be a field of characteristic p > 0,

G E k[xx, x2] satisfy condition (*), D: kixx, x2) -* fc(x,, x2) be the k-derivation

D = (3G/3x2)(3/3x,) - (3G/3x2)(3/3x,), and a E k[xf, xP, G] be such that Dp

= aD isee 1.9). Then for alla E k{xx, x2),

p-\

Dp-[a-aa = - 2 G'v(GHi+l)«),
i=0

where V = d2<-p''X)/idxf~xdxP~x).

Proposition 2.9 uses Ganong's formula to refine the upper bound of 2.7 in the case

gcd(3G/3x!, 3G/3x,) = 1 for each /' = 2,...,«.
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Proposition 2.9. For each i = 2,...,«, let m¡ be a nonnegative integer such that

2pmi < deg (G) < 2/?(«i, + 1). ̂ jswme that for each i, gcd(3G/3x,, 3G/3x;) = 1.

Then the order o/Cl(F) ispf, where

n-\

f<g(g- 1)(« - l)/2 - (p - 1) 2 "1,(2*1, - 1).
i=i

Proof. For each i = 1,... ,n — 1, let D¡ be as in 2.2. Let F be as in 2.4. If t is a

logarithmic   derivative   of   Dx,   then   by   2.6,   deg      (r) < g — 2.   Thus   / =

2r+,<g-2<V,*i*2 for some crs e fc[x3>... ,xj.

From 1.9 and Ganong's formula we have that

0,      if0<tf</?-2,
(2.9.1) v(G"t) = .

where V = 32('",)/(9jef"I8*J~1).

Since V(GP~xt) = tp we obtain for each of the crs an equation of the form

/„ = cp, where /„ is a linear expression in the
(2 9 2)

c,e with coefficients in k [ x3,..., x„ ].

If we regroup terms we can write

t= Zi auvX"X2     Wliaauv = 2dC(u + cp)(v + dp)X\Px2P>

O^u.v^p— 1

where this sum is taken over all pairs (c,d) of nonnegative integers such that

0<K + c7? + t? + üf/?<g — 2.

Since ViGqt) = 0 for q = 0,...,/? — 2, we obtain the equation

(2.9.3) Lq:        2       ctuvv(G"xxuxv2) = 0   for0<q<p-2.
O^u.v^p— 1

These (p — 1) equations (2.9.3) in the auv with coefficients V(Gqx"x2) are indepen-

dent over E = A:(xf, xf, x3,...,x„). For suppose that ßqE E, q = 0,...,p — 2,

such that /?0L0 + • • • +ßp-2Lp_2 = 0.

(2.9.4) v((A,+ ••• +ßp-2Gp~2)x"x2) =0   forallO < u, v <p - 1,

which implies that ß0 + ßxG + ■ ■ ■ +ßp_2Gp~2 = 0 and, hence, ß0 = ßx= ■■■ =

ßP-i = O-

We conclude that (/? — 1) of the auv's are F-linearly dependent on the remaining

ones. Note that each auc involves at least m,(2m, — 1) of the c„'s. Thus we have

that among the crj's there are (p — l)mx(2mx — 1) of them that are determined by

the choice of the remaining g(g — l)/2 — (p — l)w1(2«i1 — 1) ones. Each of these

remaining ones must satisfy an equation of the form (2.9.2). By the argument used in

the proof of 2.7 there are ps< possibilities for the g(g — l)/2-tuple

(coo,c10,c01,...,c0(Ä_2))) where i, *s g(g - l)/2-(p- l)m,(2«j, - 1). Thus there

are /?*' possibihties for t.

Similarly, 7), has pSi logarithmic derivatives for , = 2,..., « — 1, where

s,<gig-l)/2-(p-l)mj2mi-l).
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It follows that Fand, hence, C1(F) has orderps where

n-l

s < (n - l)g(g - l)/2 - (p - 1) 2 m,(2m, - 1).    Q.E.D.
,= i

Note that if 3G/3xy = 0 for some/ = 1,...,« — 1 we can replace D} with 3/3xy

and still have that n^jD'x(0) n (a/a*,.)"1^) = A.

Since a/ax, has only 0 as a logarithmic derivative, we have the following results.

Lemma 2.10. If G is such that 3G/3xy = 0 for j = r,...,n for some r > 2, then

C1(F) injects into V = {(t'xDx(t),... ,t~xDr_x(t): t G k(xx,...,xn) and rxDJt) E

K[Xi,. .. ,xnJ).

Proposition 2.11. With G as in 2.10 the order of C1(F) = ps where s < {r - 1)

■g(g-l)/2.

Proof. Use 2.10 and the same argument used in the proof of 2.7.

We end this section with some examples.

Proposition 2.12. Let hx,...,hrbe distinct homogeneous irreducible polynomials in

k[xx,... ,xj, the sum of whose degrees is g with g not divisible by p. Let G = hx • ■ • hr

and let F be the hypersurface defined by the equation zp — G. Then F is normal and

C1(F) has order pr~x generated by the height one primes G A + hfA in A =

k[xp,...,xp,G].

Proof. By Euler's formula, 2"j=xXj(dG/dXj) = gG. If « is a factor of dG/dxj for

/= l,...,n, then « divides G and must be a multiple factor of G. Therefore

gcd(3G/3x,,... ,3G/3x„) = 1 and Fis normal.

For each pair of positive integers (/, /) with j ¥= I and j,Kn, let Dj¡:

k(xt,... ,x„) -» kixx,... ,x„) be the ^-derivation defined by

__ dG _3_ _ ^G _3_
Jl      dx, dxj      dxj dx¡ '

Clearly A E (DT^'íO)) n A:[x,,...,x„]. The reverse inclusion holds by 2.3. Thus

A = i<lDj;xiO))nk[xx,...,xn].

Let %be the Z/pZ-vector space spanned by the Djt. Let Dx,.. .,Dm be a basis for

X,andIF={(/-17J1/,...,/-17Jm/):/GÄ:(x1,...,x„)and/-1ö;(/)GA:[x1,...,xJ

for i = 1,... ,m). By 1.13, C1(F) injects into W.

We begin by showing that

if ( Vx,..., Vm ) E W, then there exists a homogeneous

(2.12.1) polynomial t G k[xx,...,x„] such that t'xDjt) — v¡

for i — l,..., m.

Temporarily fix an/'= l,...,m. Suppose that t; = u'xDJu) E k[xx,. ..,xn] where

u E kixx,... ,x„). Multiplying u by an element in k[xf,.. .,xp] we can assume that

u Ek[xx,...,xn].

Let u, and ux (u2 and u2) be the lowest (highest) degree forms of u and u,

respectively.
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We have that deg(«,) + g — 2 < deg(DJu)) < deg(w2) + g — 2. If we compare

the forms of lowest and highest degree of both sides of the equality DJu) = uv, we

see that deg(u2) + deg(w2) =£ deg(«2) + g - 2 and deg^) + deg(w,) > deg(M,) +

g — 2. This imphes that g — 2 < deg(t>,) < deg(u2) < g — 2 (i.e. v is homogeneous

of degree g — 2). Thus it must be that deg(DJu)) — deg(«2) + g — 2 and hence

DJu2) = u2v. _

It follows that if (u,,...,vm) E W with u~xDJu) = t>, for each ,', then we can

assume that « is a polynomial and the highest degree form of u, say ü, is such that

ü~xDJü) = v¡ for each r. This verifies (2.12.1).

Furthermore, if ü = wf1 ■ ■ • uess is a prime factorization of it, then exuxxDJux)

+ • • • +esu~xDJus) = u, and each of the elements exux'xDJu),...,esu~xDJus) G

k[xx,... ,xn], for each i. Thus

W is generated by all elements of the form

(2.12.2) (ü'xDx(ü),.. .,ü'xDm(ü)) with ü an irreducible

homogeneous polynomial.

Let y E k[xx,.. -,xn] he irreducible and homogeneous such that y divides DJy)

for each,'. Since the D¡ generate %, y divides Djjy) for each pair (/, /),/ ^ K n.

Therefore, for each/ = l,...,n,y divides

V     n t   \ - V     ( dG dy      3G dy \

%'W-%*•[*; *;-*;*;)
- y    (Mii-^izl

/= i   ' I ^xi ̂ xj     ^xj dx, I

= gG^--deg{y)^-y

by Euler's formula. This implies that y divides Gidy/dxj) for each/ = l,...,n. Since

y is irreducible there exists j0 such that dy/dxj # 0. Then v does not divide dy/dxj

and hence y divides G. This fact, together with (2.12.2), imphes that

W is generated by the elements

wq={hqxDx(hq),...,h'xDm(hq)),       q=l,...,r.

Note   that   wx + •■■ +wr = (G'xDxiG),. . . ,G~xDmiG)) = (0,. . . ,0).   Thus

( wx,..., wr_,} generate W over Z//? Z.

If dx,...,dr_x are positive integers such that dxwx + • ■ ■ +dr_xwr_x = 0, then

DJh^ ■ ■ ■ hd/) = 0 for each, and thus h = «f1 • • • hd/-{ E A. We then have that

k(xp,...,xp) Ek(xf,...,xp,h) Eqt(A).

If k(xp,... ,xp, h) — qt(A), then there exists a0,... ,ap E k[xf,... ,xp] such that

a0G — ax + a2h + ■ • • +aphp~x. Since G and h are homogeneous, we may assume

that a0.a are also. Since deg(a,«'_1) is congruent to (,' — l)deg h modulop and

deg(a0G) = g (mod p), we have that only one of ax,. ..,ap¥= 0. Thus a0G = a¡h'~x

for some , = I,...,p. But this is clearly impossible.
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Thus kixf,...,xp,h) = kixp,...,xp) and dx = • ■ ■ = dr_x = 0 (mod/?). It fol-

lows that {wx,... ,wr_x} forms a basis for IF over Z/pZ and the order of Wispr~l.

Finally we note that the nonprincipal height one primes g, = G A + hfA in A

map to the elements w¡ for i — l,...,r, under the homomorphism described in 1.14.

Therefore C1(F) =* Wand has orderpr~' generated by g,,..., Qr_,.

Remark 2.13. Proposition 2.12 is not valid when/? divides g. For we will see in a

moment that the hypersurface zp = xp ■ ■ ■ xp + xp has nontrivial class group al-

though the polynomial xf • • • xp + xp is irreducible in k[x0, xx,...,xp].

We can use 2.12 to attack some special cases when/? divides g.

Corollary 2.14. Let hx,h2,...,hrbe distinct homogeneous irreducible polynomials

in k[xx,... ,x„\. Let G = x0«1 • • • hr. Then F: zp = G E An+2 is normal and the order

ofCliF)ispr.

Proof. Let g = deg G. If p does not divide g then the result follows by 2.12.

Suppose then that g = pm. Then gcd(3G/3x1;. . . ,3G/3x„) = x0. Thus

gcd(3G/3x0,..., 3G/3x„) = 1 and F is normal.

Let 7? = k[x0,... ,xn, z], zp = G. R is the coordinate ring of F.

We have that R[l/x0] =* Rx where 7?! = k[x'0,... ,x'„, z', l/x'0]. iz')p = h\ ■ ■ ■ h'p,

where A' — hj(x\,.. .,x'n) for/ = l,...,r.

The map Rx -* R is given by x'0 -* x0, z' -» z/x™, x,' -> x,/x0 for /' = 1,... ,n.

By 1.4, Cl(7?,) a Cl(7?2), where 7?2 = jfc[je¿,...,je¡;. z'], (z')' = «', ■ ■ ■ A',. By 1.6,

Cl(7?2) a Cl(7?3) where R3 = k[x[,...,x'n, z'], iz')p = h[ ■ ■ ■ h'r. By 2.12, the order

of Cl(7?3) ispr_1. Hence Cl(Ä[l/x0]) has order//~'.

Again by 1.4 we have an exact sequence

(2.14.1) 0 -» ker^> ̂  C1(R) * Cl(7î[l/x]) -> 0,

where ker<j> is generated by those height one primes in R that contain x0. Such a

prime ideal would have to contain z also and hence the ideal x0R + zR which is

easily seen to be a nonprincipal height one prime.

Thus ker«i> - Z//?Z, from which it follows that C1(jR) has order pr.

Corollary 2.15. The divisor class group of the hypersurface F E A"p+X defined by

the equation zp = x, • • • xnp is a direct sum of np — 1 copies ofL/pTi.

Remark 2.16. The hypersurface in 2.13 is isomorphic to the hypersurface zp = x,

■ ■ • xp which has non trivial class group by 2.15.

3. The hypersurface zpm = G. In this section we study the divisor class group of

hypersurfaces of the form zp" = G(x,,.. .,x„). Studies of this type, using higher

order derivations, have been conducted by K. Baba [BA]. We describe another sort

of inductive procedure of obtaining information about C1(F: zpm — G).

As always, we let k be an algebraically closed field of characteristic p > 0 and

G(x,,... ,x„) G k[xx,... ,xn] satisfy condition (*). For each positive integer m, let

Fm E A"k ' be the hypersurface (necessarily normal) defined by the equation zpm =

G(x,,...,xJ.
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Lemma 3.1. For each m, the coordinate ring of Fm is isomorphic to Am =

k[xf,...,xf,G].

Proof. Similar to the proof of 2.1.

For each positive integer m, let Bm = k[xf m+\... ,xpm+ , Gp]. Bm is clearly isomor-

phic to Am and 77mC^m+1 E Am with Am integral over 77m. Also [qtIAm) :

qtiAm+x)] = pm~x and [qtiAm+x) : qt(77J] = p.

By 1.3 there exist group homomorphisms 8m: Cl(5m) -» Cl(^4m+1) and </>m:

Cl(Am+x) -» Cl(^lm). We use derivations to study 8n and 8m. We start with 8m.

Let Em be the restriction of the derivation G~x(d/dxx) on k(xu... ,xn) to Am+X.

Lemma 3.2. Em maps Am+X into Am+X and has kernel Bm.

Proof. Let a E Am+X. Then a = 2?=0%Gi for unique ß, E Bm. We have that

Emia) = 2pZxißiG"x.

Thus Emia) E Am+X and £m(a) = 0 if and only if ßx = ■ • ■ = ßp_x = 0, that is, if

and only if a G 77m.

Proposition 3.3. For each positive integer m, Cl(Fm) injects into Cl(Fm+1).

Proof. With Em: Am+X -> Am+X as above, let £m+1 EAm+x be the group of

logarithmic derivatives of Em. Let t'm+x he the group of logarithmic derivatives of

units of Am+X.

Given a E Am+X, deg(Fm(a)) < deg a — degG. It follows that if a~xEm(a) E

Am+X, then Em(a) = 0. Therefore £m+1 = t'm+x= 0. By 1.8, ker(0m) = 0.    D

To gain some understanding of <#>m: Cl(Am+x) -* Cl(Am) v/e define derivations

£>mi- qtMJ -» <$(Am) for each i=l,...,n-l.

Given a E qt(Am), there exists unique ay G k[xx,... ,x„] such that

p™-\

«=   2   afGJ-
7=0

3.4. Define

ju«)=V (A(«,)r^
7 = 0

where

n         dG      9         9G      9 f       - i i7), = ^--z--t— g-    for, - 1,...,«- 1.
ox,+ 1 ox,      ox, ox,+ 1

Of course we must show that 7)   is indeed a derivation.mi

Lemma 3.5. The mappings Dmi, as defined in 3.4, are derivations.

Proof. Clearly Dmi is additive. We show that the multiplicative property holds,

that is, DmJuv) = uDmJv) + vDmi(u) for all u,vE qt(Am).

Let

p"'-\ Pm-\

ii=   2   «/"G>    and   o =   2   /8/"G'G qt(¿m),
7 = 0 7 = 0
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where the a-, /?• G k(xx,... ,x„). We argue by induction on the number of nonzero

coefficients appearing in u plus the number of nonzero coefficients appearing in v.

Suppose this sum is 2. Then u = apmGr and v — ßpmGs for some u, v E

kixx,... ,xn), r, s nonnegative integers.

Then

Dml(uo) = Dmi{(aßy"G'+°) = (Djaß))pmG'+° = (aDtß + ßD^G^

= apmG'Dmi(ßpmG°) + ßpn,G°DmJa»mGr) = uDmJv) + vDmJu).

Now assume that the total number of nonzero coefficients appearing in u and v is

greater than 2. Let 0 </0 < pm be the highest power of G with nonzero coefficient in

v. Let this coefficient be ypm. Then

DmJuv) = Dmi{u(v - y>"&7o)) + Dmi(uypmG^),

which, by the induction hypothesis,

= uDmi(v - ypmGJ°) + (v- y»mGJ°)DmJu) + uDmi(ypmG^) + y"mG^DmJu)

= uDmJv) + vDmJu).

Lemma 3.6. Let Dmi: qt(^4m) -> qtiAm) be as in 3.4.

(i) ThenAm+x = kerDmX n • • • nkerDmin_X) n Am.

(u)Let

Vm= {{t'xDmXt,...,rxDm(n_X)t):t E qt(Am) and rxDmitEAm}.

Then ker <f>n injects into Vm.

(in) Let a,. G D-\0) n *[*„... ,x„] Z?e such that Dpt = a¡Dt. Then Dpmi = of Xi.

i= l,...,n- 1.

Proof, (i) Similar to 2.3.

(ii) Similar to 2.4.

(in) By 1.9, 3a, G Z)-'(O) n fc[x„... ,x„] such that Df = a,Z),. Then

%(*r) = (^(^,)rm = («,A(^,)rm=<x,(^)-

Proposition 3.7. For eachj = 1,2,...,«— 1, ta

0 = «/o" + <<?+••• +a/(>_1)G*" G ¿m.

(a) 7/ (*„...,*„_,) G Vm, then aj0 = 0 if and only if ajr = 0 for r = 0,...,
pm- 1.

(b)7/gcd(GXi, Gx)= link[xx,...,x„]foreachj= l,...,n- l,thenitx,...,tn_x)

G Vm if and only if

(1) VjiGqajr) = Ofor 0 < r < pm - landr^O (mod p), and

(2) v/G%v)) = «&+<,-(,+Dp»-)) for s = 0,1,... ,pm-x - 1, wAe« V, =

dxp-v/idxr^f+h

Proof, (b) Let/ = 1.« - 1. By 1.9(b) and 3.6(iii) we have

(3.7.1) DpJx(tj) - aftj = -tf,   where Df = aft.
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This is equivalent to

(3.7.2) 'j ' (Df-\r - *,«,>)'> = ~ V <'GSP-
r=0 s = 0

Comparing coefficients of Gr in (3.7.2) we obtain

(3.7.3) (/,,...,*„_,) G Vm   if and only if for each/ = 1,...,«- 1,

(1)           Df~lajr - ajajr = 0   for r ^ 0 (mod p),       0 < r <pm - 1,

and

(2)       's' (r^j - aJaÄsJmGip = -'¿V^'-
i=0 5=0

Takingpth roots and comparing coefficients of Gs in (3.7.3)(2), (2) becomes

(3.7.4) (Df \sp) - ajajtsp))pm'X = _2 ^^nff^9
í = 0

forO^s«:/?^1'- 1,

which is equivalent to

P-1

(3.7.5) Z)/-V)-fl7«7(V) = - 2 «Si+„<-n)Gf'    for 0 «* </><»--'>-1.
1=0

If gcd(Gx , G,.) = 1, then we can apply Ganong's formula (2.8) to the left side of

(3.7.3)(1) and to the left side of (3.7.5), and comparing coefficients of G' we obtain

(b).
Proof of (a). To prove (a), we proceed by reverse induction on t>(r), where

ü(r) = the highest power of p that divides r.

Note that if «(/•) > m then ajr — a0. Assume then that t?(r) = d < m. We can

writer = s + cpm~x for unique s = 0, ...,/?(m-1) — l,c = 0,...,p— 1. Since ü(r) =

d we have that s = pde for some e = 0,...,/? — 1.

By the induction hypothesis a^sp) = 0. By (3.7.5), we see that

P-\

(3.7.6) 2 «W->)G' = 0,
<=o

which shows that ajr = 0.

Theorem 3.8. For each m, ker <j>m is a p-group of type ip,...,p) of order pf where

f< in - l)g(g - l)/2 with g = deg G.

Proof. For each / = 1.n - 1 let tj = aft + • ■ • +of("m„1)G^1 G Am. As-

sume that (/,,.. .,*„_,) G Vm.
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Proof. By (3.7.5)

p-\

(3.8.1) Df-Xaj0 - ajaJ0 = - 2 «/(,>-')G,)   where Df = ajDj.
i=0

Let Ej\ kixx,... ,xn) -» /c(x,,...,x„) be the derivation defined by Ej — G~xid/dxj).

Then EjiAx) E Ax and if « G Ax, then deg( £,(«)) < deg « - g. From (3.8.1) we

obtain

(3.8.2)

af0 = -Ef-xGp-x{ Df- 'a,0 - ay«,0 )    and   p deg( ay0 ) < deg Df~ xaj0 - ajaj0.

For all « G k[xx,... ,x„], deg(Z),.«) < deg(«) + g - 2. Thus

deg(a,)<(p-l)(g-2)

and

(3.8.3) deg Df- xaj0 - ajaj0 < deg( a,0) + ( p - l)(g - 2).

(3.8.2) and (3.8.3) together imply that

(3.8.4) deg(a,.0)<g-2.

Claim 3.8.5. Let L be an algebraic closure of fc(x2,...,x_1, x+1,...,x„). If

a,,... ,ar E L[xx, x-] satisfy (3.8.2) and are Z//?Z-independent, then a,,... ,ar are

L-independent also.

Proof of claim. The case r = 1 is obvious. We proceed by induction on r.

Suppose that ex,...,er E L are such that exax + • • • +erar = 0. From (3.8.2) we

obtain e,af + ••• +eeaP = 0. Thus(ef_1e2 - ep2)ap2 + ••• +{ef~ler - ep)aP = 0.

By the induction hypothesis we have that ep~xe¡ — ef = 0 for i = 2,...,r. If

e, ^ 0, then ie¡/ex)p = e,/e,, that is ei/ex E 'L/pT^ for each i. But this contradicts

the fact that the a, are Z/pZ-independent since ax + ie2/ex)a2 + • • • +ier/ex)ar

= 0. Therefore ex must equal 0. Using the induction hypothesis again, we have that

e2 = ■ • • = er = 0 also.    D

Note that the L-vector space of all polynomials in L[x,, x ■] of degree < g — 2 has

dimension g( g — l)/2.

From (3.8.4) and (3.8.5) it follows that the Z/pZ-vector space of all aJ0 satisfying

(3.8.2) is of dimension at most gig — l)/2.

From 3.7(a) we conclude that Vm, and hence kerd>m, has order pf where f<

ngig -l)/2.   Q.E.D.

Theorem 3.9. For each m, Cl(Fm) is a finite p-group of type ip'\...,p'r) where

each ij < m. The order of Cl(Fm) « pm("_ ')«<«-fc)/2, where g = deg G.

Proof (by induction on m). For m = I, use 2.7. For each m > 1, we have the

exact sequence

(3.9.1) 0 - ker^ -* Cl(Fm+1) - Cl(Fj - 0.

Now just use induction and 3.8.
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Remark 3.10. Using the mappings 8m and $m we obtain an inductive procedure for

studying C1(F„). For we have the following diagram for each m:

(3.10.1) Cl(73je4ciMm+1)-Cl(.4j

Dmj:A ^Am

ker¿>m=->Fm = {rxDmXt,...,rxDm(n_X)t: t E qt(Am)

&rxDmjtEAm,j= 1,2,...,«- l).

We finish this section with two examples.

Proposition 3.11. Let hx,...,hrbe distinct homogeneous irreducible polynomials in

k[xx,...,x„], the sum of whose degree is g not divisible by p. For each m, let

Fm E A"+1 be the hypersurface defined by zpm = G where G — hx • ■ ■ hr. Then Fm is

normal and Cl(Fm) is a direct sum of r — 1 copies ofZ/pmZ, generated by the height

one primes GAm + hfmAm in Am, i — l,...,r — 1.

Proof. As in the proof of 2.12, we have that gcd(3G/3x,,..., 3G/3x„) = 1. Thus

Fm is normal for each m.m

Also, as in 2.12, we let Dst = (dG/dx,)(d/dxs) — (dG/dxs)id/dxt) for each pair

is, t) with s =£ t and 1 < s, t < n — 1. Let % he the Z/pZ-vector space spanned by

the Dsr Let Dx,...,Dqbe a basis for %, and W = {if~xDxif),...,f~xDqf):

f E k[xx,... ,x„] and f_DJ G k[xx,... ,x„] for i= l,...,q}.

For each m > 0, let Dmi: qtiAm) -* qtiAm) he defined by

Dmi(af +■■■ +apLxGpm-x) = (Ä«o)'" + " ■ ' + (ÄV-O'V'"-1.

Wm={(f'xDmXf,...,f'xDmqf):fEqt(Am)andf-xDmifEAmfori=l,...,q}.

Then as in 3.6(i), rii?=1kerZ)m, n Am — Am+X. Since the 73, are Z/pZ independent,

so are the Dmi. By 2.4, ker <j>m injects into Wn. We will now demonstrate that Wm has

orderpr~ ' and ker <j>m surjects onto Wm.

Let v E Am be such that v — f~xDmif for some/ G qt(v4m) and some ,'. Clearly, we

can assume that / G Am. Let /, and t?, be the lowest degree forms and f2 and v2 the

highest degree forms of /and v, respectively. Then/,, vx,f2,v2 all belong to Am and

either DmJf2) = 0 or deg DmJf2) = deg /2 + (g - 2)pm. Similarly, for/,.

Thus

deg v2 + deg f2 < deg f2 + (g - 2)pm

and

deg o, + deg/, > deg /, + (g - 2)pm.

It follows that (g — 2)/?m =s deg vx < deg v2 < (g — 2)pm. Thus ü is homoge-

neous of degree (g — 2)pm. Therefore v can only be of the form v = upm for some

u G k[xx,... ,x„] of degree g — 2. By 1.9(b), t; is a logarithmic derivative of Dmi if

and only if iDmi)p~xiv) — dmiv = -vp where dmi is the element of Am such that



628 JEFFREY LANG

Dp¡ = am¡Dmi. From 3.6(iii), ami - af where a¡ E k[xx,... ,x„] is such that Df =

a¡D¡. We then have that

(3.11.1)

Thus

v G Am is a logarithmic derivative of Dmi if

and only if v = upm where u E k[xx,. ..,xn] and

Dp~xu — äjU = -up (i.e. « is a logarithmic

derivative of Z), ).

(vx,... ,vn_x) G Wm if and only if there exists

(3.11.2) ", Ek[xx,...,xn] such that («,,...,«„_,) G W

with Vj = ufm, where IF is as in 2.4.

From this fact it follows that the mapping («,,.. .,"„_,) -* («f"*,... ,up-X) from

IF to IFm is an isomorphism.

In 2.12 we showed that IF has order /?""', hence ker«j>m has order p"~x. We have

that the height one primes 9¡ = GAm + hfmAm have ramification index 1 over their

contractions g, = GAm+x + «fm Am+X in -4m+1, and g, has ramification index p

over their contractions %' = GpBm + hf+lBm in fim,, = 1,... ,r - 1.

Using induction we have that the primes <$i generate Cl(Am) and are each of order

pm, hence the same holds true of the primes 9¡ in Bm.

Since 6n: Cl(77m) -» CliAm+x) is injective by 3.3 we see that the elementspmg, are

a Z/pZ-basis for ker<j>m. Since the ramification indexes e{9¿: g,) = 1 we have that

<j>m is surjective. The theorem follows.

Proposition 3.12. Let «,,... ,hr be distinct irreducible homogeneous polynomials in

k[xx,.. .,xn]. Let G = x0«, ■ ■ ■ hr and Fm E A"+2 be the hypersurface defined by

zp"' = G. Then Cl(Fm) is a direct sum of r copies of Z/pmZ, generated by the

nonprincipal height one primes g, = hfmAm + GAm, i = 1,... ,r.

Proof. Let « = «,••• hr and 7? = k[x0, x,,... ,xn, z], zpm = G, which is the

coordinate ring of Fm. By 1.4 we have an exact sequence

(3.12.1) O^H^Cl{R)-^ClR[l/h]^0,

where 77 is the subgroup of Cl(7c) generated by those nonprincipal height one

primes in R that contain «.

We have that

R
l_

>Xn> Z>   L
2

By 1.4, k[xx,...,x„, z, l/h] is factorial. Therefore, Cl(7?[l/«]) = 0. From (3.12.1)

we see that 77 is isomorphic to Cl(7?). It follows that Cl(^4m) is generated by those

height one primes in Am that contain hp"'. Let g C Am be one such prime. Then

there is a unique principal height one prime fk[x0,... ,x„] in k[x0,... ,x„] that lies

over g. / must divide «, thus / must be a A>multiple of h, for some ,' = 1,..., r. Thus

g = g, for some /' = l,...,r, and Cl(/lm) is generated by the g,.
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By 3.9, /?mg, = 0 in Cl{Am) for each i. We will now show that the g, are

Z//?mZ-independent. The m — 1 case is covered by 2.14. We proceed by induction

on m.

We will be done if we show that the elementspm_1g, are independent over Z/pZ.

Let 9/ = g, n 77m_, = hfBm_x + GpBm_x. The ramification index of g, over % is

p for ,'= l,...,r. By induction {pm~2%',...,pm~2^} are Z/pZ-independent in

Cl(77m). Since 8m_,(/?m~2<3>/) = pm'xQ¡ for i = 1,...,r and 6m_, is an injection, the

elementspm_1g, are independent over Z/pZ.

Remark 3.13. Note that if 0 is the origin of the surface Fm in 3.12 or 3.13, then by

1.11 the divisor class group of the local ring of Fm at 0, Cl((Fm)e), and Cl(Fm) are

isomorphic.

4. C1(F: zp = G(x,, x2)) for a generic G. We begin this section by focusing our

attention on the case « = p = 2. We assume that k is an algebraically closed field of

characteristic 2. Let G(x,, x2) G k[xx, x2] satisfy condition (*), D be the derivation

on kixx, x2) defined by D = (3G/ax2)(a/3x,) - (3G/3x,)(a/3x2), £ C k[xx, x2]

he the group of logarithmic derivatives of D (i.e. £= {f~xDf\fE k{x, y) and

f'xDf E k[xx, x2]}), and F E A\ be defined by the equation z2 = G(x,, x2).

By2.5,Cl(F)=^£.

Observe that 7)(GV ) = GrGxx - GXGX x = GXGX r . Hence Gr r = G;'7)(G, )

G £. Therefore

(4.1) If Gx x t^ 0, then C1(F) ¥= 0. Thus for a generic choice of G, the surface F

has nontrivial divisor class group.

Note that by 3.3 we have that

(4.2) If G ¥= 0, then the divisor class group of the surface F„: z2" = G(x,, x2) is

not trivial.

Remark 4.3. By (4.1), GX|X2 ¥= 0 implies that C1(F: z2 = G) ¥= 0. We then should

be able to produce a nonprincipal height one prime in A = k[x2, y2, G], which is

isomorphic to the coordinate ring of F (2.1). This is accomplished with the aid of the

next lemma.

Lemma 4.4. Let f E k[xx, x2] be such that f'xDf E k[xx, x2\ Suppose that f = grh,

where g E k[xx, x2] is irreducible, h E k[xx, x2] is such that gcd(«, g) = 1, and r is a

positive integer not divisible by p ithe characteristic of k). Then g'xDg E k[xx, x2].

Proof. Let t=f'xDf. Then fi = Df= Digrh) = rgr-\Dg)h + grDh. Thus g

divides rhDg, which imphes that g divides Dg.

We continue the search for the nonprincipal height one prime. Let Gx = G['

• • • G„r" be a factorization of GX] into irreducible factors in k[xx, x2]. Since GX¡X2 ¥= 0,

one of the r¡ is not divisible by 2, say rx. By 4.4, GXXDGX E k[xx> x2].

Let 7=G,A:[x,,x2]n^.7is clearly a height one prime. To show that 7 is not

principal, first note that DiGxGX2) = 0. By 2.3, GxGXi E A. rx = 2sx + 1 for some

nonnegative integer sx. Then

Gx2^GxGXi = GXG? ■ ■ ■ G^GX2 E k[xx,x2] n qt(^) = A.
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We conclude that Gx2s*GxGx is an element of 7 by value 1 in the valuation on

kixx,x2) induced by Gxk[xx, x2]. It follows that the ramification index of

Gxk[xx,x2] over I is 1. Thus <j>: C1(j4) -» £ maps I to GX'XDGX. Since 4> is well

defined, 7 must be nonprincipal.

Remark 4.5. Since C1(F: z2 = G(x,, x2)) t= 0 for a generic G (namely, if Gx x ¥^

0), we naturally arrive at two questions.

(4.5.1) What is C1(F: z2 = G(x,, x2)) for a generic choice of the coefficients of G?

(4.5.2) Is it also the case that for /? > 2 the surface F"zp — G(x,, x2) has

nontrivial class group?

One approach towards answering these questions is to bound the degree of G and

study the corresponding system of equations one obtains via the differential equa-

tion of 1.9(b). More exphcitly, for a positive integer n, we let G„(x,,x2) be a

polynomial in the variables x, and x2 with undetermined coefficients of degree «.

Let D be the derivation on k{xx, x2) defined by D = (3G„/3x2)(a/3x,) —

(3G„/3x,)(3/3x2). We then try to determine if there is a generic way of choosing the

coefficients of G so that the differential equation of 1.9(b) has a fixed number of

solutions in A:[x,, x2).

This approach I used in [L2], demonstrating that for a generic choice of G„ the

divisor class group of the surface F: zp = G„ is 0 in the following cases: (i) p = 3,

« = 4, (ii) p — 3, n = 6, and (in) p > 2, « = 3.

Also in [L2], I showed that for a generic G„, C1(F: z2 = Gn) is Z/2Z if « = 5 or 6,

and is a direct sum of four copies of Z/2Z if n = 4 (see [L2] for more details).

In this paper we attempt to shed some light on the local version of these questions.

We ask

(4.5.3) Does there exist a group 9H and a generic way of choosing G(x,, x2) such

that for each singular point g G F: zp = G, Cl(Fe) == <3ït (by FQ we mean the local

ring of F at g)?

Proposition 4.6. The divisor class group of the ring Rn — k\\xf, xf", x,x2]| is

isomorphic to Z//?"Z.

We give two very different and interesting proofs of 4.6. The first of these, which

makes use of a proposition of N. Haiher [HAI], involves logarithmic derivatives. The

second, a geometric argument, uses results of J. Lipman [LI2, pp. 224-240] and P.

Blass[BLl,pp. 107-121].

The following proposition, whose proof we provide, is due to N. Halber [HA1, p.

2].

Proposition 4.6.1. Let Abe a local Krull domain with maximal ideal m such that A

andA/m are of equal characteristic p > 0. Let D: A -» A be a derivation such that the

ideal I = DiA) ■ A in A is contained in m. Let a E A be such that Dp — aD. If a is a

unit in A then each t Em that is the logarithmic derivative of an element f' E qtiA) is

the logarithmic derivative of a unit u in A.

Proof. Replacing/by an element of Apfwe can assume that/ G A. If /is a unit

in A, we are done. IffEm, then we have by induction that iaf)'xD"f E m for all

positive integers n. Let u = -1 + iafyxDp~xif). Then Diu'x)/u~x =f'xDf= t.
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Proposition 4.6.2. Let A, m, D, I and a be as in (4.6.1). Let U be the multiplicative

group of units in A. Let t— {f~xDf\fE qt(A) and f~xDf E A} be the group of

logarithmic derivatives in A and £' = {u'xDu \uE U}. Then either £ = £' or £/£' ==

Z/pZ.

Proof. Let 8: £ -> A/m be the additive group homomorphism mapping each

/ G £ to its image t in A/m. By (4.6.1), kerf? = £'. Thus 6 induces an injection 8:

£/£' -» yl/w.

By 1.9, an element f E £ <=» Dp~xit) - at = -tp. Thus if í E £ we have that

ai = r^. Since ä ¥= 0, the polynomial xp — äx has p distinct roots in an algebraic

closure of A/m. It follows that the order of <?(£/£') is at most p. Since £/£' is a

p-group the result follows.

First proof of (4.6). Let D: k[\xx, x2] -> klxx, x2] be the derivation defined by

D = x,(3/3x,) — x2(3/3x2). Then, as in 3.4, we can use D to define derivations Dn:

Rn -» R„ with kerD„ = Rn+X and Z)^ = Dn for each «. If we let q>„: Cl(/?„+,) ->

C1(Ä„) be the homomorphism of 1.3, then by 1.8, ker(<|>n) == £n/£¿, where £n =

{/"'AX/) 1/ e qt(Ä„) andf'xDjE Rn} and ££ = {«"^„(li) | u is a unit in Ä„}.

By (4.6.2), the order of ker(<j>„) <p. Then by induction we see that the order of

Cl(7?„) < p". By 1.7 and 3.12 we have the desired result.

Since the second proof of (4.6) uses techniques not developed in this paper, we

give only an outline. For more details see the above-mentioned articles.

Second proof of (4.6). Let m be the maximal ideal of 7Î„. There exists a

desingularization /: X -> Spec(7?„) such that the closed fibre has distinct compo-

nents Ex,E2,...,Epn_x with intersection as follows :

ErEj=l    if \i-j |=1,

ErEj = 0   if0^|,'-/|,

F,2 = -2

(see[BLl,pp. 107-121] for the case« = l,p>2).

The intersection matrix ((F, Ej)) is given by the ip" — 1) by ip" — 1) square

matrix

-2 1

1        -2 *

.    -2 1
•   1        -2

with determinant p".

From Proposition 17.1 of [LI2] and the discussion on p. 225 of [LI2] we have that

the order of Cl(7?n) is equal to (¿7, ■ • ■ dp*_,)"'det((F, • Fy)), where d¡ = degree of E¡.

Applying 1.7 and 3.12 we conclude that

-det{(ErEJ))=p"   and   Cl(7cJ - Z/p"Z.
«i • ■ • up"-\
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Remark. 4.7. Suppose that G(x,, x2), in addition to satisfying condition (*), is

such that the polynomials Gx<, GXi, and Gx¡xGXiX2 - GX¡X2 have no points in common

(a generic assumption on G).

P. Blass [BL1] has shown that under this condition all singularities on F„:

zp" = G(x,, x2) are rational with local equation of the form zp° — xy + (higher

degree terms).

Hereafter we will refer to this additional condition on G(x,, x2) as condition (B).

Proposition 4.8. Let G E k[xx, x2] satisfy condition (B). Let Q be a singular point

of the surface F E A\ defined by the equation zp" — G. Then C1(F) injects into

Z/p"Z.

Proof. After a linear change of coordinates we may assume that g is the origin

(x, = x2 = z = 0) of F and G has the form G = x,x2 + higher degree terms (see

Remark 4.7).

Let A = k[xf ", xP", G] and let m be the maximal ideal of A corresponding to g.

By 1.7 there exists an injection Cl(^4m) -» Cl(^4), where A is the completion of Am

at m.

We have that Â = k\xf, xP", Gj. In k\xx, x2] G factors into a product G = uv

where u and v are of the form u = x, + higher degree terms, v = x2 + higher degree

terms. Clearly k\x, yj = k\u, v\. Thus Â = k\up", vp", uv\. By 4.6, Cl(i) ~

Z/p-Z.
Thus question (4.5.3), posed at the beginning of this section, can be answered

when p = 2.

Corollary 4.9. Let k be an algebraically closed field of characteristic 2, G E

k[xx, x2] satisfy condition (B), and Q be a singular point of the surface F: z2 —

G(x„ x2). Then Cl(Fß) =* Z/2Z.

Proof. Note that Gx x =£ 0 since G satisfies condition (B) and F has a singularity.

Then as in Remark 4.3, there exists an irreducible polynomial G, G k[xx, x2] such

that G, divides Gx and such that the height one prime Gxk[xx, x2] n A = I in

A = k[x2, x\, G] is nonprincipal. Since g is a singular point, 7 is contained in the

maximal ideal of A corresponding to g. Therefore the mapping C1(F) -» Cl(Fß) of

1.4 is not the zero mapping. By 4.8, Cl{FQ) E Z/2Z, from which it follows that

Cl(Fß) ~ Z/2Z.
Remark (4.10). For the case p > 2, 4.8 tells us that if g is a singularity of the

surface F: zp — G(x,, x2), with G satisfying condition (B), then Cl(Fe) = 0 or

Z/pZ. The question as to which, if either, of these groups is Cl(Fß) for a generic G

is an open one.

5. Cl(A) for A between k[xpm,...,xpm] and k[xx,... ,x„]. We come to the last

topic to be discussed in this article. We show that if A is an integrally closed domain

such that k[xp",.. .,xp"] EA E k[xx,...,xn], where k is a field of characteristic

p > 0, then Cl(A) is a finite p-group of type ip'',... ,p'r) with each ij < mn. We will

use the following fact found in [JA, p. 185, Exercise 3].
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Lemma 5.1. Let P and L be fields such that P is purely inseparable of exponent 1

over L and [P : L] = pm < oo. Then there exists a derivation D of P/L such that
D'x(0) = L.

Lemma 5.2. Let k be field of characteristic p > 0, B an integrally closed finitely-

generated k-subalgebra of k[xx,...,xn] and D a qt(B)/k derivation such that

[qt(77) : D'\0)] = p. Let A = D~\0) n 77. Then the homomorphism <#>: Cl(A) -> Cl(77)

of 1.3 has kernel of finite order and type (p,...,p).

Proof. There exists /,,... ,/r G k[xx,... ,x„] such that B — k[fx,...,/]. We can

insure by multiplying D by an appropriate element of 77 that D(B) E B. Let £ C 77

be the group of logarithmic derivatives of D. That is, £ = {t'xDt \ t E qt(77) and

t'xDt E 77}. By 1.8(a) there exists an injection ker<i> =* £. Let

d = max{deg(Z)/ ) - deg / }.

If A E £, then there exists t E qt(B) such that t~xDt = «. We can assume t E 77, for

we can multiply ; by apth power of an element in 77 to arrange this.

We have that deg(Dt) < deg/ + d, which implies that degh^d. Thus £ is

contained in the A:-vector space of polynomials of degree < d, which has

dimension < oo.

(5.2.1) If «,,... ,hs are in £ and are independent over Z/pZ, then A,,... ,hs are

^-independent ik an algebraic closure of k).

We prove (5.2.1) by induction on s. The case 5 = 1 is obvious.

Suppose that a,«, + • • • +ashs — 0 with a, E k and {hx,...,hs} independent

over Z/pZ.

By 1.9, there exists a E A such that Dp = aD. We also have that

s s s

(5.2.2) 2 a,hf = - 2 (D"~X ~ al)ath = - (Dp'x - ai) 2 a,.A = 0,
,=i (=i 1=1

where 7 is the identity map. Thus 2si=x(ai)x/phi = 0.

Suppose that as ^ 0. Then

(5.2.3) V [(«.?*«, - «A«,)1"]*, = MVP 2 «A - «. 2 («,)V'A, = 0.
i=i ¡=i í=i

By induction, (as)x/pa¡■ — ajai)x/p = 0 for 1 < ¿ < í — 1. This implies that

(a,/aJ)/' = a¡/as and a¡/as E Z/pZ for each ,'.

Hence 2a¡h¡ = 0 imphes that 2(ai/as)hi = 0, which contradicts the fact that the

«, are Z/pZ independent. We conclude that as, and hence all a¡, equals 0.

Since £ C 77, each element of £ has p-torsion. By (5.2.1) £ has no more than a

finite number of independent elements.

Proposition 5.3. Let k be a field of characteristic p > 0 and let A be an integrally

closed domain such that k[xf™,... ,xpm] EAE k[xx,... ,x„]. Then Cl(A) is a finite

p-group of type (p'\... ,p'r) with each , < mn — 1.

Proof. k(xx,... ,x„) is a purely inseparable extension of qt(/l) of degreeps where

í < m«. There exist fields A:(x,,... ,x„) — LqD Lx D ■ • ■ Z) Ls = qt(A), with

Lt/Li+, a purely inseparable extension of degree p.
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For each ,' = 0,... ,s, let Ai = k[xx,... ,x„] O L¡. Then As — A and each A¡ is a

finite k[x(™,... ,x£m]-module. Thus each A¡ is Noetherian and a Krull domain iA¡ is

an intersection of Krull domains). Hence each A¡ is integrally closed (see [SI, p. 5]).

By 5.1, there exist derivations D¡: L¡ -* L¡ such that D¿_1(0) = Li+X.

By 5.2 the homomorphism <p¡: Cl(^,+1) -» C1(A¡) has kernel of finite order and of

type (p,... ,p). Inductively we see that each A¡ has class group of finite order and of

type ipr\...,pri) where each ry < i.
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