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THE SUFFICIENCY OF THE MATKOWSKY CONDITION

IN THE PROBLEM OF RESONANCE1

BY

CHING-HER LIN2

Abstract. We consider the sufficiency of the Matkowsky condition concerning the

differential equation ey" + f(x, e)y' + g(x, e)y = 0 (-a < x < b) under the as-

sumption that/(0, e) = 0 identically in e, fx(0, e)=£0 with/ > 0 for x < 0 and/ < 0

for x > 0. Y. Sibuya proved that the Matkowsky condition implies resonance in the

sense of N. Kopell if / and g are convergent power series for | e|< p (p > 0),

/(x,0) = -2x and the interval [-a, b] is contained in a disc D with center at 0. The

main problem in this work is to remove from Sibuya's result the assumption that D

is a disc.

1. Introduction. Let us consider the differential equation

(1.1) ey"+f(x,e)y' + g(x,s)y = 0

in which the independent variable x ranges over a real interval [-a, b] with a, b > 0,

and e is a small positive parameter. The coefficients f(x, e) and g(x, e) are continu-

ously differentiable real-valued functions of x and e, /(0, e) = 0 identically in e,

fx(0, e) t^ 0 with /> 0 for x < 0, /< 0 for x > 0. We consider (1.1) together with

boundary conditions

(1.2) y(-a,e) = \,      y(b,e) = B,

where B is a real constant. It is known that, in general, the solution y(x, e) to (1.1)

and (1.2) converges to zero as e tends to zero in the real interval (-a, b). However,

some exceptional cases may arise in which the solution y(x, e) of (1.1) and (1.2)

converges on (-a, b) to a nontrivial solution of

(1.3) f(x,0)y' + g(x,0)y = 0.

Indeed, Ackerberg and O'Mally [2] found that unless / = -g(0,0)//x(0,0) is a

nonnegative integer, the solution y(x, e) of (1.1) and (1.2) converges to zero as e

tends to zero, and the term " resonance" is applied to those cases when the limit of

y(x, e) as e tends to zero is a nontrivial solution of (1.3).

Watts [16] considered the problem with/(x, e) = -x and g(x, e) — I + x, where /

is a nonnegative integer, and showed that the above condition is not sufficient for

resonance. Cook and Eckhaus [3] found that if g(x, e) = / + x + a,e + a2e2 + • • •,
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then a{ = -1 is also a necessary condition for resonance. They predicted that for

resonance we need infinitely many conditions. Therefore one of the major problems

of (1.1) and (1.2) is to determine necessary and sufficient conditions for resonance to

take place. B. J. Matkowsky [9] proposed the following condition:

"there exists a nontrivial formal power series in e,

oc

y =   2 am{x)em,
m = 0

which formally satisfies (1.1) and such that all the am(x) are bounded on the real

interval [-a, b].

N. Kopell [5] and F. Olver [10] have shown that Matkowsky's condition is

necessary for resonance. A formal solution y = 2"=0am(x)em of (1.1) is called an

outer expansion. Note that boundary conditions are not involved in the Matkowsky

condition.

We say that (1.1) exhibits resonance in the sense of Kopell on [-a, b] if there exists a

solution y{x, e) satisfying y(-a, e) = 1, (disregarding y(b, e) = B) such that y(x, e)

converges uniformly on [-a, b] to a nontrivial solution of (1.3) as e tends to zero.

Note. "Resonance" in this paper means "resonance in the sense of N. Kopell".

Main Theorem. The Matkowsky condition implies resonance in the sense of Kopell.

Let

L = eD2+fD + g       (D = d/dx).

Suppose there exists a nontrivial outer expansion y = 2™=0am(x)em whose coeffi-

cients am(x) are bounded on [-a, b\. Set y = <j>N + u in (1.1), where

N

**(*.*) =   2 am(x)em

m=0

is a finite sum of the outer expansion. Then

(1.4) eu" +f(x, e)u' + g(x, e)u = -L<¡>N = 0(eN+]).

If u = 0(eN+l) as e tends to zero, then (1.1) exhibits resonance on [-a, b\. However,

it is very difficult to show that u = 0(eN+l) from (1.4). For example, let us consider

(1.5) ey"-2xy' + (p-l)y = He),

where p is a positive odd integer. The transformations

(1.6) y = wexp(x2/2e)   and   x = ttx/1

take

(1.7) ey"-2xy' + (p- \)y = 0

to

(1.8) d2w/dt2 - (t2 - p)w = 0
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(Weber's equation, cf. [17]). P. F. Hsieh and Y. Sibuya [4] constructed the unique

solution h>,(/, p) of (1.8) such that wx(t, p) and w[(t, p) admit, respectively, the

asymptotic representations

(1.9) wx{t, p) = tO-^2e-,2/2[\ + 0{\t\-2)],

w[(t,p) = t<P+^2e-'^2[-l + 0{\t\~2)]

as t tends to infinity in any closed subsector of the open sector: | arg t \ < Inr/A. Let

« = exp(57Tt); if t is replaced by w_1i and/» by -p, then (1.8) does not change. Thus

w^u^t, -p) is also a solution of (1.8) and

(1.10) limco^+1)/¥^+1>/2e-'2/2w,(«-'i,-/;) = 1,   for argi- f  < ^.
r->oo 2 4

Similarly, wx(u~2t, p) and wx(ust, -p) are also solutions of (1.8) with

(1.11) lim^-P¥'-',)/2e'2/2wi(or2t,p) = \,   for | arg í - 7T |< ^,
i->oo 4

(1.12) lim ^+P^Y1+^2e-'^2w1(at,-p) = 1,   for argi + ^  < ^.
/->oo 2 4

The general solution of (1.8) is

(1.13) w = C0wl(t,p) + Clwl(a-lt,-p)

where C0 and C, are arbitrary constants. It follows from (1.6), (1.7), (1.8), (1.13) and

variation of parameters that (1.5) admits a solution

y = ̂ (Teh(f>p){c°-lo 2£,/2w-(''-1)/2exp(T2/2£)

lx2\     /«"'je       U_       /•*      w^tA'/2, j>)^(e) 1

It follows from (1.9) and (1.10) that

(P-D/2
t0PE(j'-1)/4^(e)

Wl+P)/2e(l+,)/V(l+i>)/2exp/f!

x    ci+f—TTÏÏ72-7tV¿t      forjc>0.
[ A)   2e^+l)/4exp(T2/£)      j

Since exp(x2/e) and exp((x2 — t2)/e} are exponentially large as e tends to zero, y

is exponentially large as e tends to zero, even if \p(e) in (1.5) is e^. Therefore we

obtain >> ¥= 0(eN) as e tends to zero.

Let us assume that / and g in (1.1) are holomorphic in two complex variables x

and e in the domain x G D, \ e \< p, where D is a domain in the ;c-plane containing

the real interval [-a, b] and p is a positive number. As we shall show later, the
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assumption that f and g are convergent power series in e for \e\< p is very important.

For example, in the case when

00 00

/(*, «0 ~   2 fm(x)em,       g(x, e) ~   2 gm(x)em

m = 0 m = 0

as e tends to zero and g(x, e) is not holomorphic in e at e = 0, even if the

Matkowsky condition is satisfied, (1.1) may not exhibit resonance. Let us see a more

concrete example; consider

(1.14) ey" - 2xy' + (2 + 2e~a/e)y = 0       (-a < x < a)

where a > 0, e > 0 and a > 0. Since e~a/t is asymptotically zero as e tends to zero,

(1.14) does have an outer expansion y — x, i.e. a0(x) = x and am{x) = 0 for m > 1.

Hence, (1.14) satisfies the Matkowsky condition. The general solution of (1.14) is

(1.15)   j = exp(!^) Cow\[-[Jl>3 + 2e a/e)+cA^>
1/2

where C0 and C, are arbitrary constants. It follows from (1.9) and (1.10) that, for

x >0,

y{x, e) ~ C0(Ve1/2)1+e"aA + ^exp^/eX«"'*/*172)-2-'^

In order to get that y(x, e) converges uniformly for x G [0, a] as e tends to zero (y

and ey' being bounded on any closed subinterval of (-a, a)), we need to estimate C0

and C,. It follows from (1.15) that

C0=\ye*/2°

C, -ve x2/2e

fWl(w-^,-3-2e-«A)

+ W-,e-,/2Wi(<o-1-^,-3 - 2e-«/E)

_J'^2/2EvViL-i_^_)_3 _ le-^U/V'/V1

f„(-^,3 + 2e-«A)

+ e-1/2w1'(^I,3 + 2e-«A)

+y'ex2/2'w i(-Jj,3 + 2e-a/£)l//2e-,/V1-eWVj:2/£;

hence C0 and C, admit, respectively, the asymptotic representation

Cn
£./2+,/2e-«A(0.+2e-«A|>,JC-

¿£/x-2-<-"A},

C,~e-(jc2A)e-i-(i/2).-"V-' [-yx¿  e      +■ \eyx j

as e tends to zero and x G (0, a); therefore we obtain

C0 = C(e)e1/2,        C, = C(e)e-a2/E,
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where C(e) is bounded and does not converge to zero as e tends to zero, and

C(e) = 0(e~') as e tends to zero. Thus,

y = expj ~ )  C(e)e1/2wl(x/el/2,3 + 2<Ta/e)

+ C(e)e-a2/"wl(o>-ix/el/2,-3 - 2e"a/E)

We now consider x < 0. It is known that the function w,(x/e1/2,3 + 2e~a/e)

admits the following connection formulas (cf. [1, p. 687]):

w (x/el/2,3 + 2e-a/e)

At 2 + e"o/'J2-ÏÏ (Oz^e

2(i/2)(3+2e-»/')r;(_i _ e-«A)

Xw1(to-1xA1/2,-3 - 2e-«/£) + cc2+2e'°/'w](u-2x/e'/2,3 + 2e~a^).

Also, the inverse of the Gamma function, T(-l — e~a/e), satisfies an estimate

Kxe'a/e < l/r(-l - e'a/e) < K2e-a/e

for some positive numbers Kx and K2; hence we have

y(x,e) = exp||^J C(£)£l/V+2f"Aw,(«-Ve'/2,3 + 2e-«/E)

+
2tt w2 + e-«A

2(l/2X3 + 2e-«A)p/_j  _ e-a/e\

C(e)el/2 + C(e)e-al/c

Xw,(w-Ve1/2,-3 - 2e-a/c)

C{E)^2{x/e^2)X+e'a/' + (x/é'2y2~'""

X ^2-(l/2)(3 + 2e-»/Ve-/t(£)e,/2exp/
x   — a

+ W2+e  /eC(e)exp
2 2a   — x

Note that C(e) is bounded and does not converge to zero as e tends to zero, and

C(e) = 0(e"') as e tends to zero. If a < a2 then

v^2-(3+2e"°/e>/2w2e"°/,C(e)e1/2e(Ä2-o)/£ + <o2+e"°AC(e)e-(a2-*2)/e

is exponentially large for x near -a. Hence (1.14) does not exhibit a resonance if

a < a2. Note that if a > a2 then (1.14) exhibits resonance on [-a, a].
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Y. Sibuya [14] proved that the Matkowsky condition implies resonance if f(x, 0)

= -2x and the real interval [-a, b] is contained in a disc D with center at 0. The

main ideas in his proof are:

(1) Assume (1.1) satisfies the Matkowsky condition. After making changes of the

independent variable and the unknown, (1.1) then becomes

(1.16-y) ey" -2xy' + {p-\+ 6j(e))y = 0,

respectively, in each of the domains

(1.17)   xED,   eESj= {e:aj<arge<bj,0<\e\<po}        (j = \,2,...,v),

where/» is a positive odd integer, Sx U S2 U • • • U Sv = {e: 0 <| e | < p0}, and

(i) 8j(e) is holomorphic in S- = (e: a} < arg e < fy, 0 < | e | < p0};

(ü) Sj(e) is asymptotically zero as e tends to zero in Sf,

(2) it follows from the connection formulas of Weber's equation (1.8) that

| S,(e) - 8k(e) |< M,,exp(-r2/| e |)    for e G Sy fl Sk,

where MJk is a positive number and r is the radius of disc D. Then by a fundamental

lemma in his paper, it follows that | fi.(e) | < //^ exp(-r2/| £ |) for e G S-, where Hj is a

positive number.

(3) Since disc D contains the real interval [-a, b], r2 s* max(a2, b2). By explana-

tion of the previous example, the estimates of 5-(e) are good enough for (1.1) to

exhibit resonance on [-a, b].

In this paper we consider the general case where D is a domain in the x-plane

containing the real interval [-a, b]. The main problem is to remove from Sibuya's

result the assumption that D is a disc. We will show that there exist transformations

taking (1.1) to (1.16-y), respectively, in each of the domains (1.17). In our case, since

the domain D contains a disc with radius r > 0 and center at 0, we can obtain

| 8j(e) |< Hj&xp(-r2/\ e\) for e G 5, by using Sibuya's result. However, since the

radius r of such a disc is small in general, these estimates of 8j(e) are not enough for

resonance. We shall use cohomological methods and generalizations of the

Phragmen-Lindelöf theorem to improve the estimates of 8j(e). Then we shall show

that (1.1) actually exhibits resonance on [-a, b]. Information is also taken from the

paper by Kreiss and Parter [6].

2. Preliminaries. If we change y by

y = wexpj-|y" [-2t+/,(t, e)]drj,

where^(t, e) = 2£=1/m(T)e"\ (1.1) is reduced to

(2.1) e2w"-[x2 + eR(x,e)]w = 0,

where

R(x,e)=   1 Rm(x)em,
m = 0

x2 + eR(x, e) = /(*: c)   +e 1 df(      \       I      \
2 dx~(X,£> ~~ g(x'E>

and each Rm(x) is holomorphic in the domain D.
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(2.1) is equivalent to the system

(2.2) edW/dx = M(x,e)W,

where

W
w

edw/dx
M(x, e)

0 1

:2 + eR(x,e)     0

To prove the main theorem, the following two lemmas are needed, and for their

proofs we refer to [14].

Lemma 2.1. Let 0 G 12 be a simply connected domain in D. Then there exists a

two-by-two matrix

(2.3) T(x, e) = 2 Th{x)eh
h = 0

A(x, e) B(x, e)

eA'(x, e) + (x2 + eC(e))B(x, e)    A(x, e) + eB'(x, e)

where A(x, e) = lf=0Ah(x)eh, B(x, e) = 2f=0Bh(x)eh and C(e) = lt=Qaheh.  The

components of T(x, e) are formal power series in e such that:

(i) the components of the two-by-two matrices Th(x) are holomorphic in Í2;

(ii) det T0(x) = A0(x)2 — (xB0(x))2 = 1 in domain ß;

(iii) the formal transformation W — T(x, e)V reduces (2.2) to

(2.4) eV' = N(x,e)V

where

N(x, e)
0 1

in the domain il, and

(2.5)

x2 + eC(e)    0

Ro(0) = a0.

v

ev'

Lemma 2.2. (1.1) satisfies the Matkowsky condition iff aQ (cf. (2.5)) is a negative odd

integer and am = 0 (m > 1).

In order to obtain our main theorem, we will introduce the following notation for

a domain in the x-plane.

Let r3 be a sufficiently small positive number and rur2 positive numbers with

r, > b,r2> a, respectively. Set

(2.6)      D{= \x — xx-\- ix2. -r3 < x2< r3,-]jr22 — x\ < xx < yr2 — x\ J

(cf. Figure 2.1). Then Z), is a simply connected domain in the complex x-plane which

contains the real interval /. We can choose rv r2 and r3 so that Ö, CD.

The main theorem will follow immediately, once the following uniform simplifi-

cation is proved.
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">•   *-,

Figure 2.1

Theorem 2.3. Let X and M be sufficiently small positive numbers and set

(2.7) D2 = D\{x = re,e G D, : -3-n/A - A < 6 < -tt/4 + A}

(cf. Figure 2.2). 77zew there exists a two-by-two matrix S(x, e) whose components are

holomorphic in two variables, x and e, in the domain

(2.8) x<EDx,

(2.9) (e: | arge |< A, 0 <| e |< M}

such that:

(i) the matrix S(x, e) ~ T(x, e) (cf. (2.3)) as e tends to zero in (2.9) uniformly in

the domain (2.7);

(ii) the transformation W = S(x, e)U reduces (2.2) to

0 l"

x2 — ep     0
et/' =(2.10)

in the domain (2.8), (2.9).

We shall prove this theorem in §4.C.

U

9-  x,

Figure 2.2

3. Basic lemmas. Assume that (1.1) satisfies the Matkowsky condition on /. By

virtue of Lemma 2.2, this is equivalent to assuming that a0 = -p, where p is a

positive odd integer and am = 0 for m > 1. Hereafter, we shall assume that a < b
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(otherwise we replace x by -x). Manipulating with rotations of domain Dx and

sectors in the e-plane, we can obtain the following lemma (cf. [8,14]).

Lemma  3.1.   There exist sectors 5, = (e:   a* < arg e < b*,  0<|e|<p}  (j—

1,2,...,«), where p is a positive number, a*'s and b*'s are real numbers, and

Sx U S2 U • • • U5„ = {e:   0 <| e |< p}, functions  ô,(e),... ,8n(e)   and  two-by-two

matrices Px(x, e),.. .,Pn(x, e) such that:

(i) 8¡(e) is holomorphic in Sy,

(ii) 8j(e) is asymptotically zero as e tends to zero in Sy,

(iii) entries of Pj and P~x are holomorphic in the domain

(3.1-7)

x G Dx = \x — xx + ix2: -r3 < x2 < r3,-]jr22 — x\ < xx < \jr2 — x\ J,       e G Sj,

for some domain Dx in D which contains the real interval /;

(iv) Pj (resp. Pf1) admits the matrix T (resp. T'1) as an asymptotic expansion as e

tends to zero in Sj, which is valid uniformly in Dx;

(v) the transformation W — Pj(x, e)Vj reduces (2.2) to

0 1"

x2 - e{p + 8j(e))     0
(3.1)' eVJ =

in the domain (3.1-/).

Sibuya [14] proved that the property "asymptotically zero" of 8j(e) can be

replaced by "exponentially small". In his case the domain of x is a disc with center

at 0 and the exponent of e depends on the radius of the disc. In our case, although

the domain of x contains a disc with center at 0, the radius of the disc is small. If we

apply his theorem directly, we obtain

(3.2) |ôy(e)|<//,exp(-r32/|e|)    in S,,      j = 1,2,...,«,

for some positive number Hx.

Let r0 be a positive number with a < r0< r2 and choose u0 with 0 < w0 < \it such

that r32 3= /-02 cos w0 > 0. Then if arg e = w0 (or -w0), we get r32/| e | ̂  r^ Re(l/e).

Therefore, for some sector which contains the line segment arge = w0 (or -w0),

0 < | e | < ß, say Sj, we have

|S,(e)|<J?Vxp{-r02Re(lA)}

for e on the line segment arg e = w0 (or -co0), 0 <| e | < p. Then we obtain

Lemma 3.2. There exist sectors

Sj= {e:a,<arge<¿Y,0<|e|<p}        (j = 1,2,. ..,v)

where

(3.3)

-\m < -co0 = ax < a2 < bx < a3 < b2 < a4 < b3 < • • ■ < av < bv_x < bv = w0 < \-n,
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functions 8x(e),... ,8„(e) and two-by-two matrices Px(x, e),...,P„(x, e) such that:

(i) 8j(e) is holomorphic in S- and continuous on

Sj* = {e: aj < arg e < bJt 0 <| e |< p) ;

(ii) 8j(e) is asymptotically zero as e tends to zero in S¡;

(iii) | S,(e) |< Hx exp{-/-02 Re(l A)} on tne ane segment arg e = -u0, 0 <| e | < p;

| 5„(e) | < Hx exp{-r02 Re(l A)} on the line segment arg e = «0,0<|e|<p;

(iv) entries ofP- and P~x are holomorphic in the domain (3.1-/);

(v) Pj (resp. P~x) admits the matrix T (resp. T'x) as an asymptotic expansion as e

tends to zero in Sj, which is valid uniformly in Dx;

(vi) the transformation W'= Pj(x, e)Vj reduces (2.2) to (3.1)' in the domain (3.1-/).

Note that these functions 5-(e) and sectors 5- are similar to, but slightly different

from, those in Lemma 3. Assumption (3.3) means that v sectors, SX,S2,...,SV,

intersect consecutively (i.e. S- D SJ+X =£ 0), but no three of them intersect.

The estimate of 5,(e) (resp. 8„(e)) is relatively poor on the ray arge = w0 (resp.

arg e = -w0) which is close to the imaginary axis. However, we can substantially

improve such an estimate along the real axis by utilizing

Theorem 3.3. Let S¡ and 5 be as in Lemma 3.2(i), (ii). Assume (3.3) holds and

I ij+M - *y(«) l< #i exp{-juRe(lA)}    in Sj D Sj+X;

| 8x(e) |< Hx exp{-jnRe(l A)} on the line segment arg e = -co0, 0 <| e \< p; \ 8v(e) \ <

i/,exp(-j^Re(lA)} on the line segment arge = w0, 0 <|e|< p, for some positive

numbers ¡i and Hx.

Then there exists a positive number H such that

(3.4) |5,(e)|^//exp{-MRe(lA)}    in SJt       j=\,2,...,v.

Proof. See Lin [7].

Remark. We shall use this theorem with ¡x — r02. Note that if arg e = 0 (i.e. e is

positive real) and e G 5y- for somey0, then (3.4) impües | 8jo(e) |< 7Yexp(-jn/e}.

4. Proof of main theorem.

A. Preliminaries. In this section, as an application of Theorem 3.3, we shall derive

an estimate

(4.1) |S,(e)|«//exp{-/o2Re(lA)}    fore G 5,,

for 5- and r0 as in Lemma 3.2. (If necessary we shall replace p by p where 0 < p < p.)

To do this it sufficies to prove the estimate

(4.2) |5/.+ 1(e)-ô;.(e)|<Jr71exp{-r02Re(lA)}    inS,DS,+1.

Note that we already have

(4.3) |S1(e)|<//,exp{-r02Re(lA)}

on the line segment arg e = -w0, 0 < | e | < p, and

(4.4) |5ie)|<i71exp{-r02Re(lA)}
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on the line segment arg e = w0, 0 <| e | < p, for some positive number Hx. To derive

(4.2) we shall use

(4.5) d2w/dt2 - (t2 - a)w = 0

(Weber's equation, cf. [17]), where a is a complex parameter. Hsieh and Sibuya [4]

constructed the unique solution w, = wx(t, a) of (4.5) such that:

(i) wx(t, a) is an entire function of (t, a);

(ii) wx(t, a) and w[(t, a) admit, respectively, the asymptotic representations

w1(/,a) = /(a-1)/2e-'2/2[l+0(|i|-2)],

w[(t,a) = i(«+i)/2e-'V2[_1 + 0(| i|"2)]

uniformly on each compact set in the a-space as t tends to infinity in any closed

subsector of the open sector | arg 11< 3tt/4. (Also see Y. Sibuya [12].)

Definition 4.1. If a solution of (4.5) tends to zero as t tends to infinity along any

direction in the sector S, then this solution is said to be subdominant in the sector S.

Since Re(i2) > 0 in the sector | arg t\<tr/4, the solution wx(t, a) of (4.5) is called

a subdominant solution in the sector | arg t \ < -n/4.

Let

(4.6) w = exp(^7n).

If we replace t by co~xt and a by -a, then (4.5) does not change. Thus wx(u~xt, -a) is

also a solution of (4.5), and

üm W-<a+1>/2í(«+1)/2e-'2/2w1(W-1í,-a) = 1

r->oo

uniformly in a if a is in a compact set in the a-plane and | arg t — tr/2 \ < 3w/4.

Similarly, wx(u~2t, a) and wx(ut, -a) are also solutions of (4.5) with

Urn u-<x-aYx-a^2e'2/2wx(a2t,a) = 1,
í-»00

lim W(1+0>/V1+«>/V2/2w,(co/,-a) = 1
r->oo

uniformly in a if a is in a compact set in the a-plane and | arg t — -n\< 3it/4,

| arg t + m/2 |< 377/4, respectively.

(4.5) is equivalent to the system

(4.7)

where

Set

(4.8-0)

d*
dt

0

* =

1

a     0

w

dw/dt  ■

*,

%(t, a)

wx(t,a)

dwx(t,a)

dt

wx((j-xt,-a)

dwx(u'xt,-a)

dt
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(4.8-1)

(4.8-2)

and

(4.8-(-l))

w,(w xt,-a) x(o>-2t,a)

%(t,a)

%(t, a) =

dwx(u xt,-a)        _2dwx(u 2t,a)-iUffi

to
dt ~ dt

wx(u>~2t,a) wx(ut,-a)

2dwx(u'2t, a) dwx(ut,-a)

dt
u-

dt

*-i('.«)
u-

wx(ut,-a) wx(t,a)

dwx(ut,-a)       dwx(t,a)

8/ dt

We consider these matrices of independent solutions of (4.7) in J0, Jx, J2 and /_,,

respectively, where

/„= {t: I arg / — tt/4 | <: tt/2 }, Jx = {t: | arg/ - ir/4 - ■n/2\<7t/2},

J2= [f. I arg/- m/4- ■n\<m/2),    /_, = {/: |arg/-7r/4 + tt/2 |< 7t/2}.

Set

(4.9)

(4.10)

and

(4.11)

Then

c(«) = 2-a/vi+a)/2/27/r(1/2-a/2),

C(a)

M(a)
C(a)     1

C(«)     0

%(t, a) = %(t, a)M(a),      %(t, a) = %(t, a)M(-a),

%{t, a) = *_,(/, a)M(a),    ¥_,(/, a) = %(t, a)M(-a).

(Cf. Y. Sibuya [14].)

Now we shall derive solutions of the system

(4.12-/) eVJ
0 1

x2- e(p + 8j(e))     0 Vr

Choose a branch of e1/2 such that arg(e1/2) = \ arg e for e in the sector -u0 < arg e

A(e)

< w0. Set

1      0
0    e'/2

and

<¡>jh(x, e) = A(e)*„(*A1/2, P + «,-(«0)        (A = -1,0,1,2).
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Then

^*4x,e) = eA(e)ft%(-±-2,p + 8J(e))e-x/2

= e'/2A(e)

%(x, e).

0 1

e~xx2 - (p + 8j(e))     0

0 1

x2-e(p + 8j(e))     0

Hence, $-A are fundamental matrix solutions of (4.12-/) such that

(4.13-/) 9J0(x, e) = ♦,,(*, e)M(p + S,(e)),

%(x, e) = *,2(x, e)M(-p - S.(e)),

*J2(x, e) = ®j(_X)(x, e)M(p + 5y(e)),

Aíe)"'*^*, e)

Set

1      0
0    -1

and

Qjh(x, e) = 9Jh(x, e)exp{(-l)A^2e-'/}        (h = -1,0,1,2).

Some of the properties of Qjh are given in the following lemmas due to Sibuya [12].

Lemma 4.2. Let R and M0 be arbitrary but fixed positive numbers and X a sufficiently

small positive number. Then w = wx(o¡~hx/eX/>2, o¡~2ha) satisfies

(4.14)

in the domain

(4.15)

| w,(«-hx/ex/1, io-2Aa)exp{(-l) V/2e} |< c \ e \",

| w[(u-Ve1/2, <o-2Aa)exp{(-l) V/2e} |<c\e\"

\x\<R,    |arg(V£1/2)- jhir\*z3ir/4- A,    0<|e|<Afo,    |arge|<w0,

where c is a positive constant depending on A, and q is a real number.

Lemma 4.3. Let r, R and M0 be arbitrary but fixed positive numbers and X a

sufficiently small positive number. Suppose 4>(e) is a given function of e which is

holomorphic in a sector

(4.16) {e:p,^arge<p2,0<|e|<Af0},

where -w0 < p, < p2 < w0 and

(4.17) xp(e)~0
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as e tends to zero in (4.16). Then

,1/2
u-2h a , u'2ha hXl

2e

w,\ w
„1/2

uT2ha

expi(-l)

^(e))-wi(w-A-^,W-2Aa)]exp{(-l)A^

0,

0

uniformly for

(4.18) |x|<Ä,    |arg(xA1/2)-AV2|<3t7/4-A,    |a|<r,

ai e /ewifc /o zero in the sector (4.16).

Given any e in SJt by Lemmas 4.2 and 4.3 we know that if (jc, e) is in a domain

(4.19-A) xGZ),,    |arg(xA'/2) — «r/4 - Att/2|< it/2- X,

where A is a small positive number, then we have

I (?/*(*. ce <c|e|«,íy'AV^1' cyn ^ L I cl"' H {?>*(*> e)

where c is a positive number depending on A, q is a real number and M denotes the

usual matrix norm. Furthermore, the matrix Qjh(x, e) — QJ+ith(x, e) is asymptoti-

cally zero uniformly in the domain (4.19-A) as e tends to zero in S. n Sj+X.

B. Estimate. Let Pj(x, e) and Pj+X(x, e) be the matrices given in Lemma 3.2. Then

Pj(x, e)$Jh(x, e) and Pj+X(x, e)$j+\yh(x, e) are two fundamental matrix solutions of

(2.2) in the domain x G Dx, e G Sy■ n SJ+X. Therefore, there exist two-by-two matrices

Lh(e) such that

(4.20-A) Pj+X(x, e)*j+uh(x, e) = P¡(x, e)%(x, e)Lh(e).

Note that Lh(e) does not depend on x. It follows from (4.20-0) that

expl -^- JL0(e)exp{jc2//2e} = Qj0(x, e)'[Pj(x, e)'lPj+x(x, e)QJ+x0(x, e).

Hence, the matrix

(4.21) exp{-x2J/2e]L0(e)exp{x2J/2e) - I2

is asymptotically zero as e tends to zero in Sj n SJ+X uniformly in the domain

(4.19-0), where I2 is the two-by-two identity matrix.

In the same way we can prove that the matrix

(4.22) exp{x2//2e}L,(e)exp{-jc2//2e} - 72

is asymptotically zero as e tends to zero in Sj n SJ+X uniformly in the domain

(4.19-1).
From the connection formulas (4.13-/), (4.20-0) and (4.20-1), we can derive

(4.23) L,(e) = M{p + 8J(e))L0(e)M(p + 5,+ 1(e))~\

Set

(4.24) L0(e)
Cn(«0     C12(e)

Qi(£)     C22(e)
.    Lx(e) =

cii(£)     Cx2(e)

¿2i(£)     C22(e)



SUFFICIENCY OF THE MATKOWSKY CONDITION 661

Then from (4.23) and (4.24) we derive

(4.25)

Cxx(e) = C{p + 8j(e))Cx2(e) + C22(e),

¿M = [C{p + */«))C„(e) + C2x(e)}/C{p + 8J+X(e))

-C{p + 8j+x(e)){c{p + 8j(e))Cl2(e) + C22(e)}/C{p + 8J+X(e)),

C21(e) = C(p + 8j(e))CX2(e),

¿ato = {C(p + 8j(e))Cxx(e)}/C{p + 8J+X(e))

-C{p + 8J+X(e)){c{p + 8j(e))Cn(e)}/C{p + 8j+x(e)).

Since

(4.26)     exp(-x2//2e}L0(e)exp{x2y/2e}

C„(e)

C21(e)exp(x2A)

C12(e)exp(-x2A)

C22(e)

and

C12(e)exp(x2A)

(4.27) exp{x2//2e}L,(e)exp{-x27/2e}

A.(£)
C21(e)exp(-x2A)

then, from (4.21) and (4.26), we have

(4.28) |C21(e)|<m21|exp(-x2A)|,

for some small positive number m2X, uniformly in the domain (4.19-0). Note that

| arg(x/e1/2) — \m \ < \m — X if and only if \ arg e — \m + X < arg x < | arg e

+ \tt — X. If A is a sufficiently small positive number (e.g. 0 < A < \m — |w0), then

arge TT + X < \ arg e — \it + \tt — |w0 < 0,

and

2- arg e + \tt — X > { arg e + \m - \tt + %a0 > 0.

Set x = r0. Since rQ G Z), and arg(r0) = 0 (note that a < r0 < r2 < rx), then r0 is in

the domain (4.19-0) if |arge|<<o0. Since (4.28) holds uniformly in the domain

(4.19-0), we obtain

(4.29) \C2x(e)\<m2xexp{-r2Re(\/e)}    for e G Sj D SJ+,.

Similarly, from (4.22) and (4.27), we have

(4.30) |C12(e)|<m12|exp(-x2A)|,

for some small positive number m 12, uniformly in the domain (4.19-1). Note that

I arg(*A1/2) - U - kit |< \-n - X iff

\ arg e + \m + A < arg x < \ arg e + f tt — X.
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Since

2- arg e + \tt + X < \ arg e + \ir + \tt — {-(¿Q < \m,

and

\ arg e + \m — X > \ arg e + \m — \tt + ^co0 > it,

x = -r0 is in the domain (4.19-1), and we obtain

(4.31) |C12(e)|<m12exp(-r02Re(lA)}    for e G Sy n S,+ 1.

Furthermore, as in Sibuya [14, p. 663], we obtain

(4.32) |C12(e)|<An,2exp{-/-32/|e|}    fore G Sj n SJ+l,

where mX2 is a positive number. It follows from (4.25) that

C(p + *y(e))C„(e) - C{p + 8J+X(e)){c{p + 8j(e))CX2(e) + C22(e)}

= CX2(e)c{p + 8J+X(e)) - C2X(e).

Since Cu(e) is asymptotically one as e tends to zero in Sj D Sj+X (cf. (4.21) and

(4.26)), we can derive (from (4.29) and (4.31))

C(p + S,(e)) - C(p + %+i(«)){^ + C(P + W)f^}}

< m* exp (-r02 Re( 1 /e)}    for e G Sj !~) SJ+X,

for some positive number m*. Let

Thenjy(e) is holomorphic in Sj D Ä+, and asymptotically one as e tends to zero in

Sj n Sy+I (cf. (4.21), (4.26) and (4.32)).

Lemma 4.4. There exist functions g,(e) in Sj which are, respectively, holomorphic in

Sj and asymptotically one as e tends to zero in 5y swcA that fj(e) = g¡+x(e)/g-(e)

(/= 1,2,...,?- \)inSjf\Sj+x.

Remark. Here we replace p by a smaller p.

We shall prove this lemma in §4D. By Lemma 4.4 we obtain

(4.33) | C{p + 8j(e))gj(e) - C{p + 8J+X(e))gj+X(e) |< mexp{-r02Re(lA)}

in Sj D Sj+X for some positive number m. Since dC(p)/da ¥= 0 and C(p) = 0 (cf.

(4.9)), we have

(4.34) i,^(«)|<| C{p + Sj(t)) \<K2\8j(e) \

in Sj for some positive numbers Kx and K2. Let

<t>j(e) = C{p + 8J(e))gj(e)    îoreESj.

Then from (4.33) we have

I *;(e) - *J+l(e)\<mexp{-rfRe(l/e)}    in Sj D 5y+1.
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(4.36) eV =

Also, from (4.34), (4.3) and (4.4) we have

|*,(e) |<¿exp{-/-02Re(lA)}

on the Une segment arg = -<o0, 0 < | e | < p, and

|fc(e)|<*rap{-r02Re(l/e)}

on the Une segment arge = w0, 0<|e|<p for some positive number K. Let

Hx = max{w, K}; by Theorem 3.3 we obtain

(4.35) |^(e)|<tfexp{-/o2Re(lA)}

for some positive number H for e G Sj, j = 1,2,...,v. Thus, from (4.34) and (4.35)

we have

|5y.(e)|<M1exp{-/-02Re(lA)}

for some positive number M, for e G Sj,j — 1,2,...,v. This completes the proof of

(4.1).
C. Resonance. In this section we shall prove Theorem 2.3 and derive the resonance

from Theorem 2.3. To do this we shrink our domain Dx so that a < r2< r0, where rQ

is the same number as in the last section, and choose a sufficiently small positive

number A such that cos A > r22/r02.

Let us recall that there is a transformation W = P(x, e)V which reduces (2.2) to

0 l"

x2-e(p + 8(e))     0

where P(x, e) ~ T(x, e) uniformly in the domain Dx as e tends to zero in

(4.37) (e: | arge |< A,0 <| e |< M).

In order to finish the proof of Theorem 2.3, we need to find a two-by-two matrix,

say B(x, e), such that the transformation V = B(x, e)U reduces (4.36) to

0 f
x2 — ep    0

in the domain (4.37),

(4.38) D2 = Dx\{x = re'9 G D,: -\m - \ « 6 < -\ir + A}.

Once this is done, we will choose S(x, e) in Theorem 2.3 as S(x, e) = P(x, e)B(x, e).

Therefore, B(x, e) must be asymptotic to 72 as e tends to zero in (4.37). Note that

from the result in the last section, we already have

(4.39) |5(e)|<M,exp{-/-02Re(lA)}

for e in (4.37) for some positive number Mx. Theorem 2.3 is an immediate

consequence of

Theorem 4.5. Let X and M be sufficiently small positive numbers such that

cos A > r2/r^, and let (4.38) hold. Then there exists a two-by-two matrix B(x, e)

whose components are holomorphic in two variables x and e in the domain

(4.40) x E Dx,   e G (e: |arge|< A,0 <|e|< M]

(2.10) eU' = U
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such that:

(i) the matrix B(x, e) ~ I2 as e tends to zero in (4.37) uniformly in the domain

(4.38);
(ii) the transformation

(4.41) V=B(x,e)U

reduces (4.36) to (2.10) in the domain (4.40).

Proof. Set

*A(x, e) = A(e)%(x/ex/2, p + 8(e))

*h(x,e) = A(e)%(x/ex/2,p) '   '

(cf. (4.8-0) and (4.8-1)). Then $h(x, e) and &h(x, e) are fundamental matrix solutions

of (4.36) and (2.10), respectively, such that

$0(x, e) = <S>x(x, e)M(p + 8(e))    and   %(x, e) = <tx(x, e)M(p)

where M is given by (4.11). Set

B(x,e) = %(x,e)%(x,e)-1.

Then the transformation V = B(x, e)U reduces (4.38) to (2.10). Therefore, the main

part of the proof is to show that B(x, e) — 72 is asymptotically zero as e tends to zero

in (4.37) uniformly in the domain (4.38).

Set/= [{, °,]and

Q„(x, e) = Qh(x, e)exp{(-l)V.//2e}

Qh(x, e) = $„{x, e)exp{(-l)V.//2e}
(A = 0,1).

By Lemmas 4.2 and 4.3 we know that if e is in (4.37) and

(4.42-A) xEDx,    \axgx - \m - \hm\^ \ir - A,

where A is a small positive number, then we have

.,lß»(x,«)||<*|e|«,    WQh(x,e)-l\\<c\e\",

\Qh{x,e)\\<c\e\",    \\Qh(x, e)~l\\ < ¿f|e|«,

where c is a positive number depending on A and q is a real number. Furthermore,

the matrix

(4.44-A) Qh(x,e)-Qh(x,e)

is asymptotically zero as e tends to zero in (4.37) uniformly in (4.42-A).

Since $x(x, e) and B(x, e)<&x(x, e) are two fundamental matrix solutions of (4.36)

for x G Dx and e is in (4.37), there exists a two-by-two matrix L,(e) such that

(4.45) *,(x, e)Lx(e) = B(x, e)êx(x, e).



sufficiency of the matkowsky condition 665

Note that Lx(e) does not depend on x, and

¿,(e) = $x(x, e)'{B(x, e)$x(x, e)

= M(p + 8(e))%(x, e)-lB(x, e)%(x, e)M(Pyx

= M{p + 8(e))M(p)'\

We have

M(p + 8(e))M(p)-]-I2 =
C(p + 8(e))     1

C(p + 8(e))    0

0 \/C(p)

1 -C(p)/C(p)

1     0
0    1

0     {C(p + 8(e))-C(p)}/C(p)

0     {C(p + 8(e))-C(p)}/C(p)

0   0(8(e))]    ,
.0   0(8(e))\    ^ree\<X,0<\e\<M.

Furthermore,

B(x, e) = %(x, e)%(x, e)~l

= QQ(x, e)exp{-x2J/2e}exp{x2J/2e}Q0(x, e)~l

= Qo(x>e)Qo(x>E)~l-

It follows from (4.44-0) that B(x, e) — 72 is asymptotically zero as e tends to zero in

(4.37) uniformly in the domain (4.42-0). Also, from (4.45) we have

B(x, e) = $x(x, e)Lx(e)$x(x, e)"1

= Qx(x, e)exp(x2J/2e)Lx(e)exp(-x2J/2e)Qx{x, e)"1

= Q\(x,e)-

= ßi(*,e)-

X

= ôi(*,«0

= ß,(x,e)-|/24

1 0(8(e))

0     1 + 0(8(e))

exp(x2/2e) 0

0 exp(-x2/2e)

Xexp(-x2J/2e)Qx(x, e)~*

exp(x2/2e) {exp(x2/2e)}0(8(e))

0 exp(-x2/2e)(l + 0(8(e)))

exp(-x2/2e) 0

0 exp(jc2/2e)

1     {exp(x2A)}0(S(e))

0 1 + 0(8(e))

0    exp(x2A)0(5(e))

0 0(8(e))

Q\(x,e)~

Qi(x,e)~

>Q\(x,e)~

= Qx(x,e)Qx(x,e)-' + Qx(x,e)
0     {exp(x2A)}0(5(e))

0 0(8(e))
Qi(x,e)~ ,
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+ßi(*>«0 ß,(*,«) ■

as e tends to zero in (4.37). Since

(4.44-1) Qx(x,e)-Qx(x,e)

is asymptotically zero as e tends to zero in (4.37) uniformly in (4.42-1), then there

exists a two-by-two matrix Fx(x, e) such that Qx(x, e) = Qx(x, e) 4 Fx(x, e) and

Fx(x, e) is asymptotically zero as e tends to zero in (4.37) uniformly in (4.42-1). Thus,

B(x, e) - I2 = Fx(x, e)Qx(x, e)~

0     {exp(x2/e)}0(8(e))

0 0(8(e))

Since S(e) satisfies (4.39) for | arg e | < A, 0 < | e | < M, we have

(i) 5(e) is asymptotically zero as e tends to zero in (4.37).

Also, if x is in (4.42-1) and e in (4.37) then

| 5(e)exp(x2A) \<Mi exp{-r02Re(lA)}exp{r22/| e |)

= Miexp{-r02Re(lA)4r22/|e|}

= M, exp{-| e \~x[r2cos(| arge |) - r2]}

since | arg e | < A < 2-7T implies that cos(| arg e |) > cos A > /"22//-02.

Hence, we have

(ii) 5(e)exp(x2/e) is asymptotically zero as e tends to zero in (4.37) uniformly in

(4.42-1).
Utilizing (i), (ii) and the fact that Fx(x, e) is asymptotically zero as e tends to zero

in (4.37) uniformly in (4.42-1), together with (4.43-1), we obtain B(x, e) — I2 is

asymptotically zero as e tends to zero in (4.37) uniformly in the domain (4.42-1). The

domain D2 is the union of (4.42-0) and (4.42-1). Thus we complete the proof of

Theorem 4.5.

Now we shall derive the resonance from Theorem 2.3. (2.10) is equivalent to

(4.46) e2u" - (x2 - ep)u = 0,

which admits a solution

u(x, e) = Cwx(x/ex/2, p),

where C is an arbitrary constant. Since (p — l)/2 is a nonnegative integer,

i       I    X    \(P-V/2( F ,2 v

(4.47) u(x,e) = Ce-^2\^) [l 4 a,¿ 4 a2^ 4 • • • 4«^

where a,,... ,a„ are constants, v is a positive integer such that 2v =s (p — l)/2, and

(4.48)

r-       i       Í    x    \(/>+l)/2r ff2 e"  1

eu'(x,e) = Cfee-^2\-f7i) |-1 4 ßx- 4 ß2- 4 • • • +A —j,

where ßx,...,ßv are constants (cf. Hermite polynomial in [17]). Thus,

U
u

eu'
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is a solution of (2.10). Set

S(x,e) =

667

on(x, e)     SX2(x, e)

S2X(x, e)     S22(x, e)

in Theorem 2.3. Then S(x, e) ~ T(x, e) as e tends to zero in (4.37) uniformly in D2,

and

(4.49) w(x, e) = Sxx(x, e)u(x, e) 4 Sx2(x, e)eu'(x, e)

is a solution of

e2w" - (x2 + eR(x,e))w = Q.

Hence

y(x, e) = expl - j^f [-2t 4 efx(r, e)] dr w

is a solution of (1.1), where /,(t, e) is holomorphic in t G Dx, | e |< p. It follows

from (4.47)-(4.49) that

(4.50)   y(x, e) = Ce^'^cxpL^ ffx(r, e) dA

X {Sxx(x, e)[x^_1)/2 4 axex(p-S)/2 + ■•■ +avevxq>]

+ xSX2(x, e)[-x(^-')/2 4 ßxex(P~5)/2 +■■■ + ßvevx«>]}

where q„ is a nonnegative integer. Set C = e(/,_1)/4. Then (4.50) becomes

y(x, e) = expl --/ A(t, e) dr\

X {Sxx(x, e)[x(p-X)/2 4 axex{p-5)/2 4 • • ■ +a,£"jc'']

+ xSX2(x, e)[-x<p-X)/2 4 ßxex<P-5^2 +■■■ 4^e"x^]},

and

-^/7,(t,0)¿tlim^x, e) = ^exp
E^O

{A0(x) - xB(x)}x^-x^2

uniformly in x E D2. Since A0(x)2 - (xB(x))2 = 1 in Dx, ]ime^0y(x, e) is a non-

trivial solution of f(x,0)y' 4 g(x,0)y = 0.

D. Proof of the lemma. We will prove Lemma 4.4.

Proof. Since /,(e) is holomorphic in Sx n S2 and asymptotically one in 5, n S2,

then log/,(e) is holomorphic in Sx D S2 and asymptotically zero in 5, flS2, where

Sj = {e: üj < arg e < oy, 0 <| e |< p} with some p such that 0 < p < p. For given

6 > 0, set

Vx = {e: a2 4 0<arge<Z>, - ö,0<|e|<p}.

Then Vx C Sx D S2 and y, — yj* are boundaries of Vx, where

Yl = (e: e = íe'(u2+S),0 < í < jô) U (e: e = p«?'*, a2 + 6<$<(bx- a2)/2]
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and

y* = {e:e = /e'(6|_9),0<í<p} U (e: e = pe-*,(bx -a2)/2<£<bx -6}.

By the Cauchy integral formula, we have

1      f  lOg /,(£) & _ J_   r    lQg/,(z)

e 2nri Jy*    z — e

Set

Since

we have

log/Vie) =^/ —
1 2mi Jy¡    z -

A» = ± f ^^dz,       A,(e) = ±-( ^Mdz.
1V '      2-iti J^    z — e 1V 2mt h*   z — e

1 £    _,_^ „ . e"+1

z — e
=   2 z-(m+1>em 4

m=0 zw+1(z-e)
,   for ail N = 0,1,...,

A.to =  2
m=0

¿jf .*»<*, AM*em4
e*+l  /  log/i(^)<fe

2*» 4^+1(^-e)

and

E      /       l0g/,(z)

/2mJyiZ»+i(z-e)
dz 0   as e ^ 0.

Therefore

A",(e) ~ 2 Ae"
n = 0

as e tends to zero in S2, where

S, = (e: a, <arge<¿>, - ö,0<|e|<jß } C Sx,

and

4= (£:a2 + ^ < arg e<f>2,0<|e|<y8} c S2.

Note that A,(e) is also holomorphic in S2. Similarly,
00

Ai(«0 ~ 2 TV"
n=0

as étends to zero in S,, and A,(e) is holomorphic in S,. Also, log /,(e) = A,(e) — A,(e).

Thus,

fx(e) = Hx(e)/Hx(e)

where Hx(e) = exp{A,(e)} and Hx(e) = exp{A~,(e)} are holomorphic in S, and S2,

respectively. Furthermore,
00

#>to ~ 2 <7„£"
«=o
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as e tends to zero in S, and

#,to ~ 2 qne"
«=o

as e tends to zero in S2. Since/,(e) is asymptotically one as e tends to zero in Sx D S2

and fx(e)Hx(e) — Hx(e) in Sx H S2, we have q„ = qn for all n = 0,1,2,_

By a theorem of J. F. Ritt (cf. W. Wasow [15]) there exists a function Fx(e) which

is holomorphic in Sx U S2, where F,(e) ~ 2"=0 qne" as e tends to zero in Sx U S2. Set

G,(e) = Hx(e)/Fx(e),       Gx(e) = Hx(e)/Fx(e).

Then Gx(e) and G^e) are holomorphic in Sx and S2 and asymptotically one as e

tends to zero in Sx and S2, respectively. Since fx(e)Gx(e) = Gx(e), by continuation,

we obtain G,(e) and Gx(e) are holomorphic in S, and S2 and asymptotically one as e

tends to zero in Sx and S2, respectively. Since S2 n S3 = (Sx U S2) n S3 and

/2(e)G,(e) is holomorphic in S2 n S3 and asymptotically one as e tends to zero in

S2 D S3, there exist P^e) and ß,(e) holomorphic in S, U S2 and 53 and asymptoti-

cally one as e tends to zero in 5, U S2 and S3, respectively, such that

f2(e)Gx(e) = Qx(e)/Px(e).

Then

/2(£) = QM/Px(e)Gx(e).

Set

/,(«) = Px(e)Gx(e)/Px(e)Gx(e).

Note that P,(e)G|(e) and P1(e)G1(e) are holomorphic in 5, and S2 and asymptoti-

cally one as e tends to zero in S, and 52, respectively. Continuing in this fashion, in a

finite number of steps the resultant will meet the requirement of Lemma 4.4.
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