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STABLE COMPLETE CONSTANT MEAN

CURVATURE SURFACES IN R3 AND H3

BY

HIROSHIMORI1

Abstract. We construct some 1-parameter families of complete rotation surfaces

with constant mean curvature in the hyperbolic 3-space H3 of constant sectional

curvature -1, and show that some of them are stable for the variational problem of

area together with oriented volume, and that a complete connected, oriented surface

with constant mean curvature in the Euclidean 3-space R3 which is stable for the

variational problem is a plane.

0. Introduction. There are many complete surfaces with constant mean curvature

in Euclidean 3-space R3 (see [10]), but in the complete simply-connected hyperbolic

3-space H3 of constant sectional curvature -1 there have been few results on such

surfaces except umbilic ones.

The purpose of this paper is expressed in the above abstract generalizing some of

the results in [4,5 and 12].

In §1 we review the properties of the generating curves of rotation surfaces with

constant mean curvature H in the hyperbolic 3-space H3. In §2 we solve nonlinear

differential equations which arise in §1 and represent the rotation surfaces explicitly.

In §3 we show that some of the rotation surfaces obtained in §2 are stable for the

variational problem of area together with oriented volume, which is introduced by R.

Gulliver. In §4 we show that a complete connected, noncompact oriented surface

with constant mean curvature in R3 that is stable for the variational problem is a

plane, which generalizes the result of M. do Carmo and C. K. Peng [5].

The present author would like to express his hearty thanks to Professors M. do

Carmo and T. Otsuki for their valuable suggestions and constant encouragement,

and to Professors L. Barbosa and H. Kitahara for their kind advice. He is grateful to

Universidade Federal do Ceará for its financial support and hospitality.

1. Preliminaries. In this section, we shall review umbilic surfaces and rotation

surfaces in the hyperbolic 3-space H3 (■ = H3(-\)) with constant sectional curva-

ture -1 (see [4,11,and 12] for details). We will denote by L"+x the space of

(n 4 l)-tuples x — (xx,. ..,xn+x) with Lorentzian metric (x, y)= -xxyx + x2y2

4 • • • +xn+xyn+x, where j = (yx,-..,yn+x), and will consider the hyperbolic «-space

H"(c) with constant negative sectional curvature c as a hypersurface of L"+1,
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672 HIROSHI MORI

namely

H"(c)={xEL"+x;(x,x)=\/c,xx^fÍ7~c}.

We denote by G(n) the identity component of the Lorentzian group 0(1, n). Then it

is known that G(n) acts transitively on H"(c). The tangent space Tx(H"(c)) at

x E H"(c) is given, through the identification by parallel displacement in L"+x, by

the subspace {v E L"+x; (x, v)— 0}. It is known that this form ( , > restricted to

the tangent space at each point of H"(c) gives rise to a complete simply-connected

analytic Riemannian metric on H"(c) whose sectional curvature is the constant c.

We may choose the orientation of H"(c) as follows: an ordered orthonormal basis

e,,... ,en of the tangent space Tx(H"(c)) at an arbitrary point x E H"(c) is positive

if the matrix (e,,...,en, f<x), consists of « 4 1 column vectors e,,..., en and f^x

in L"+x belongs to G(n). Then for arbitrary positive orthonormal bases e,,...,en

and êx,...,ën at arbitrary points x and x in H"(c), respectively, one has ex

A • • • /\en A x = e~x A • • • Aê„ A x, (n 4 l)-exterior product.

At first we note (cf. [3]) that umbilic surfaces in H3 are given by the intersection

of H3 and affine 3-spaces of L4. Up to isometries of H3, they are represented

explicitly as follows: for each constant a > 1, the isometric embedding/: S2(a2 — 1)

-> H3, f(x, y, z) = (a(a2 - \)~x/2, x, y, z), of the Euclidean 2-sphere S\a2 - 1)

with Gaussian curvature a2 — I into H3, defines an umbilic surface M(a) in H3

with constant mean curvature -a; for each constant a, 0 < a < 1, the isometric

embedding/: H2(a2 - 1) -> H3,f(x, y, z) = (x, y, z, a(\ - a2)"1/2), of the hyper-

bolic 2-plane H2(a2 — 1) into H3, defines an umbilic surface M(a) in H3 with

constant mean curvature -a; and, finally, for each positive constant b, the isometric

embedding /: R2 -» H3, f(x, y) = bex 4 xe2 - ((x2 4 y2 4 l)/2¿>)e3 4 ye4, of the

Euclidean 2-plane R2 into H3, defines an umbilic surface N(b) in H3 with constant

mean curvature -1, where ek is a basis of L4 defined by ex = (1/ v'í ,0,1/ /2 ,0),

e2 = (0,1,0,0), e3 = (-1/ v/2 ,0, l/v/2,0) and <?4 = (0,0,0,1).

Next, we will review rotation surfaces in H3. We will denote by Pk, 1 < k < 3, a

/c-subspace of L4 passing through the origin, and by 0(P2) the subgroup of G(3)

that leaves P2 pointwise fixed.

Definition. Choose P2 and P3 D P2, and let C be a regular C2-curve in P3 n #3

that does not meet P2. The orbit of C under the action of 0(P2) is called a rotation

surface M in H3 generated by C around P2. The surface M is said to be spherical

(resp. hyperbolic, parabolic) if the restriction ( , )| P2 is a Loren tzian metric (resp. a

Riemannian metric, a degenerate quadratic form).

We will write down the parametrization of the rotation surface explicitly. It is

easily seen that we can choose a basis ek of L4 satisfying the following conditions:

(1) P2 is the plane generated by e3 and e4;

(2) P3 is the 3-subspace generated by ex and P2;

(3) for two vectors x = l,kxkek and y = 1kykek, we have that

(x,y)-

xxyx 4 • • • -\-x3y3 — x4y4       (spherical case),

-xxyx 4 x2y2 4 • • • + x4y4     (hyperbolic case),

xxy3 4 x2y2 4 x3^, 4 x4_y4    (parabolic case).
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Let xx — xx(s), x3 = x3(s) and x4 = x4(s), s E J, be an equation of the curve C

which is parametrized by arc length and whose domain of definition J is an open

interval of the set R of real numbers. Then we see that for a fixed s EJ, the

intersection U(s) of H3 with the affine plane passing through (0,0, x3(s), x4(s)) and

parallel to the plane generated by ex and e2 is a circle in the spherical case, a

hyperbola in the hyperbolic case and a parabola in the parabolic case, and we may

give the following parametrization of the surface M (see [4]):

(1.1) f(s, t) = xx(s)costex 4 xx(s)sinte2 4 x3(s)e3 + x4(s)e4,

s E J, t E Sx, the unit circle in R2   (spherical case),

(1.2) f(s, t) = ^(.^coshfe, 4 xx(s)sinhte2 4 x3(s)e3 4 x4(s)e4,

s E J, t E R   (hyperbolic case),

(1.3) f(s, t) = xx(s)ex 4 txx(s)e2 4 (-kt2xx(s) 4 x3(s))e3 4 x4(s)e4,

s E J, t E R   (parabolic case).

From the parametrization, we see that the first fundamental form / of the C2

mapping/is

(1.4) I = ds2 + xx(s) dt2   in each case,

and the following relations hold:

(1.5) x2 4 x2 — x\ — -1,       x'2 4 x'2 — x'4 = 1    (spherical case),

(1.6)-    -x2 4 x2 4 x\ = -1,       -x'2 4 x'2 4 x42 = 1    (hyperbolic case),

(1.7)- 2xxx3 4 x\ = -1,       2x\x'3 4 x'4 = 1    (parabolic case).

From (1.4)—(1.7) and the assumption that/is an immersion, we may assume that on

the interval J,

. x,(j)>0    (spherical and parabolic cases),

xx(s) > 1     (hyperbolic case).

It will sometimes be expedient to use the notation Ms, 8 = 1, 0 or -1, to denote a

rotation surface in H3, where 5=1 (resp. 5 = 0, 8 = -1) means that Ms is a

spherical (resp. parabolic, hyperbolic) surface. M. do Carmo and M. Dajczer have

shown the following result (see [4]).

Proposition 1. Let Ms be a rotation surface in H3 defined by the mapping f. Then

the directions of the parameters t and s are principal directions, the principal curvature

along the coordinate t (resp. s) is given by

-(8 + x2- x'2)]/2/xx    (resp. (x'{ - xx)/ (8 4 x2 - x'2)^).

2. Rotation surfaces with constant mean curvature in H3. From Proposition 1 and

(1.8) it can be shown (see [4,12]) that the mapping/is immersion and of constant

mean curvature H if and only if, on the interval J, the following relations hold.

(2.1) xxx" 4 x'x2 - 2x\ - 8 = 2Hxx(8 4 jc2 - x'2)W1,



674 HIROSHI MORI

(2.2) 8 4 x2 — x'2 > 0   in each case,

(2.3) x3 = (x2 4 l)    sinh<f>(í),       x4=(x2+\)    cosh<#>(i),

<¡>(s) = f(l 4 x2 - ^;2)1/2(x2 4 l)"1 da   and
■'o

xx > 0    (spherical case),

(2.4) x3 — (x2 — l)    sin<í)(í),       x4 = (x2 — l)    cos<í>(í),

*(j) = f (-1 4 x2 - x;2)'/2(x,2 - l)"'da    and
•'o

xx>\    (hyperbolic case),

(2.5) x3 = - (xj 4 l)/2x,,       x4 = xx I (x2 — x'2)    xx2do and
■'o

xx>0 (parabolic case).

We now try to solve equation (2.1) explicitly with the conditions (2.2) and

x,>0,    0 = 0,0=1,
w ,;>i, «=-i.
Defining u(s) by

(2.7) u(s) = xx(s)2 + 8/2,

we can easily show that (2.1) with the conditions (2.2) and (2.6) is equivalent to

(2.8) u" = 4u = 4H[u2 - (u'2 + 52)/4]1/2,

with the conditions u2 — (u'2 4 62)/4 > 0 for each 8 E (-1,0,1), and u > j (resp.

u » \, u > 0) for 8 = 1 (resp. 8 = -1, 8 - 0). Multiplying by

\-u'[u2 - (u'2 + 82)/4]-i/2

on both sides of (2.8) and then integrating we have

[u2 - (u'2 4 S2)/4]1/2 = a- Hu,       a: constant.

From this equation, together with (2.7), it can be easily shown that (2.1) with

conditions (2.2) and (2.6) is equivalent to

(2.9) w'2/4 = (1 - H2)u2 + 2Hau - a2 - 82/4

with the conditions

(2.10) a-Hu>0,

and

(2.11) u>\ (resp. u>\,u>ti)iox8 = 1 (resp. 5 =-1, 5 = 0),

provided the subset of J, consisting of zero points of the derivative of the solution

u(s) of (2.9), is discrete, but this restriction is satisfied as we solve (2.9) explicitly.

We first consider (2.9) in the case where | H \ < 1. Setting v = u 4 aH(\ — H2)'x

and A = [a2 4 52(1 - H2)/4](\ - T/2)"2, we have

t/2 = 4(l - H2)(v2- A).
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From this equation we may represent its general solution v = v(s) as

log[u + (v2- A)v2] = 2(1 - H2)l/2s 4 b,       b: constant.

Replacing the parameter s by the new one s 4 s0, where exp2[¿> 4 2(1 — H2)x/2s0]

— A, we have an explicit form for the solution u = u(s) of (2.9):

(2.12)    u(s) =[-aH 4 (a2 4 o2(l - //2)/4)'/2cosh2(l - H2)l/2s](l - H2)~\

From (2.12) it follows that J, the domain of definition of u(s), can be extended to R,

and we denote the extended function by the same symbol u(s). Then we see that for

the extended function u(s), conditions (2.10) and (2.11) are equivalent to

(2.13)
a>H/2    for 5= ±1 and-1< tf < 0,

a>0 fora = 0 and -1 <H< 1,

and that there are no solutions with domain J = R of (2.9) with (2.10) and (2.11) for

8 = ± 1 and 0 < H < 1. Putting (2.12) with (2.13) into (2.7) with xx > 0 and (2.3),

(2.4), (2.5) we have that for -1 < H < 0 and a > H/2:

(2.14)    u(s) =[-aH+ (a2 4 (1 - 772)/4)1/2cosh2(l - H2)V2s](\ - H2)~\

«.f-j&fti1/2/ ] \-l/2/

«(<>) - 2 u(a) 4(2.15) *(*)=/

(2.16) xx(s) = (u(s)-i-y/2,

(2.17) x3(s) = (u(s) 4 i)1/2sinh<í.(í),

(2.18) x4(s) = (u(s) + k)l/2cosh<j>(s)

in the spherical case; for -1 < H < 0 and a > H/2, u(s), defined by (2.14),

da,

(2.19)   *{s) = f

(2.20)

(2.21)

(2.22)

„W'_î!4±I 1/2, 1\-'/2/ 1 \-'
(«(o) + £)       (M(a)-1)    Ja,

x,W = Ws) + i),/2,

x3(i) = (u(s) - k)V2sm<t>(s),

x4(s) = (u(s) - j-)     COS<>(i)

in the hyperbolic case; and for -1 < H < 1 and a > 0,

(2.23) «(¿)=[-aff 4acosh2(l -//2)'/2i](l - H2)'\

(2.24) *,(*) = M(,),/2,

"(a)-T~
1/2

(2.25) x4(,) = M(Ä)'/2f
■'o

(2.26) x3(s) = -(x4(s)2+\)/2xx(s)

in the parabolic case.

u(a)       da,
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Next, we consider (2.9) in the case where | H | = 1. There are two subcases: a ¥= 0

and a = 0. We first consider a ¥= 0. Setting v — 2aHu — a2 — 82/4 we have

v'2 = I6a2v.

From this equation we may represent its general solution v = v(s) as

v = (2as 4 b) ,       b: constant.

Replacing the parameter í by the new one s 4 b/2a, we have an explicit form for

the solution u = u(s) of (2.9):

.2 _l s2

(2.27) u(s) = H
i    2  ,  a¿ + 82/4
2as   H-r—'—

2a

For (2.27) it follows that J, the domain of definition of the function u(s), can be

extended to R, and we denote the extended function by the same symbol u(s). Then

we see that for the extended functions u(s), conditions (2.10) and (2.11) are

equivalent to

(2.28) -\<a<0   forô = ±1 and//=-1,

and that there are no solutions of (2.9) with (2.10) and (2.11) for 8 = 0 or H = 1.

Replacing the constant a by -a and then putting (2.27) with (2.28) into (2.7) with

xx > 0, and (2.3), (2.4) we have that for H = -1 and a E (0, i),

(2.29) u(s) = 2oï24 (a2 + 4-)/2a,

and <p(s), xx(s), x3(s) and x4(s), defined by (2.15), (2.16), (2.17) and (2.18),

respectively, in the spherical case; and for H — -1 and a E (0, {), u(s), <t>(s), xx(s),

x3(s) and x4(s), defined by (2.29), (2.19), (2.20), (2.21) and (2.22), respectively, in

the hyperbolic case.

Next, we consider (2.9) in the subcase a = 0 (H = ±1). In this case we have that

S = 0 and u' — 0, or equivalently,

(2.30) u(s) = b,       b: constant.

From (2.30) it follows that J, the domain of definition of the function u(s), can be

extended to R, and we denote the extended function by the same symbol u(s). Then

we see that conditions (2.10) and (2.11) are equivalent to

(2.31) b>0   foro = 0and//=-1,

and that there are no solutions of (2.9) with (2.10) and (2.11) for ô = 0 and H = 1.

Putting (2.30) with (2.31) into (2.7) with xx > 0, and (2.5) we have that for a positive

constant b,

(2.32) xx(s) = ib,

(2.33) x4(s) = s,

(2.34) x3(s) = -(s2+ l)/2i/ft

in the parabolic case.

Finally, we consider (2.9) when \H\> 1. Setting v — u - aH(H2 — l)"1  and

B2 = [a2 - 82(H2 - \)/4](H2 - l)"2, B > 0, we have

c>i = 4(H2- \)(B2-v2).
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From this equation we may represent its general solution v = v(s) as

Arcsin(u/,B) = 2(#2 - l)'/2s 4 b,       b: constant

Replacing the parameter s by the new one s 4 s0, s0 = 2~x(2~xtr — b)(H2 — l)"l/2,

we have an explicit form for the solution u(s) of (2.9):

(2.35) u(s)=[aH 4 {a2 - 82(H2 - l)/4)1/2cos2(//2 - \)x/2s](H2 - \)~\

From (2.35) it follows that J, the domain of definition of the function u(s), may be

extended to Sx(r), the circle in R2 of radius r = 2~X(H2 — 1)"1/2, and we denote the

extended function by the same symbol u(s). Then we see that for the extended

function u(s), conditions (2.10) and (2.11), together with a2 - 82(H2 - l)/4 > 0,

are equivalent to

(2.36) H<2a< -(H2- 1)1/2   for 5 = ±1 and H < -1,

and that there no solutions of (2.9) with (2.10), (2.11) and the conditions a2 —

82(H2 - l)/4 > 0 for o = 0 or H > 1. Putting (2.35) with (2.36) into (2.7) with

xx > 0, and (2.3), (2.4) we have that for H < -1 and a E (H/2, -(H2 - l)1/2/2),

(2.37) u(s) =[aH 4 (a2 - (H2 - l)/4)1/2cos2( H2 - \)x/2s](H2 - \)~\

4>(s), xx(s), x3(s) and x4(s), defined by (2.15), (2.16), (2.17) and (2.18), respectively,

in the spherical case; and for H < -1 and a E (H/2,-(H2 - l)1/2/2), u(s), <p(s),

xx(s), x3(s) and x4(s), defined by (2.37), (2.19), (2.20), (2.21) and (2.22), respec-

tively, in the hyperbolic case.

Reversing the above arguments and taking the completeness into consideration we

have the following results, which generalize some of M. do Carmo and M. Dajczer

and our earlier ones (see [4,12]).

Theorem 1 (Spherical Rotation Surfaces), (i) Let H be a constant, -1 < H < 0,

and for each constant a > H/2, we define the function u(s) by

u(s) = \-aH 4 (a2 4(1- //2)/4)'/2cosh2(l - H2)x/2s](l - 7/2)"1,

s E R, and the functions <t>(s), xx(s), x3(s) and x4(s) by (2.15), (2.16), (2.17) and

(2.18), respectively. Then the one-one, analytic mapping f: R X Sx -> H3,

(2.38) f(s, t) = xx(s)costex 4 x,(i)sin te2 + x3(s)e3 4 x4(s)e4,

defines a complete surface with constant mean curvature H in the hyperbolic 3-space

H3, where Sx is the unit circle in R2 and ek is a basis of L4 satisfying (x, y)= xxyx

4 • • • +x3y3 - x4y4forx = lkxkek,y = \ykek.

(ii) For each constant a, 0 < 2a < 1, we define the function u(s) by

u(s) = 2as2 + (a2 + \)/2a,       s E R,

the functions <t>(s), xx(s), x3(s) and x4(s) as in (i). Then the one-one, analytic mapping

f: RX Sx -> H3, defined by (2.38), defines a complete surface with constant mean

curvature -1 in H3.
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(iii) Let H be a constant, H < -1, and for each constant a, H < 2a < -(H2 — 1)1/2,

we define the function u(s) by

u(s) =[aH 4 {a2 - (H2 - l)/4)'/2cos2(//2 - l)l/2s](H2 - I)"1,

5 G Sx(r), the circle in R2 of radius r = [2(H2 — 1)1/2]_1, and the functions <l>(s),

xx(s), x3(s) andx4(s) as in (i). Then the one-one analytic mappingf: Sx(r) X5'-> H3,

defined by (2.38), defines a complete surface with constant mean curvature H in H3.

Theorem 2 (Hyperbolic Rotation Surfaces), (i) Let H be a constant, -1 < H

«S 0, and for each constant a > H/2, we define u(s) as in Theorem l(i), and the

functions <¡>(s), xx(s), x3(s) and x4(s) by (2.19), (2.21) and (2.22), respectively. Then

the analytic mapping f: RX R -* H3,

(2.39) f(s, t) = xx(s)coshtex 4 xx(s)sinhte2 4 x3(s)e3 4 x4(s)e4,

defines a complete (immersed) surface with constant mean curvature H in the hyper-

bolic 3-space H3, where ek is a basis of L4 satisfying (x, y)=-xxyx + x2y2

4 • • • +x4y4forx = 2kxkek,y = lkykek.

(ii) For each constant a, 0 < 2a < 1, we define the function u(s) as in Theorem

1 (ii), and the functions <¡>(s), xx(s), x3(s) and x4(s) as in (i). Then the one-one, analytic

mapping f: RX R -» H3, defined by (2.39), defines a complete surface with constant

mean curvature -1 in H3.

(iii) Let H be a constant, H < -1, and for each constant a, H < 2a < -(H2 — 1)1/2,

we define the function u(s) as in Theorem l(iii), and the functions <j>(s), xx(s), x3(s)

and x4(s) as in (i). Then the one-one, analytic mapping f: Sx(r) X R -> H3, defined by

(2.39), defines a complete (immersed) surface with constant mean curvature H in H3.

Theorem 3 (Parabolic Rotation Surfaces), (i) Let H be a constant, -1 < H < 1,

and for each positive constant a, we define the function u(s) by

u(s) =[-aH 4 acosh2(l - H2)x/2s\(\ ~H2)'\       s E R,

and the functions xx(s), x4(s) and x3(s) by (2.24), (2.25) and (2.26), respectively. Then

the one-one, analytic mapping f: R X R -» H3,

(2.40) f(s,t) = xx(s)ex +txx(s)e2-[{-t2xx(s) - x3(s)]e3 4 x4(s)e4,

defines a complete surface with constant mean curvature H in the hyperbolic 3-space

H3, where ek is a basis of L4 satisfying (x, y)= xxy3 4 x2y2 4 x3yx 4 x4y4 for

x = \xkek,y = 2kykek.

(ii) For each positive constant a, the one-one analytic mapping f: R X R -» H3,

(2.41) f(s, t) = {aex 4 {ate2-\{at2/2 4 (s2 4 l)/2]¡a~]e3 4 se4,

defines a complete surface with constant mean curvature -1 in H3, where ek is a basis

of L4 as in (i).

3. Stability of rotation surfaces in H3. In this and the next sections, we consider

the (global) stability of complete surfaces in Riemannian 3-space forms (cf. [2,15]).

At first, we will review the variational problem of area together with oriented volume

which is introduced by R. Gulliver (see [9]). Let M3(c) be a complete, simply-

connected Riemannian 3-manifold of constant sectional curvature c, namely, M3(c)
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is defined to be the Euclidean 3-space R3, the Euclidean 3-sphere S3(c), or the

hyperbolic 3-space H3(c) according to whether the constant c is zero, positive or

negative. Let/: M -> M3(c) be a C00 immersion of a connected, oriented 2-manifold

M into M3(c). By a domain on M, we shall mean an open connected subset D of M

whose closure D is compact and whose boundary 3D is piecewise C00. Let (x, y) be

local coordinates on M such that {3/3x, 3/3.y} is a positively ordered basis of the

tangent plane of M where they can be defined, and let N be the field of unit normal

vectors along the immersion / such that {fx, f, N} is a positively ordered basis of

the tangent space of M3(c) along / where they can be defined. Here we set

fx = df/dx, f = df/dy, which are tangent vectors of 7^(z)(M3(c)). We note that in

case c is positive, M3(c) = S3(c) is realized as a hypersurface of the Euclidean

4-space R4 (cf. §1):

M3(c) = {xER4;(x,x)= \/c),

where < , > is the inner product of R4. We also note (cf. §1) that in case c = 0, each

tangent space Tf(z)(M3(c)) may be identified with M3(c) = R3 itself, and in case

c > 0, 7}(,)(M3(c)) may be identified with the subspace {v E R4; (v, f(z))= 0} of

R4.

The inner product ( , ) on each tangent space 7^,(M3(c)) of M3(c) is naturally

extended to the one on A k Tp(M3(c)), the exterior &-space, given on simple vectors

by

(vx A--- Avk,wx A--- Awk)=det((vi,Wj)),

and denoted by | -1 , the norm defined by ( , ). We note that in case c > 0 (resp.

c < 0), the inner product ( , > is further extended to the one on A 4R4 (resp. the

indefinite one on A4L4).

Now we define the variational problem of area together with oriented volume. In

what follows, we interpret it/ Jc as infinity if c < 0. We denote by d the distance

function on M3(c) defined by the Riemannian metric of M3(c), and for any pair of

points p, q on M3(c) with d(p, q) < tt/ 4c, we denote by y : [0,1] -» M3(c) the

unique minimizing geodesic on M3(c) from/? to q, the parameter being proportional

to the arc length. Let/: M -» M3(c) be as above and let D be a domain on M. For

an arbitrary piecewise C1 mapping h: D-> M3(c) with h\dD = f\dD and

d(h(z), f(z)) < w/ {c for all z G D, we define WD(h) to be the oriented volume of

the 3-chain R(h) on M3(c) whose oriented boundary is h | D — f\ D. More precisely,

using the piecewise Cx homotopy F between /and h, defined by F(z, t) = Y/(z)/,(Z)(t),

z E D, t E [0,1], we may define WD(h) by

f p(Fx AF/F, \fx A/ \~xfx A/ AN)drdxdy,     if c = 0,

WD(h) = \

cf C{Fx AFvAFtAF, \fx Af,\'xfx A/v ANAf)drdxdy,

ifc¥=0.
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Define AD(h) to be the area of the mapping h:

AD(h)= f \hx Ahy\ dxdy,
JD

and finally, for a given constant H, we define the functional ED by

ED(h)=AD(h) + 2HWD(h).

We notice that the functional ED(h) is invariant of the choice of local coordinates on

M. It can be easily shown (cf. Lemma 1 below) that the immersion / is stationary for

all infinitesimal variations that keep the boundary of D fixed if and only if over the

domain D, f is of constant mean curvature H.

We now assume that the mean curvature of the immersion / is a constant, H. A

domain D on M is stable if the second variation of the functional ED is nonnegative

for all normal variations that leave the boundary of D fixed. The immersion / is

(globally) stable if every such domain on M is stable. In this section, we will prove

the following results, which generalize some of M. do Carmo and M. Dajczer and

our earlier ones (see [4,12]).

Theorem 4. Let H be a constant, -1 < H < 0.

(i) For each constant

a >[h(1 - H2)i/2 - 12 • 2'/2(l - F/2)]/[2(l - H2)x/1 - 24 • 2x'2h\

the spherical rotation surface in H3 with constant mean curvature H defined by

Theorem l(i), is stable.

(ii) There exists a constant a(H), depending only on H, such that for each

a > a(H), the hyperbolic rotation surface in H3, with constant mean curvature H

defined by Theorem 2(i), is stable.

(iii) For each positive constant a, the parabolic rotation surface in H3, with constant

mean curvature H defined by Theorem 3(i), is stable.

To prove Theorem 4 we want to prepare the following two lemmas. Let /:

M -> M3(c) be as above, and denote by | A | the norm of the second fundamental

form of /, and by K, VM and dM the Gaussian curvature, the gradient and the area

element of M in the induced metric, respectively.

Lemma 1. Letf: M -» M3(c), N as above, and D a domain on M. Assume that fis of

constant mean curvature H. Then for a normal variation $ with variable vector uN,

u E CCC(D), u | 3D = 0, the second variation IfD(u) is given by

I/>D(«) = ^-2ED(^(t, • )) |,=0 = / [| VMu |2 - (2c 4 | A \2)u2} dM.
dt jd

Proof. We will prove this lemma in the case c = -1 only; the other cases are

similar. For a domain D on M, a normal variation $ with variable vector u(z)N(z)

is of the form

(3.1) $(i, z) = cosh(fti(z))/(z) 4 únh(tu(z))N(z),

z E D, 11 \< e for some positive number e, and the C°° homotopy F between f(z)

and ®(t, z) is of the form F(z, t) = $(tî, z), 0 « t < 1. We also denote by Nx, N
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the partial derivatives of N with respect to local coordinates x and y on M,

respectively. Then from the fact that (/,/)=-1 and N is a field of unit normal

vectors, it follows that/is orthogonal to fx,fy, Nx and Ny, and that N is orthogonal

to Nx and N . From this it can be easily shown that

(3-2) fxANy + NxAfy = -2HfxAfy,

(3.3) NxANy = (K+l)-fxAfy.

From (3.1)—(3.3), together with the definition of F, it can be shown that

Fx A Fy |T=, = [cosh2 tu - 2//sinh tu cosh tu + (K + l)sinh2 tu] fx A fy

4icosh2 tu(uyfx AN 4 uxN Afy) 4 t2cx,

where c, is a smooth 2-vector field in t and z which is orthogonal to fx Afy. From

this we get

(3.4) \FX A Fy\T=x=[l - 2Htu + (K + 2)t2u2 + \VMu\2 + t3c2]\fx Afy\ ,

where c2 is a smooth function in t and z.

On the other hand, it can be easily shown that

FXAF/FTAF

= ta[cosh2 tu - 2Húnh tu cosh tu+(K + l)sinh2 tu] fxAfyANAf.

From this we see that the oriented volume of the 3-chain in Af3(-1) = H3, whose

oriented boundary is $(i, • ) | D - f\ D = F( ■, 1) | D — f\ D, is equal to

(3.5) WD($(t, ■)) = t( udM- Ht2fu2dM + t3c3,
•*D •'D

where c3 is a smooth function in t. From (3.4) and (3.5) it follows that

2

ED(®(t, ■ )) = area D 4 - Í [\ vMu \2 4 2(K 4 2 - 2H2)u2] dM 4 t3c(t),
l J D

where c(t) is a smooth function in i. Thus we see that the second variation IfD(u) is

equal to

f [\ VMu |2 4 2(is: 4 2 - 2H2)u2] dM = f [| vmm |2 4 (2 - | A \2)u2] dM,
J D JD

where the equality is implied by the equation of Gauss. This completes the proof.

Lemma 2. Let M be a rotation surface in H3 defined by Theorems l(i), 2(i) or 3(i),

and D a domain on M. Then the first eigenvalue XX(D) of D with respect to the

Laplace-Beltrami operator A satisfies XX(D) > (1 — H2)/4.

Proof. Since M is diffeomorphic to the product space R X Sx or R X R, for a

domain D on M, there exists a domain D' on M which is at most doubly- connected

and in which the closure D of D is contained. From this it follows that

(3.6) XX(D)>XX(D'),

where XX(D') is the first eigenvalue of D' with respect to the Laplace-Beltrami

operator A. And from the equation of Gauss and the fact that M is immersed in H3
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with constant mean curvature H, it follows that the Gaussian curvature K of M

satisfies

(3.7) K=-\ +2H2- \A\2/2*z -1 + H2.

Combining Theorem 4.4 in [13] and Lemma 2 in [14] together with (3.6) and (3.7) we

see that our assertion is valid.

Proof of Theorem 4. We will prove Theorem 4(ii) only, the others are similar. By

a short computation we have

(3.8) 2- |/1|2 = 2(1 - H2) -2(a + H/2)2/(u+ 1/2)2,

where u = u(s) is the function given by Theorem 2(i). From Lemma 2 and (3.8),

together with the fact that

u(s)>(\ -H2Yl[-aH+ {a2 4(1 - H2)/4}V2\    for alls E R,

it follows that the hyperbolic rotation surface in H3 is stable when a constant a

(> H/2) satisfies

(3.9) (a2 + (\-H2)/4y/2=:>p(a)

>aH- (1 - H2)/2 + 2(2(\ - H2))W21 a 4 H/2 |/3 =-<¡>(a).

We now determine the ranges of constants a satisfying (3.9). At first, for

a > -H/2, the inclination of the half-line y- = <j>(a) is less than one and <¡>(-H/2) =-

-1/2 < \p(-H/2) = 1/2. From this we see that the hyperbola y = \¡¿(a) lies above

the half-line y — <¡>(a) for a > -H/2. Next, from the convexity of the hyperbola

y = xp(a), a ER, and the fact that <j>(H/2) =£ ̂ (H/2) is satisfied if and only if

| H | < 3/ vTf, it follows that for -3/ /T7 < H ^ 0, the hyperbola y = xP(a) lies

above the segment y = <j>(a) provided H/2 < a «S -H/2, and that for -1 < H <

-3/ /ÏT, there exists a number c(H) in the interval [i//2,0], depending only on H,

such that the hyperbola y = ^(a) lies above the segment^ = <¡>(a) provided c(H) <

a < -H/2. We define the number a(H) by a(#) = c(H) when -1< # « -3/ v/Ï7,

and a(H) = H/2 when -3/v/ÎT<^^0. Then we see that the assertion of

Theorem 4(ii) is valid for a(H), defined above. This completes the proof.

4. Stable constant mean curvature surfaces in R3. In this section we want to prove

the following result which generalizes one of M. do Carmo and C. K. Peng [5].

Theorem 5. Let f: M -* R3 be a C00 immersion of a connected, oriented 2-manifold

M into the Euclidean 3-space R3. Assume that the mean curvature H of the immersion f

is constant and that the induced metric on M is complete. If the immersion f is stable,

then H = 0 and f(M) C R3 is a plane.

Remark 1. F. Tomi and R. Böhme have computed the second variation of the

functional, introduced by E. Heinz, and their second variation is identical to ours

(see [8,15]).

H. Ruchert obtained the estimate of the size of the stability for a domain on a

constant mean curvature surface in R3 which generalizes the weak form of L.

Barbosa's and M. do Carmo's (see [1,2,15]).
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Remark 2. Using the fact that the first eigenvalue of M — Br(p) (where M is a

connected compact, oriented 2-manifold without boundary and Br(p) is the geodesic

ball on M with radius r and center/)) tends to zero as r tends to zero (see [6]), and

Lemma 1 with c > 0, it is easily shown that there are no stable immersions of M into

the Euclidean 3-sphere S3(c) of constant sectional curvature c whose mean curva-

tures are constant.

To prove Theorem 5 we need the following lemma.

Lemma 3 (see [2,7]). Let f: M -» M3(c) be a Cx immersion of a connected

orientable 2-manifold M into a Riemannian 3-space form M3(c). Assume that the mean

curvature H off is constant. Then we have that

2 huàMhij = -| A |4 4 2c | A \2 4 6H21A \2 - 4cH2 - 8//4,

where h¡j (resp. LMhtj) are the coefficients (resp. the coefficients of the covariant

Laplacian) of the second fundamental form off.

Proof of Theorem 5. At first, we can restrict ourselves to the universal covering

it: M -» M. More precisely, using the Smale version of the Morse index theorem we

can show (see [5]) that if there exists an unstable domain D C M for the immersion

/o 77: M -» R?, then tt(D) C M is an unstable domain. So we can assume that M is

simply-connected. With the natural complex structure given by /, M is then

conformally equivalent to either the Riemann sphere S, the Gaussian plane C or the

unit disk B in C.

We first show that if M is conformally equivalent to the Riemann sphere S, then

the immersion / is not stable. In fact, if M is conformally equivalent to the Riemann

sphere and / is of constant mean curvature H, then, by the theorem of H. Hopf, M is

isometric to the Euclidean 2-sphere S2(a) with constant Gaussian curvature a, which

must be equal to H2. Then K = a. If D is a geodesic disk of radius r, Tt/2{a~ < r <

it/ Ja~ and u is an eigenfunction corresponding to the first eigenvalue XX(D) of the

domain D with respect to the Laplace-Beltrami operator A, then we have XX(D) < 2a

and u E CCC(D) with u \ dD = 0. Combining these facts and Lemma 1 with c = 0 we

see that our assertion is valid. Thus, we may assume that the induced metric ds2 on

M is given by ds2 = \21 dz \2, X > 0, where z is the canonical coordinate of C. In

what follows, we denote K, AM, vM and dM the Gaussian curvature, the Laplace-

Beltrami operator, the gradient operator and the area element of M in the induced

metric, respectively, and denote by A, v and dA the Laplace-Beltrami operator, the

gradient operator and the area element of M in the flat metric, respectively.

First, we consider the case where M is conformally equivalent to the unit disk B. If

we assume that the immersion / is stable, then from Lemma 1 with c = 0 and from

the equation of Gauss it follows that

(4.3) ( (-wAww 4 2Ku2) dM> [ [\ VMu \2 4 2(K - 2H2)u2] dM
JM JM

= ( [\VMu\2-\A\2u2]dM>0
JM
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for all piecewise smooth functions u that are compactly supported in M. From that

point on, the proof is the same as in [5] and we only give an outline of it. Since the

induced metric on M is given by ds2 = X2 \ dz \2, X > 0, it follows that

K = -X"2Alog X,       dM = X2dA,       AM = X"2A,

and that (4.3) can be written as

(4.4) ((uAw4w2AlogX2)<¿4 « 0.

By setting </> = X"1 and replacing u by <pu in (4.4), we obtain

(4.5) 3Í | \7<¡>\2u2dA < /V| Vu\2dA - 2 (<¡>u(vu, V<í>) dA.
Jg Jg Jg

From the fact that 2 | (¡>u(vu, v<>) |<| V<í>|2m2 4 (j>2 | v« |2, (4.5) implies that

fB | v<i> \2u2 dA < fB4>21 Vu \2 dA, which finally gives, since Vw = A"1 V,

(4.6) f | VM<¡> |2«2 dM< ( <p\ VMu |2 dM.
JM JM

Now choose a family of geodesic disks Br(p) of radius r and center p that exhausts

M, and let u: M -» /? be a piecewise smooth function which is one on 5//') and

u(q) = max{0,2 - d\s\(q, p)/r) on M - 5r(/?). It follows from (4.6) that

f      \vM<t>\2dM<r-2f^2dM=r-2fdA =
JBr(p) JM JB

irr

By letting r -» oo, we conclude that | VM</> |= 0, i.e., X = constant, and this con-

tradicts the completeness of the metric ds2 = X2 | dz \2 in the unit disk B.

Next, we consider the case where M is conformally equivalent to the Gaussian

plane C. For the induced metric ds2 = X2\dz \2, X > 0, we put \p — 2X2(2H2 — K).

Then we have the following.

Lemma 4. i//A^ 4 ^3 > | V^ |2.

Proof. Choose an adapted frame field ex, e2, e3 = N to the immersion / and let

A, , /', / = 1,2, be the coefficients of the second fundamental form of /in the frame

ex, e2, and set \A \2 = 2/,A27, the square of the norm of the second fundamental

form of/. The equation of Gauss implies that

(4.7) -K +2H2=\A\2/2.

If we put U = {gGAi; |^|(^)>0}, then it is sufficient to prove Lemma 4 on the

subset U. At first, AM | ̂ 4 |2 is given by

(4.8) MdJ!= 2 ^.l+^iM,

where AyA are the coefficients of the covariant derivatives of the second fundamental

form of/. We now observe that on U,

(4-9) 2\vM\A\\2*z   2  h2jk.
i,j,k



STABLE COMPLETE CONSTANT MEAN CURVATURE SURFACES 685

We first note that the quantities on both sides are independent of the choice of the

frame field. For an arbitrary point q E U, we choose the frame field ex,e2 around q

so that A,2 = A21 = 0 at q. With such a choice

v„U |2 _
2(2\A\y\vMek\A\2)ek

12

2 \AVhnhuke
i,j,k

A\'22(2huh!jkf.
k "i,j

Since, by the constancy of the mean curvature of/, we have that hXXk 4 h22k = 0,

k = 1,2, and by the constancy of the sectional curvature of R3, we have that hijk are

symmetric in all indices (see [7]). From these we obtain at q,

\VM\A\\2 =\A\-2 (hxx - h22f{h2xxx + h2xx2)

= [2(H-hxx)2 + 2H2]-U(H-hxx)2(  2  A27,)/4.

From this and the arbitrariness of q it follows that (4.9) is valid on U. From Lemma

3 with c — 0, together with (4.8) and (4.9), and from the inequality with \A\2> 2H2

on M, it follows that on U,

AM\og(-K+2H2) = AMlog{\A\2/2)

= 2[bM\A\/\A\ -| VM\A\ \2/\A\2] > 2(2H2 - \A |2).

From this and (4.7) it follows that on U,

(4.10) äM\og(2H2-K)>4(K-H2).

From the definitions of \p and K = -X~2Alog X, it follows that the inequality in

Lemma 4 holds on U. This completes the proof.

We now continue the proof of Theorem 5. Suppose that the immersion/is stable.

Then, using Lemma 1 with c = 0, we have

(4.11) ( \vu\2dA> (4<u2dA

for all piecewise smooth functions u that are compactly supported in C. By replacing

u by \pu in (4.11), we get

(4.12)     fxp3u2dA < /V| Vu\2dA 4 ¡u2\vi>\2dA + 2¡ 4>u(vu,v4>) dA.
jc jc jc jc

By multiplying on both sides of Lemma 4 by u2, integrating over C and adding up

the result to (4.12), one obtains

(4.13) f | v^\2u2dA < /V| Vu\2dA.
J r J r
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From that point on, the proof is almost the same as in [5], and we only give an

outline of it. By using the last summand of (4.12) and the fact that 2 | \pu(vu, v^) |

< i//2 | V« |2 4 u2 | Vi/* |2, and introducing (4.13) into (4.12), we obtain

(4.14) (^3u2dA <4/V| Vu\2dA.
Jc Jc

By changing u into u3 in (4.14), we get

(4.15) (xp3u6dA <36/V"4| Vu\2dA.
Jc Jc

Now we use Young's inequality in (4.15):

^2u4 | vu |2 < (as/s){^2u4)s 4 (a-'/t)(\ Vu \2)',

which holds for all a > 0 and all s and t with 1 < s, t < oo, $"' + ("' = 1.

Choose s = §, t = 3 and a small (i.e., a < 24"2/3) to obtain a constant ß =

12/a3(l -24a3/2)sothat

(4.16) fxp3u6dA^ßf \vu\6dA.
Jc Jc

For each positive number r, let u: C -» R be a piecewise smooth function which is

one on (z G C; | z |< r} and u(z) = max{0,2 — | z \/r) on (z G C; | z |> r). From

(4.16) we obtain

(     xp3dA^ßf2wdef2rr'6pdp = 3TTßr
rlv . _ f2r

'\z\<r '0

By letting r -» oo, we conclude that ^/3 = 0, i.e., X | yl | = 0, X > 0, which implies that

the immersion/is totally geodesic. This completes the proof of Theorem 5.

Note (added July 8, 1982). L. Barbosa and M. do Carmo have recently shown

that with respect to the (generalized) Heinz functional, compact immersed hyper-

surfaces in Euclidean spaces which are stable for all volume-preserving variations are

spheres.
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