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EMBEDDING L1 IN Lx/Hx

BY

J. BOURGAIN

Abstract. It is proved that L' is isomorphic to a subspace of L[/H[. More

precisely, there exists a diffuse o-algebra @ on the circle such that the corresponding

expectation E: Hx -» L°°(C) is onto. The method consists in studying certain

martingales on the product IIN.

1. Introduction. Let us start by fixing some terminology. As usual, II will denote

the circle equipped with its Haar measure m, Hq is the subspace of those/ G LX(U)

for which f(n) = 0 for n < 0 and q: Lx -» Lx/H\ is the quotient map.

We are interested in the question whether or not there exists a linear embedding of

the Banach space Lx in the space Lx /H¿. We briefly indicate some motivation for

this problem. First, it was (and still remains) an open question if the three-space-

property holds for Lx -embedding, i.e. suppose X a Banach space, Y a subspace of X.

Is it true that whenever L1 embeds in X, it also has to embed in either Y or X/Yl

The problem is also unsolved in the particular case X = Lx and Y isomorphic to a

dual space. It is not hard to show that an embedding of Lx in X/Y is then equivalent

to the existence of a subspace S oî X, S isomorphic to Lx so that the quotient map

X -» X/Y is an isomorphism when restricted to S.

In the special situation X = L'(II) and Y = H¿, the answer was unknown for some

time. There was hope that this may provide a counterexample in view of the

following result, due to W. B. Johnson (see [9]).

Proposition 1. No complemented subspace of Lx/Hq is isomorphic to Ü.

This is a consequence of the fact that any operator T: Lx/Hx -» Lx maps weakly

compact sets onto norm compact sets. Let us sketch the argument.

Consider the identity map I: Lx/Hx -> Lx/Hx. Then (77)*: L00 -> Hx - Hx is

integral and therefore nuclear (since Hx satisfies the Radon-Nikodym property).

Consequently, also 77 is nuclear. Given now a weakly null sequence (*„)„=i>2, in

Lx/Hx, it follows from the lifting property (see [9] for instance) that xn — q(fn)

where {/„; n — 1,2,...} is a relatively weakly compact set in Lx([[). Therefore, for

each e > 0, a truncation argument provides a bounded sequence (g„) in U° such

that || fn — gn ||, < e for each n. Thus

||7xn-77gJ<||7|||K-/gJ<e||7l|.
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690 J. BOURGAIN

Because TI is nuclear, the set {77(g„); n = 1,2,...} is compact for each e > 0. So

we conclude that {Txn} is compact, as announced.

Using Proposition 1, the following is proved in [2].

Proposition 2. There is no almost isometric embedding of the complex Lx space in

Lx/Hx.

Thus d(S, Lx)> y > 1 for each subspace S oîLx/Hq, where d is the Banach-Mazur

distance (see [8, 9] for definitions). This observation allows us to define a natural

distortion of Lx, by taking

111/111 = 11/11, + ll?(/)ll,       /GL'OI).

Say that an operator 7: X -* Y is a semiembedding provided 7 is one-one and

maps the closed unit ball of X on a norm-closed subset of Y. It can be shown that a

semiembedding 7: Lx -» Lx has to fix an L'-copy (i.e. is an isomorphism when

restricted to a subspace 5 of L1, S isomorphic to L1). On the other hand, (see [3]):

Proposition 3. The restriction of the quotient map q: Lx -* Lx/H¿ to the subspace

L'R of real functions in LX(U) is a semiembedding.

No example is known of a semiembedding of Lx in a Banach space X not

containing Ü.

Our purpose is to prove the existence of a natural embedding of Lx in Lx/H¿.

There exists a diffuse a-algebra @ on II so that the restriction of q to the complex

L'(@)-space is an isomorphism. More precisely:

Theorem. There exists an increasing sequence (nk) of positive integers, such that if

© is the a-algebra on II generated by the functions ak(6) = sign cos nk0, then the

restriction of q to 7'(@) is an isomorphism. Consequently, for this a-algebra @, the

expectation operator E: Hx -» L°°(@) is onto.

The argument presented here is rather delicate. In order to give the reader an idea

how it is organised, we briefly outline the proof. We have to introduce the a-algebra

© such that the inequality

(*) ||*-E«[*]|li>*ll*l|i
holds for each h E H¿. But choosing the sequence (nk) sufficiently lacunary, it is

enough to verify (*) for functions h with spectrum contained in a set of the form

E = {l'vknk; | vk |< ak for each/:}

where (ak) is a sequence of positive integers and (nk), (ak) satisfy the transference

property. Thus the «^-frequencies can be replaced by independent variables. The

space Hq n LXE identifies with a subspace of the space 3CcL'(IIN) of those

functions h = ~Zhk on IIN such that each increment hk = hk(xx,...,xk) is an

/7q-function in xk. The required inequality now becomes

(**) \\h-E^[h]l>\\hh
for h E%, where "fis a natural diadic product a-algebra on HN (generated by the

functions ak(x) = sign cos xk).
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This reduction of the problem is worked out in §4. Its purpose is to approach the

problem with martingale techniques. The martingale prerequisites are given in §2. To

obtain (**) we first prove Lx-estimations for certain square functions related to h

(see Lemma 4). These are derived using a "step-by-step" method (explained at the

beginning of §5) and an examination of what happens at each increment. More

precisely, we have to consider at this point functions of the form a + h — ba, where

a, b are scalars, h G Hq and a — sign cos.

Minorations of the L"'-norm of such expressions are given in Propositions 8 and 9

below. It is only at this place that some complex function theory will be involved.

2. Martingale preliminaries. Let (%k)k ),i,2, De an increasing sequence of a-

algebras on a probability space (Ü, §, P) assuming §r= V "=, <§k. Denote by Ek the

expectation with respect to Wk. For/G LXC$) let

/* = sup|Ej/]|    and   S(f) =
k

|E0[/]|  + 2  |Ej/]-E,_,[/]f
k=\

1/2

We will use the notation C to indicate a numerical constant. Let us recall the

following result, due to D. Davis (see [7]).

Proposition 4. C~x\\S(f)\\x « \\f* C\\S(f)\\x

The next inequality is probably known, but we include its proof here for the sake

of completeness.

Proposition 5. Let (vk) be an adapted sequence of functions; thus vk is ^im-

measurable for each k. Then

2 K-\W\\\
1/2

<c [2 h
211/211

Proof. It is no restriction to assume the <%k finite algebras. Moreover, since one

may always tensor the vk against a Rademacher sequence, we can assume Ek-X[vk]

— 0 and thus (vk) is an adapted martingale difference sequence. Since, then

i[swr.=i2..Jk\\H\9k)>

it follows from the atomic decomposition property for H '-functions (see for instance

[7, Chapter I]) and convexity, that we may take for 2 vk a function of the form (for

some positive integer/)

where A is an 'ÍF-atom, supp <p C A and II <p 11 x < 1. In this case

vk = Ek[a]-Ek_x[a]=0     foi k<j,

1
(E.M-E^M)    for k>j.
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Also, EJtp] is supported by A for k >j and hence vk for k >j. Thus the left side in

Proposition 5 is dominated by

NI.+
k>j

2+f [2 Ek-i[\vk\2})        (by Cauchy-Schwarz)

<2+\A\V2\\a\\2<3,

proving the result.

Proposition 6. Forf G Hx(%), one has an inequality

(SIK^-E^.H/ilfl^^cii/n!72!!/!!^2.
To prove this, we will first deal with the special case of the Rademacher projection

on the Cantor group (in fact, only this will be used later on).

Proposition 7. If D = (1,-1}N is the Cantor-group and fE HX(D), then

(2\f(k)\2)1/2<c\\f\\Y2\\ftí?

where f(k) = ff(e)ek.

Proof. We will use the theorem of [6] on the BMO-distance of a BMO-function to

L°° (in the diadic setting). The result asserts, in particular, that for <p G BMO(D),

distBMO(<p, L°°) = 0 and e > 0, there exists a decomposition <p — a + ß such that

IMIbmo < Cxe   and    \\ß\\x < C2 max(e, X0(e))

where X0 — X0(e) has to satisfy

sup TTT|{xG7,|(p(x)-cp/|>A}|<e-x/E
/    Ml

whenever X > X0 (<p7 = 11 \~xf[<p).

Now take <p = 2akek with %\ak\2 = 1. It follows from the distribution property

of Rademacher that for each diadic interval I,

\{aEl;\q>(x)-(p!\>X]\<Ce-cx2\l\,

for numerical constants c > 0, C < oo. Hence distBMO(<p, L00) = 0 and X0(e) ~ 1/e.

Decomposing tp = a + ß as above, we get

\(f,<p)\<\(f,a)\ + \(f,ß)\<C[e\\f\\H< + Ci\ U/H,.

Taking supremum over <p and choosing e = || /1| ¡/21| /1| ~^/2, the inequality follows.
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Proof of Proposition 6. Assume/real and estimate

( 2  ll(Et-£,_,)[/]

Define for each k,

k \'/

ofc = signA/fc   and   bk = \(ak~ Ek_x[ak]).

Then

í/1/lñ   (l+ekbk)deP(d»)>U 2 «A(«)
A:=l

de

where

k-\

**(«)=/ Il (i+£yA)|AAMw.

Application of Proposition 7 to the function 2 ek$k(e) then gives

2 IIAAI
¿=i

1/2

cll/ll

cll/ll
1/2

/(2l*.<.)lT*

//•s(/)Il(i + ̂ Vwd£
1/2

= cll/ll!72!!/!!1^2

as announced.

Remark. The author is grateful to P. W. Jones for outlining a more explicit

procedure to obtain the decomposition used in the proof of Proposition 7.

3. Some inequalities involving H¿ -functions. The purpose of this section is to prove

the following results.

Proposition 8. For a E C and h G H¿, one has

lla + All^ldal' + a2!/,!2)172

where 8 > 0 is a fixed constant.

Proposition 9. There exists 8 > 0 such that for a EC, b EC and h G HL

O) \\a + h — ba\\ \a\   +8:
Re{(h,a)((h,a)-b))

\(h,a)\ + \b\

1/2

(ii) \\a + h - (h,o)a\\x>\\{\a\2 + 82\he- (h,o)a\ }

where a = sign cos and he(0) — 2"= xh(n) eos n6.

2) 1/2
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It is clear that it suffices to prove Propositions 8 and 9, with a = 1.

Proof of Proposition 8. Factoring 1 + h gives 1 + h = (I + g,)(l + g2) where

Si>22G#o2and

lli + ̂ ii.Hi+ll^lÖ^i+il^)172.
Since | h | < | g, | +\g2\ + | g, 11 g2 | the result follows from the majorations

|2\l/2 2\l/2

(■+wr ,«('+wr1, = (i+w3"<ii+*i,   «=>.2)
and

(i +w y ) I < i +iig,g2ii. < i +iigiyyi2<p + *iii-

Also to obtain Proposition 9, we will use the L2-theory. Our argument here is,

however, more complicated. This is the only point where explicit constructions of

H°° -functions appear.

Lemma 1. Given a measurable subset A of II, there exist H°°-functions <p and \p

satisfying the following conditions:

(i)|v|+|*|<i,
(ii) Re t// is an even function on II,

(iii) | (¡p - 1/8 |< 1/100 on the set A,

(¡v)IMI,<C|i4|,
(v)HRet//- l||,<C|i4|.

Proof. Fix some (large) M > 0 and define the following Hx-functions:

r{z) = -MJAe-^m(dO),   <p = I(l-e')2,

t(z) = expjjflogO - a(0))^±^m(de)\

wherea(»)=|ç>(e")| V|<p(e-,ö)| .

Notice that this makes sense, because eT has boundary value e'M(XA+,%(XA))

(%= Hilbert-transform) and therefore II a II œ «S \.

(i) is obvious. On II, we have Re 4> — (1 ~~ a) cos X(log(l — a)) and thus an even

function. Since | <p — | |< | | eT \ and thus | <p — \\< e~M on A (in) holds for M

large enough. Because on II

S\<p\^Xa+M2\%(Xa)\,

(iv) follows. Finally,

|l-Re*|<|o| + i|3C(log(l-a))| ,    ||1 - Re *||, < 4||<p||,

and hence (v).

We refer the reader to [4, Proposition 1.6] for the following Marcinkiewicz type

decomposition.
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Lemma 2. There is a constant C < oo such that for given h E Hq and X > 0, there

exists hxE H™ satisfying:

(i)\hx\<C\h\,

(ii)\\hx\\o0<CX,

(m)\\h-hx\\x<Cfm>X]\h\.

Let h be as in Proposition 9. For X > 0, define Ax = [| h |> À]. Application of

Lemma 1 to the set Ax provides H°°-functions <px, \px. We are now ready to prove

Lemma 3. \\\ + h - ba\\x> I + cfAJh\ +cX-2\\lm(hx-ba)\\2 ifX>Kand \b\
< X/K (c > 0 and K < oo being numerical constants).

Proof. First, since I — bais even and Im \¡/x odd, we find

Il + h-ball ;i + A- ba)<px\\x + f(\-bo)h

\l   ||A|-(l+|fc|)|+|/(l-6a)Re*;

>\jA\h\-\{\+\b\)\Ax\ + \-{\

>\i |*|-c(i+|*|KI + i

for some constant C. Thus, choosing K large enough, we get

(.) . '

1 - Re *J

\\+ h -bah > 1
10/   1*1"

Fix some small constant o > 0. Since we always have

||1 + af\\x <||1 +/||,    for0<a< 1 and/of mean 0,

it follows that

||1 + A - Hli HI1 + sx~l(h _ Mili HI1 + ÔX~\h\ - èa)||, - s\-'||a -* Mil-

Because SX'|AX — Aa|«lthe inequality

(1 + i)'72 > 1 + */3    for0<i<l

yields

|l + SX-'(/ix - Ao)| S*[l + SX"'Re(Ax-Aa)][l + ^S2X"2(lm(Ax - ba))2].

Therefore, also

ö'A_i / lm"(AA - öa) - cöA"'
'Ax

(**) \\\+h-ba\\l>\ + ^82X-2flm2(hx-ba)-c8X-xj   \h\.

The required minoration clearly follows combining (*) and (**).

Proof of Proposition 9. First

Il + A-Aolli ̂ d(ba,Hx)> Li I f a(0)e'9dO=      ̂ |
77
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and hence, also,

|| 1 + A - Aa||i =*= î||i -r n\\\ ^ tll«l|i-

Notice that the right member of (i), (ii) is bounded by 1 + 2S||A||,. Since now

111 + A - Aa||, » ¿||AII, + \ | A| , it follows that (i) (resp. (ii)) are satisfied for

| b |> 6 (resp. | (A, a)\> 6). Hence, we may assume | b |^ M in (i), | (A, a)|< M in

(ii) where M is some numerical constant.

Fix a constant X > KM and put k = hx for simplicity. Using again Lemma 2(iii),

the right member of (i) can be majorized by

l+2S2(|Re(A,a)|2+|lm((A,a)-A)|2)]1/2

<[l + 2S2(|Re(A:, a)|2 +|Im((^, a)- A)|2)]1/2 + 2Sc/   |A|.
'Ay.

Taking Lemma 3 into account, we see that it suffices to check the inequality

|Re(À:,a>|2+|lm((*:,a)-A)|2<||lm(Â:-Aa)||2

which is straightforward:

.2

n>0 n>0

,2\l/2

||lm(A: - Ao)||2 = \ 2  |lm )t(«) - 21m Aâ(«)|2 + i 2   |Refc(«)|2

while

|Re(*,a>|<  2  |Re^(«)|a(«)<^(2|Re^(«)|2)1/¿,

|lm((Â:,a)-A)| <  2  |lm/c(n) - 21m Aâ(«)|â(«)
n>0

1     / . 2\'/2
<—    2   |lmA:(«)-2ImAâ(n)|

]¡2   \ n>0 '

For the right member of (ii), a similar reasoning reduces the question to the

verification of

J>e-(/c,a>a|2<||lm(Â:-Aa)||2,

which the reader will easily do.

4. Reduction of the problem. In this section, we will reduce the problem of proving

that certain elements of ¿'(IT) normed by the quotient norm Lx/Hx to the verifica-

tion of an inequality for certain functions in L'(nN), where I1N = IT X FI X - - • is

the product group. Denote by Ek (k = 1,2,... ) the expectation with respect to the k

first variables (xx, x2,...,xk), where x = (xx, x2,...) is the product variable.

We consider the subspace DC of Lx (IIN) of those functions A such that for each k

the difference Ek[h] — Ek_ ,[A] is an H¿-function with respect to xk. Thus A is of the

form

A = 2A*   whereA¿= 2 hk(n)einx"
n>0

and the hk(n) are functions of xx,...,xk_x.
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Again let a = sígneos and ak(x) — a(xk) for each k. Let fbe the a-algebra on I1N

generated by the ak. In the next section, we show the following

Proposition 10. 7Aére is a constant c>0 s.t. \\h — Egr[A]||, >c||A||, for all

hE%.

This fact obviously implies

Corollary 11. infAe3C||/- All, > c'||/||, for all f G Lx(§).

For a, n positive integers, <$a will be the Fejér kernel

F (6)=  Y   a.+ 1~We*

andf;j„(<?) = Fa(«ö).

We consider sequences of positive integers (nk), (ak) satisfying the following

conditions: (@ denotes again the a-algebra on II generated by the functions a(nk0).)

(i) The transference property, i.e. let E = (Z'vknk; (vk) G F} where F is the

subset {(vk), \"k\< ak) of the dual group of IIN. Then the operator

r:Z¿(n)-»lL(II"),    T(f)(x)=    I   f(2vknky^
("*)6f

satisfies

ui/i|1<iin/)iiI^2|i/ii,.2

1   n i/lMoreover, 7(/) G OCfor/G L^ n ^

(ii) Defining for each A;,

*(«,+) = II [i+ €*(»**)"(»**)].

one has

(a) 211^ - all, <e,

0») 11*11, = 1.
For/GL'(@),

(y)ll/-/*^ll,<e||/||1,
(«)||/-Ä(/)||1<e||/||1where/l(/Xtf) = //WÄ(«,^)»iW)(wheree>Ois

a small constant).

The reader will easily convince himself that the realisation of these conditions is

straightforward. Details on the transference property can be found in [1].

Let us now show that the sequence (nk) satisfies the Theorem. Thus, fix/ G L'(@)

and A G H^. We get, by (ii),

||/- A||, >\\f*K-h * All, >\\R(f) - h * Äl|, - 2*11/11,.
Notice that R(f) E L\. By (i),

||Ä(/)-A«*||i>i||7t*(/))-Ailli
vhereA, = 7(A * K) G %.
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Now

T(R(f))(x)=ff(^mb+U^M"k4')]m(d^).

By (h)(a), we see that for any (± l)-sequence (t^.)

l<8)(i + ̂ )-n(i + ̂ )||,<e
implying that

¡T(R(f)) -/i||<2e||/||    where/, = E[7(Ä(/))].

It follows then from Corollary 11 that

ll/-Ä||,>x||/,-A1||1-3£2

>§||r(*(/))||,-4e||

>£ll/>2 «j 1111

> ill/1

3e

5e

taking e > 0 small enough.

5. Proof of the Theorem. It remains to prove Proposition 10. So fix A = 2 hk E %

where

hk= 2h(n)(xl,...,xk_x)ei"x".
«>o

We also define

[hk]e = 2hk(n)cosnxk,

[hk]o = 2hk(n)sinnxk,

(hk,ok)=2hk{n)à(T\)

(which is thus a function of xx,...,xk_x). If /= E^[A], then /= 1bk-ak, where

bk = bk(xx,...,xk_x) = E9[(hk,ak)].

Using E. Stein's theorem on 77'-multipliers (see [11]), it is easily seen that

IIAII, ~ || S(h)\\, (5 = square function with respect to the natural decomposition).

We give a direct proof of this fact, based on Proposition 8.

Fix 1 > e > 0 and a positive sequence (**)*= 1,2,... in 7°°(IIN) satifying

11(2 sk)x/2 II„o < e. Fixing a positive integer K, we get, using Proposition 8,

IIEjcEäIH, =||Ejf-i[Ä] + Mi

(lE^iAlf + S2^2)17^

\EK-Ah]\{l - s2)i/2\\+ 8\\\hK\sK\\x

\\^k-MI + o\\\hK\sK\\x -¡EK_x[h]s2K\\

Iterating,

ô2 lllAfckli ~2 ||Efc-i[A]i,
211
k\\\

«2 ¡I*k\Sk   1 ~£ max lEfrfAll
k       I     KL     Jl
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Taking supremum over the sequences (sk), it follows that

„2

and choosing

we get

||A||,>fie||S(A)||,-e

II/Ml,

max |EA[A]|
k

e2 =
|max|E^[A]

l|5(A)||,<S-1||A||!/2||max|EjA]||;/2.

Hence, by Proposition 4, 11 S( h)\\, < 8~2 \\ AII, as required.

Before continuing, notice that since ^-expectation is a contraction, ||S(/)Hi <

||5(A)||,. Since for each k, \ • ■ • \ (hk, ak)\< Ek_x[\ hk \], application of Proposition

5 yields

,2\ 1/211

(2l<A*,«Ol) C||A||,

If we now apply the previous procedure using Proposition 9, the following inequali-

ties are derived.

Lemma 4.

(I)

(II)

Re (hk,ak){(hk,ak)-bk)

(hk,ok)\+\bk

2l'/2

1/2

C||A \x/2\\u\\x/2
Ii    Fill    .

2 \[hk\%- (hk>°k)°k
k

C||A-2(AA,a,)a,||;/2||A||!/2.

Proof. Let us show how (I) follows from Proposition 9(i). The argument for (II) is

analogous. Fix 0 < e < 1 and a sequence (sk)k=x¿t of positive L°°-functions on IIN

satisfying ||(2í^)1/2II00 < e. Fix an integer k and apply Proposition 9(i) in the

variable xk. We get

¡EJA-/]||, =||E,_,[A-/] + A, - VJ,

|E,_,[A-/]|   +S2^k-\\

Re(hk,ak)((hk,ak)-bk)

I ("k>ak)\ +\bk\

1/2

>I|E,-,[A-/]||, + S

i[h-f]'l

Re(hk,ok)((hk,ak)-bk)

\(hk^k)\+\bk\

Iterating and using the same considerations as in the beginning of this section it

follows that the left member of (I) is dominated by

S-1e-1||A-/||, + const. e||S(A-/)||„
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and hence, choosing e appropriately, by the right member of (I). We first make use

of (I) to show

Lemma 5. \&\(hk,ok)- M2]1/2||, < C||A -/||¡/4||A||V4.

Proof. Write

2Ke(hk,ok){(hk,ok)-hk) =

\(hk,ok)\+\bk\
k   \h\

where

L =
_ \(hk>°k)~b

Ow^"""'1'
By the triangle inequality, the left side of (I) dominates

lliv if ñ1/2ll    \\(\\h\2V/2\\

Also, since bk = E[(hk, ak)],

,2\1/2|| ,2\ 1/211

11/2

JiSN2)'!,* (2I<^>|2)
Write

[2(¿M<A*,a,)|2)]

^(S^r + tSKA^OlTllfS^r-fSK^,^)!2)
and apply Cauchy-Schwarz. From (I) and previous observations

\\[2(ek-\(hk,ak)\2)]l/2\\   <C||A||¡/2||A-/||r||A||¡/4=C||A-/||¡/4||A||r.
II *- II 1

,2\l/2ll/2 2\l/2 1/2

Since for each k,

(hk,ak)-bk
Û-\(K,°k)\ =(^+K^p*>l)|^^*)|+|^|>cl<**'g*>-ft*l-

Lemma 5 is proved.

The left side of Lemma 5 dominates || / — 2(A¿, ak)ak||,.

LEMMA6. ||2[AJ0||,and||[2|[AJe-AÄ|2]1/2||,<C||A-/||J/8||A||V8.

Proof. Since 2[AJ0 = A — 1[hk]e, the first inequality is a consequence of the

second. Write

2 \[hk]e-bkok
1/2

2 \[hk]e- (hk,ak)ak
1/2

2 \(hk,ak)-bk
1/2
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which by Lemmas 4(11) and 5 is estimated by

C\h - 2 (hk, a,)aJ|;/2||A||!/2 + C||A -/||¡/4||A||,/4 < C||A - f\\Y*\\h\\Y*.

DefineforMGL'(IIN),

(u)e(x) = f u(exxx, e2x2,...)de

(= the natural projection on the even part in xx, x2,...).

Lemma 7. ||[2, | (h\(\))e |2]'/21|, < CIIA - / II \X'X6IIAIIX5/X6.

Proof. At this point, we will make use of Proposition 7. Fix x E IIN and remark

that the sequence of functions in e G D,

l'lk\o\e\X\^ e2-X2'---)>

is a martingale difference sequence.

Moreover, the A:th Rademacher coefficient is clearly given by

2  {hk(n))e(x)sinnxk
n>0

and Proposition 7 yields

2    2  (hk(n))e(x)sinnx

/|2[AJo(e-*)h' l f[2\[hkUe-x)\2]V2de

k     n>0

1/2

<c
1/2

Integration in x, application of Cauchy-Schwarz and Lemma 6, gives

( + )

Also

2    2  (A\(n))esin«x,
*     n>0

1/2

ciiA-/irnAiir2 |[A*U
1/2

1/2

2 |[a*U1/2
C||A||,.

On the other hand, we can multiply the k th increment in the left member of ( + ) by

sin xk and then take Ek^,-expectation. Proposition 5 shows that

2 \(hk(\))(
1/2

C||A
,1/16.,, ,,15/16
Il       Fill

proving Lemma 7.

Now, rewriting

2 \[hk]e~ bkak\
1/2

2    2 h\(n)cosnxk- bkak
k     «>0

1/2
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multiplication of the kth increment by cos xk and taking Ek_,-expectation yields (by

Proposition 5 and Lemma 6)

Ko)-f**
1/2

C||A-/||!/8||A||r.

Since bk = (bk)e, a convexity argument allows us to replace, in a previous inequality,

hk(l) by (hk(l))e. Combining with Lemma 7, we conclude

,2\1/2||pwl <r r\\u      /1l1/16lli.ll15/16
<C||A-/||,      A||,      , C||A-/||„

and thus Proposition 10.
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