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SUBCONTINUA WITH DEGENERATE TRANCHES

IN HEREDITARILY DECOMPOSABLE CONTINUA1

BY

LEX G. OVERSTEEGEN AND E. D. TYMCHATYN

Abstract. A hereditarily decomposable, irreducible, metric continuum M admits a

mapping/onto [0,1] such that each/"'(f) is a nowhere dense subcontinuum. The

sets/~'(r) are the tranches of M and/"'(r) is a tranche of cohesion if t £ {0,1} or

/■'(f) = Cl(/-'([0, t))) n Cl(/-'((i, 1])). The following answer a question of

Mahavier and of E. S. Thomas, Jr.

Theorem. Every hereditarily decomposable continuum contains a subcontinuum with

a degenerate tranche.

Corollary. If in an irreducible hereditarily decomposable continuum each tranche is

nondegenerate then some tranche is not a tranche of cohesion.

The theorem answers a question of Nadler concerning arcwise accessibility in

hyperspaces.

1. Introduction. A continuum is a compact connected metric space. A continuum M

is said to be irreducible between two points p and q if no proper subcontinuum of M

contains both p and q.

A continuum M is said to be of type X (see [8, p. 200]) if there exists a map * of M

onto [0,1] such that each point inverse under * is a nowhere dense subcontinuum of

M. The sets *"'(?) are called the tranches of M. The sets *"'(0) and *"'(1) are called

end-tranches of M. The tranche *"'(/) is said to be a tranche of cohesion if t E (0,1}

or if

*-'(0 = ci(*-1([o,0))nci(*-'((M])).

We denote the closure of a set A by C\(A) and the boundary of A by Bd(/1).

Irreducible continua have been extensively studied, in particular, under the topic

of continuous collections. For example, an irreducible continuum which admits a

monotone open mapping onto [0,1] is a continuum of type X and has the additional

property that each tranche is a tranche of cohesion. Also, irreducible, hereditarily

decomposable continua are of type X.

Thomas in [14] and Mahavier in [9] proved that each hereditarily decomposable

arc-like continuum contains a subcontinuum with a degenerate tranche. In the main

result of this paper we extend the Thomas and Mahavier result to arbitrary

hereditarily decomposable continua. This answers, in the affirmative, Problem 121 in
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the University of Houston problem book (due to Mahavier). Our methods are

patterned on those used by both Thomas and Mahavier. These methods are

abstracted from a proof of Henderson [4].

To prove the existence of an indecomposable continuum, one constructs a

sequence Oj of open covers such that Oi+x "folds" in 0¡. The notion of folding in

chain covers is intuitively clear. A large part of this paper is devoted to a definition

of folding in covers whose nerves are arbitrary polyhedra.

In 1935 Knaster [6] constructed a monotone, open mapping of a certain irreduci-

ble continuum onto [0,1 ] such that each point inverse is nondegenerate. Dyer proved

in [2] (see [7] for a simple proof) that each such mapping has a dense Gs of

indecomposable point inverses. As a corollary to our main theorem we complement

Dyer's theorem by proving that if M is a continuum of type X, such that each

tranche is nondegenerate and is a tranche of cohesion, then M contains indecom-

posable subcontinua of arbitrarily small diameters. Also, as a corollary to our main

result we obtain an affirmative solution to a question of Nadler [12] concerning

arcwise accessibility in hyperspaces.

2. Definitions and preliminaries. We let M be a continuum with a fixed but

arbitrary metric d. If % is a collection of subsets of M and A C Mv/e set

Sx(A,6ll) = S(A,6ll) = U {UEcli\Ur]A^0}

and, inductively,

S"(A,%) = S{S"-X(A, %,),%).

We let

%* = {5(L7,%)| i/E%}    and    %** = {S2(U, %) | U E %}.

If % and T are two collections of subsets of X we say % refines T if for each

U E % there exists V E T with U C V. If GlL= {Uy \ y E T) and T= {Vy | y E T}

and U C V for each y E T, then % is said to be a precise refinement of °V.

A collection % of sets is said to be taut if U, VE % with C\(U) n C\(V) =£ 0

implies U D V ¥= 0. The collection % is said to be coherent if U, V E % implies

there exists Ux = U, U2,...,U„ = Fin % with Ui n Ui+X ¥= 0 for each /' = 1,...,«

— 1. If % is a collection of open sets in a set M and U E % let

i(U,%) = c7\Cl(U{F| U¥= VE%}).

If K C M is a continuum we say a collection "^L of subsets of M strongly irreducibly

covers K û (Cl(í/)| U E%} is an irreducible cover of K. Notice that if % is an

irreducible open cover of K then there exists an open, taut, precise refinement T of

% such that Tcovers K and Tis a strongly irreducible cover of K.

We shall need the following well-known result (see [8, p. 172]):

Boundary Bumping Theorem. // K is a component of a proper open subset U of a

continuum X then Bd(c7) n C1(A") ¥= 0.

Remark. If M is a continuum which contains no indecomposable continuum of

diameter less than e for some e > 0 then M is one dimensional. To see this, let
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p EM and let U be a closed neighbourhood of p of diameter less than e. Then every

component of U has dimension «s 1 by the theorem of Mazurkiewicz [10] that every

continuum of dimension > 2 contains an indecomposable continuum. Let f: U -** Y

be the map that identifies components of U to points. Then dim 7 = 0 and / is a

closed map. Then dim U = 1 by the Hurewicz Theorem [5, VI, 7]. For the sake of

geometric intuition the reader may suppose, therefore, that every open cover % that

will be needed for the proofs of the main results of this paper has nerve 9l(%)

which is a finite graph.

If K C M are continua then by a M-K-cover A we mean a taut collection of open

sets in K which covers and strongly irreducibly covers K. M N C M are continua

and A is a N-K-cover then A is a M-Ä"-cover.

Let A be an irreducible open cover of a continuum M and let U, V E A such that

U <£ S6(V, A). Let (U, V) be a subcollection of A such that

(l)U,VC(U,V),

(2) (U,V) is a cover of some subcontinuum K of M such that U n K =£ 0 ¥= V

n K, and

(3) if W C (U, V) is a cover of a subcontinuum L of M such that L D U ¥= 0 ^

Lil Fand[/,KE leihen IF = (t/,F>.

If B = (U, V) we call U the first link of B and write 77 = FB. Similarly, we call V

the last link of 5 and write V — LB. We call a M-ÀT-cover yl a M-K-cover from FA to

LA if FA, LA E^and^l = (FA, LA).

1. A/oie. Let A be an irreducible open cover of a continuum M and suppose

U, V E A such that U <£ S6(V, A). Since A is finite there exists &(U,V) which need

not, however, be unique. If N is a continuum in M such that N C U (I/, V) and

A/n Í/ ^ 0 ¥= N n F, let ((£/, F)) be a M-N-cover which is a precise refinement

of (U,V) (we can show as before that ((Í/, F)) exists). For each WE (U,V) let

W be the element of ((U,V)) which corresponds to W. Then ((Í/, F» is a

M-N-cover from Î7' to K'. It suffices to show that if A" is a continuum in

U «[/, K» such that K n U' ¥= 0 ¥= K C\ V and O E (U, V)\{U, V], then K

(¿U(«c7,K»\{G'}).IfA:c U(«L/,K»\{G'}),thenÄ:c U«Í7, V)\{0}) and

ATn[/^0^A:nF, which contradicts the definition of <[/, V).

We say that a /V-ÀT-cover B is embedded in a M-Af-cover ̂  if {S^i/, B) \ U E B)

refines A. If A is a M-N-cover from F^4 to L/l, then we say a N-K-cover B is

embedded in A from FA to LA if B is embedded in A, B is a N-K-cover from F£ to

L5, Cl(f5) C i(FA, A) and Cl(t/) C i(LA, A) for some U E B.

Remark. If B is a N-K-cover embedded in a M-N-cover A from i>l to LA then for

each t/ E A there exists IF E B such that C^W7) C U.

Proof. Without loss of generality FA ¥= U^ LA. Let VEB such that FC

¿(L/i, A). Since i? is an irreducible cover oî K C N, FB C i(FA, A), V C i(LA, A)

and A is a M-A/-cover from F,4 to LA, there exists x E K n t/\U {TE^TVÍ/}.

Let IF E 5 such that x £ IF. Then C1(1F) C U.

If it follows from the above Remark that if B is a N-K-cover embedded in the

M-N-cover A from FA to LA and C is a AT-L-cover embedded in B from Fi? to LB,

then C is embedded in A from Fyl to LA.
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2. Note. If A is a M-N-cover from FA to LA, then there exists for each e > 0, by

Note 1, a N-K-cover B of mesh less than e embedded in A from FA to LA and

C\(LB) C ;(L/i, A).

If yl is a M-N-cover from F4 to LA then by an endpiece T oî A we mean a

coherent subcollection of A which contains {lFEyl| W C S3(LA, A)} and such

that E4n Ui=0.By/Twe denote

{WET\WDZ¥= 0 for some ZEA\T),

and we call fTthe first links of T.

Let B be a N-K-cover embedded in a M-N-cover A from F4 to LA. Let S be an

endpiece of A and let T be an endpiece of B. We say that F folds in S if

Cl(LB) C U/S, C1(U/T) C U/S, Cl(UF) C US, and no coherent subcollec-

tion of [WE T\ W </ i(LA, A)) contains both LB and an element of fT.

3. Lemma. Let B be a N-K-cover embedded in a M-N-cover A from FA to LA, let S

be an endpiece of A and suppose {W E B\C\(W) </. i(LA, A)} contains at least two

maximal distinct coherent subcollections P and Q and elements U E P and V E Q such

that C1((7U F) C U/S. Then there exists a K-L-cover C embedded in A from FA to

LA and an endpiece T of C such that T folds in S.

Proof. Let {U E B \ C\(U) </ i(LA, A)} = R U R', where R is the maximal

coherent subcollection of {U E B\C\(U) <¡£ i(LA, A)} which contains FB and

RDR' = 0. Let R" = {U E R' \ C\(U) C U S}.

If R" = R' let U E R" such that C\(U) C U/S. By Note 1 choose (FB,U)CB,

a continuum LCinU (FB, U) such that L n FB =£ 0 ¥= L n U, and a K-L-

cover C= ((FB,U)) from FC to LC with FC C FB and LC C Í/. Then C is

embedded in yl from FA to LA. Let F be the maximal coherent subcollection of C

which contains LC and such that Cl(U T) C US. Then Cl(U/T) C U/S n UR.

To see this, let W E fT. There exists Z E C\F such that ZniF^0. Let FE/1

such that S\Z,C) C V. Since C1(Z) C F, F <2 S. Let F„...,F„ E S such that

Cl(FF) C F, U • • • U V„. Then V¡ D V ¥= 0 for each / and, hence, F, E /S. Hence,

T folds in S.

If R" ¥= R', let r0ei;n i(FB, B). Then by the Boundary Bumping Theorem

there exists a continuum ÄT'CÄ'n(U.RU.L4U U R") such that x0 E K' and

C1(S(A", B)) n UR' (¿US.

Let £' C R" U (j4\R') be an irreducible cover of K'. Let U E B' D R" such that

Cl(S(t/, B)) ¿US. Notice <7 C F for some V E A\S. Thus, C1(Î7) C U/S.

Choose (FB,U)C B', a continuum L C K' D U(FB,U)CK such that L n FB

# 0 ^ L n l7, and a K-L-cover C - ((FB,U)) from FC to LC such that FC C FB

and LC C t/. Then C is embedded in A from F4 to L/l. Let T be the maximal

coherent collection of C which contains LC and such that Cl(UF) C US. As

above T folds in S.
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The following is a variation on a theorem of Rogers [13] and Bellamy [1]:

4. Lemma. Let M0 be a continuum. Suppose Bx, B2,... is a sequence such that Bj+X

is a M¡-Mi+x-cover embedded in the Mi_x-Mrcover B¡ from FB¡ to LB¡, and Tx,

T2,... is a sequence such that F, is an endpiece of B¡ and Ti+X folds in T¡. Then

n°l, ( U {U E T¡}) contains an indecomposable continuum.

Proof. By the Boundary Bumping Theorem there exists a continuum A", in U F,

such that A", meets fTi and LB¡. Then K¡ also meets/F, and LBj for/ < i. Without

loss of generality Lim K¡ — K. Then A" is a continuum,
00 00

A-criCl(U (f/EF,})= pi  ( U {UET,})
1=1 1=1

and A" meets Cl( U/T,.) and C1(L5,) for each /. So A" n U/F, ^ 0 for each i. Let h:

[0,1] -[0,1] be defined by

\U if,6[M].
[2-2jc     ifjcG^.l].

Define /,: C1(U F,) — [0,1] to be a continuous function such that /f'(0) =

C1(U/F,) and f{\\) = C\(LBX). Define f2: C1(U T2) - [0,1] so that if R is the

union of the maximal coherent subcollections of {U E B2 \ U Çt i(LBx, Bx)} which

meets U/F2, then

"!/,(*) ifxEC\(UR) nci(UF2),

i if jce/,-'(!) nci(ur2),

i -if,(x)   ifx eci(ur2)\(ci(u/î) u/,-'(i)).

f2(x)

Notice that L52 n Cl(UR) = 0 and A" n U/F2 ^ 0 =¿ K n Cl(Ffi2), so /2(A)

= [0,1]. Then /,(.*) — h ° f2(x) for each x E C1(U F2). By induction we define

continuous functions /: C1(U T¡) -> [0,1] such that f(x) = h° fi+x(x) for each

positive integer i and for each* E C1(U Ti+X) and/(A") = [0,1]. Then/= lim / | K

is a mapping of A" C H°i, ( U {U E T¡}) onto Knaster's indecomposable continuum

Y — lim (F, h{), where /, = [0,1] and h{ = h for all /' and j (as in the proof of

Bellamy [1 Theorem, p. 305]). Since/maps K onto Y, K contains an indecomposable

continuum.

5. Lemma. Let M be a continuum which contains no indecomposable subcontinuum of

diameter less than e for some e > 0. Let A be a M-N-cover of mesh less than e from FA

to LA. Then there exists a N-Nx-cover B embedded in A from FA to LA, and an

endpiece T of B such that Cl( U F) C i(LA, A), and such that if C is a Nx-K-cover

embedded in B from FB to LB then no endpiece of C folds in T. Moreover, B can be

chosen to have arbitrarily small mesh.

Proof. As in Note 2 there is a N-L-cover Bx of arbitrarily small mesh embedded

in A from FA to LA and an endpiece F, of Bx such that Cl( U F,) C LA. The lemma

now follows by contradiction from Lemma 4.
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3. The main results. The first three results in this section were proved by Thomas

in [14] and Mahavier in [9] for the special case of arc-like continua.

6. Theorem. If M is a continuum which contains no indecomposable subcontinuum of

diameter less than e for some e > 0 and x, y E M, then there exists a subcontinuum K

of M irreducible from p to q such that K is locally connected at q, d(x, p) < e and

d(y, q) < e. In particular, if K is irreducible from p to q' then q' = q.

Proof. Let N0 = M. Let 0 be a M-N0-cover of mesh less than min(e, 1} such that

y É S7(x,0). Let x E U E 0 and y E VE 0. By Note 1 choose (U,V)C 0, a

continuum Nx C U (U, V) such that Nx n U ^ 0 ¥= TV, n F and Bx = «£/, F»,

a N0-Nx-cover from FBX C U to LBX C F By Lemma 5 there exists a Nx-N2-cover B2

of mesh less than { embedded in Bx from FBX to LBX and an endpiece F2 of B2 such

that C1(U F2) C i(LBx, Bx), and such that if D is a A^-AT-cover embedded in B2

from Ffi2 to LB2, then no endpiece of D folds in F2.

By repeated application of Lemma 5 there exist sequences of continua Nx, N2,...,

covers BX,B2,... and endpieces F2, F3,... such that for each / = 1,2,... :

(i) Bi+, is a N¡-Ni+,-cover embedded in B¡ from FB¡ to LB¡;

(ii) mesh 5, < 1/7;

(iii) F,+, is an endpiece of 5,+, with Cl( U Tl+l) C i(LBh B¡);

(iv) if D is a A//+1-A>cover embedded in Bi+X from FJ?,+ , to LBi+x, then no

endpiece of D folds in F1+,.

Let K = HiV;, {/>} = DFB, and {<?} = HL5,. Then A" is a continuum. Since

¿?, = (F5;, LB¡) for each i, 5, is an irreducible cover of every subcontinuum of K

which contains both p and q. Since mesh B¡ < \/i it follows that K is an irreducible

continuum from p to q.

Suppose K is not connected im kleinen at q. There exists 5 > 0 such that 8 < e and

such that no subcontinuum of K of diameter less than 8 contains a neighbourhood of

q in K. Let Q be the component of q in A" n C\(B(q, 8/4)), where £(?, 8/4)

denotes the open 8/4 ball centered at q. Let r E Q\B(q, 8/4). Let n be an integer

so that LBn_x C B(q, 8/4). If for each sufficiently large integer i the maximal

coherent subcollection of {U E B¡\ Cl([/) S¿ i(LBn, Bn)} which contains FB¡ also

contains r in its union, then there exists a component A^ of K\LBn + x which contains

both p and r. By the irreducibility of K from p to q this would imply that

K = N U Q since AT U Q is a continuum in A" which contains /> and q. Thus, <? is in

the interior of Q in K which contradicts the choice of 8. Thus, for some sufficiently

large m > n the maximal coherent subcollection of {U E Bm\ C\(U) </. i(LBn, B„)}

which contains FBm does not contain r in its union. By Lemma 3 there exists a

Nn-K-cover D embedded in Bn from FBn to LBn, and an endpiece F of D such that F

folds in Tn. This is a contradiction and the connectedness im kleinen of K at q is

proved.

Finally, we show that A" is locally connected at q. Let F be any closed connected

neighbourhood of q of diameter less than e such that p £ F Let L be the closure of

the component of K\V which contains/?. Then U = K\L is an open set containing

q. By the irreducibility of A" from p to q, U C F since F is connected. Let TV be the
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component of U which contains q. Then C\(N) n Bd(i/) ¥= 0 and, since Bd(i7) C

L, C\(N) D L=£ 0. Moreover, Cl(N)\N C L and, by the irreducibility of A",

K = N U L. Hence N = K\L — U C F is a connected open set containing <?. This

completes the proof of the theorem.

The next corollary gives an affirmative answer to a question of Mahavier (cf.

Problem 121, University of Houston problem book).

7. Corollary. Let M be a hereditarily decomposable continuum and x, y E M.

Then for each e > 0, there exists a subcontinuum K' of M such that K' is irreducible

from x to q for some q with d(y, q) < e and such that {q} is an end-tranche of K.

Proof. Assume M is irreducible from x to y. Let /: M -» [0,1] be a finest

monotone map with f(x) — 0 and f(y)= 1. Choose K and p E/~'([0, j)) and

q E B(y, e) n f((\, 1] ) as in Theorem 6. Let K' = K U /"'([O, /(/>)])•

In [14 and 3] are given examples of hereditarily decomposable arc-like continua X

so that if A" is a subcontinuum of X with a degenerate tranche L then L is an

end-tranche of A".

8. Corollary. // M is a continuum of type X which contains no indecomposable

continuum of diameter < efor some e > 0 and such that each tranche of M is a tranche

of cohesion, then a dense Gs-set of tranches of M are degenerate.

Proof. Let $: M — [0,1] be a map such that for each t E [0,1], $"'(?) is a

nowhere dense subcontinuum of M. Let [a, b] C [0,1] such that a < b. By Theorem

6, there exists a continuum K C <b~x([a, b]) irreducible from p to q such that

$(/>) < $(q) and {<?} is a degenerate end-tranche of M. It also follows that if

t E D = {s E [0,1] | <£>"'(•*) is a tranche of continuity}, then $"'(0 is degenerate,

and it is known (see [8, p. 202]) that D is a dense Gs in [0,1].

9. Corollary. // M is an irreducible hereditarily decomposable continuum such that

each tranche of M is a tranche of cohesion, then a dense Gs-set of tranches of M is

degenerate.

For any compact metric space M we denote by 2M (respectively, C(M)) the space

of all nonempty, compact subsets (respectively, subcontinua) of M with the topology

induced by the Hausdorff metric.

Let M be a continuum and let x E M. Then {x} is said to be arcwise accessible

from 2M\C(M) (see [11 and 12]) provided there exists an arc A in 2M such that

A n C(M) — {x}. The next corollary follows from Theorem 6 and Theorem 4.1 of

[3]. It gives a positive solution to a question of Nadler (see [11, 12.19 and 12, 8.1]).

10. Corollary. Let M be a hereditarily decomposable continuum. There exists a

point x EM such that [x] is arcwise accessible from 2M\C(M).

In view of Corollary 8 the following question is interesting:

11. Question. If X is an irreducible continuum which admits a continuous

monotone decomposition onto an arc, does X contain hereditarily indecomposable

tranches? In particular, does Knaster's continuum in [6] contain tranches which are

pseudoarcs?
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