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HEREDITARILY-ADDITIVE FAMILIES IN DESCRIPTIVE

SET THEORY AND BOREL MEASURABLE MULTTMAPS

BY

ROGER W. HANSELL

Abstract. A family ® of Borel subsets of a space X is (boundedly) Borel additive if,

for some countable ordinal a, the union of every subfamily of ® is a Borel set of

class a in I. A problem which arises frequently in nonseparable descriptive set

theory is to find conditions under which this property is "hereditary" in the sense

that any selection of a Borel subset from each member of ® (of uniform bounded

class) will again be a Borel additive family. Similar problems arise for other classes

of projective sets; in particular, for Souslin sets and their complements. Positive

solutions to the problem have previously been obtained by the author and others

when A" is a complete metric space or under additional set-theoretic axioms.

We give here a fairly general solution to the problem, without any additional

axioms or completeness assumptions, for an abstract "descriptive class" in the

setting of generalized metric spaces (e.g., spaces with a o-point-finite open base). A

typical corollary states that any point-finite (co-) Souslin additive family in (say) a

metrizable space is hereditarily (co-) Souslin additive. (There exists a point-countable

F„ additive family of subsets of the real line which has a point selection which is not

even Souslin additive.) Two structure theorems for "hereditarily additive" families

are proven, and these are used to obtain a nonseparable extension of the fundamen-

tal measurable selection theorem of Kuratowski and Ryll-Nardzewski, and a com-

plete solution to the problem of Kuratowski on the Borel measurability of complex

and product mappings for nonseparable metric spaces.

0. Introduction. In 1935 K. Kuratowski [12] raised a number of fundamental

problems regarding properties of Borel measurable maps between nonseparable

metric spaces, some of which have yet to be completely resolved. Most of the

problems have been resolved under additional assumptions, such as when the spaces

are particularly nice (e.g. absolutely analytic; see [10]), or under additional set-theo-

retic axioms (see [1 and 3]). Here we will give a solution (without any additional

assumptions) of the problem concerning the Borel measurability of the complex

mapping, xh+(f(x), g(x)), of two Borel measurable maps of bounded class (cf.

[12,8, Problem 2]).

In the separable case, proofs generally reduce a problem to one about countable

collections of sets. Some of the properties possessed by countable families of Borel

sets are so simple and obvious that one hardly mentions them explicitly, let alone

gives them a name. We can illustrate the property we have in mind with the

following example. Let X and Y be metric spaces and let / and g be Borel maps of
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class 1 from X into Y (that is, f~x(U) is an Fa subset of X for any open subset U of

Y). Let h — (/, g) be the complex map from X into ixy defined by h(x) =

(f(x),g(x)). Any open set IF of YX Y can be written in the form IF = UieIU¡ X F;,

where 1/ and F¡ are open in Y. Then fc-'(IF) = U,.^/"'^.) n g~x(V¡). Of course,

U(.e//_1(c7) =/"'( U|.6/î//) and is therefore F0 for any family {i/(.} of open sets; we

could say that {f'x(U): U an open subset of Y) is F„-additive. Now if Y is

separable, then we can assume that / is countable, so that h~x(W) is Fa and the map

h is also of class 1. In the nonseparable case, / may have to be uncountable.

However, by putting a suitable restriction on the open sets U¡ (which will be satisfied

when Y is metrizable), we can show that for any family of F0 sets B¡, U/e//"'([/,) D

Bi will be a GSa set. We will say in this case that {f~l(U¡): i E 1} is Fa-hereditarily

GSa-additive. This will lead to the conclusion that the map h is of Borel class 2.

The family {/~'(i/,)} in the preceding example illustrates a property of families

which we call " Borel-hereditary additivity". This property is used in an essential way

in a number of proofs in the separable case, particularly in proving the Borel

measurability of complex and product maps, and the reduction property for Borel

sets, which is the basis for proving the existence of Borel measurable selectors.

Hereditarily-additive families. In its most general form, the basic concept which we

study here is defined as follows: If 9H and Ê denote arbitrary collections of sets, we

say that a family & of sets is 911-hereditarily £-additive if whenever {M(E):

E E &} C 911, then {M(£)fl£: E E &} is £-additive (i.e., the union of every

subfamily belongs of £); when 911 = £, we say that S is Ê-hereditarily-additive.

Families which are £-additive arise naturally as the inverse image of open families

under (lower) Ê-measurable (multi)maps and various fundamental problems lead

naturally to questions of when such families are Ê-hereditarily-additive. Since there

exists a point-countable, Fff-additive family of subsets of the reals which is not even

closed-hereditarily Souslin-additive [9, Example 3.9], most of our results require that

families be point-finite and/or spaces have a a-point-finite base ( = network).

In §1 the notion of an abstract descriptive operation, A, and descriptive class, A£,

are defined, the latter containing as particular cases the familiar classes of Souslin

sets, complements of Souslin sets, and Borel sets of class a generated from the family

£. In this section we also prove a fundamental result (Lemma 1.1) stating conditions

under which the set operations of intersection and union may be permuted. In §2 we

prove several lemmas which describe the general invariance properties of 91t-heredi-

tarily £-additive families under standard set-theoretic operations. In §3 we prove the

basic result of the paper (Theorem 3.1), which states that if A is any descriptive

operation and S is any point-finite 9H-hereditarily £-additive family, then S is also

A91l-hereditarily A£-additive. This is applied, in particular, to obtain the result: If

( X, Q) is a topological space such that § has a a-point-finite open base (e.g., if X is

metrizable), then any point-finite AS-additive family is AS-hereditarily A[(Aâ)J-ad-

ditive, where A is any descriptive operation (see 3.1 and 3.6). A similar result is given

for the classes AÍF, where f is the family of closed sets in X. Hence, if X is

metrizable, and we let 2¡ denote the class of all Souslin sets in X, and 2a the class of

Borel sets of additive class a < <o,, then it follows that every point-finite 2¡-additive



BOREL MEASURABLE MULTIMAPS 727

family is 2 J-hereditarily-additive, and every point-finite 2a-additive family is 2ua-

hereditarily-additive and 2^-hereditarily 2a+/8+,-additive (see 3.8, 6.6, and 6.8). The

short §4 is devoted to proving two fundamental theorems: The theorem "on

a-partition" states that the members of a point-finite, £-hereditarily-additive family

S can be countably decomposed, E = UF„, so that [En: E E &} is disjoint and

£ "-hereditarily-additive, for each n, where £" is the family of differences of sets in £.

This is then used to prove a similar theorem "on reduction", which is preliminary to

our results on measurable selectors. In §5 we introduce the concept of a ^-analytic

space (not necessarily metrizable) as one having a particular type of "/c-Souslin

stratification" (5.1), the latter having been previously used by the author in his study

of analytic sets in nonseparable metric spaces [5,6,7]. The properties of ^-analytic

spaces will not be investigated here, but rather they are used as a vehicle to obtain

our results on the existence of measurable selectors. After proving a general lemma

"on selection" (5.3), we obtain a generalization of the Kuratowski and Ryll-Nard-

zewski selection theorem for multimaps whose values are ¿/-totally bounded in some

completely metrizable space Y, where d is any compatible metric (not necessarily

complete) for Y (5.5). Specifically, the selection theorem holds when the domain

space X is metrizable and the multimap is lower-2a-measurable (the selector is then

of class u>a), or lower-2]-measurable (the selector is then "measurable" with respect

to the family of all countable unions of differences of sets in 2|) (see 5.9). Our final

section, §6, deals with the general question of "measurability" for complex and

product maps. Two general results (Theorems 6.11 and 6.12) are stated for lower-£

multimaps, i.e. multimaps F such that F~(U) = {x: F(x) n U¥= 0} belongs to £

whenever U is open, where £ is a family of sets having "hap" (the hereditary

additivity property). A family £ has hap if every point-finite £-additive family is

£0-hereditarily-additive. Here we prove a technical lemma (6.4) to establish that the

family Uneu)2na has hap, for any a < ux, where 2^ is the family of sets of additive

class ß in some (say) metrizable space. Our final theorem (6.16) addresses the

specific question of Kuratowski on the Borel measurability of the complex map

(f,g), where/is of class a and g is of class ß, and we show that, for general metric

spaces, (f,g) will always be Borel measurable of class min{a + ß, ß + a}. Al-

though this bound can be sharpened to max(a, ß) in the separable case, or when the

domain space is absolutely analytic [10, Theorem 4], we use a model of Fleissner to

show that it is consistent for the above bound to be the best possible.

Throughout the paper, we use u to denote the set of all nonnegative integers. If £

is a family of sets, £a and £5 denote, respectively, the family of all countable unions

and countable intersections of sets from £; Souslin £ denotes the family of sets

obtained by applying the Souslin operation to members of £ (1.3(b)). A family £ is a

lattice of sets if it is closed to finite intersections and finite unions; it is a a-lattice if,

in addition, it is closed to countable unions.

Some of the results in this paper were first announced by the author in [9].

1. Descriptive operations and classes. Although we will not make use of the

following fundamental lemma until §3, we include it here to partially motivate our

present definition of an elementary descriptive operation. Recall that (D, >) is a
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directed set if 3s is a transitive relation on D with respect to which every pair of

elements of D has an upper bound.

1.1. Lemma. Let (D,>) be a directed set and A an arbitrary indexing set. Suppose

{Ead: a E A, d E D) is a family of sets such that, for some fixed d0 in D, [a E A :

x E Eado) is finite for every point x, and Ead C Ead, whenever d> d' in D, for each a.

Then

(o u c\Ead= n UEad.
a£A d&D deD aSA

Proof. Since the left side of (1) is always contained in the right, assume that, for

each d in D, x belongs to Ea d for some ad in A. For the given d0 in D, let

{a(\),.. .,a(n)} be an enumeration of the set {a E A: x E Ead }. It follows from the

hypothesis of the lemma that each d > d0 belongs to at least one of the sets

D¡ = {d E D: d > d0, ad = a(i)}, i = 1,... ,n. For some/, £>. is cofinal in D, and

from this it easily follows that x belongs to ^deDEalJ)d.    □

1.2. Operations of type (2). To each triple, consisting of a set A, a directed set

(D,>), and an equivalence relation ~ on the set A X D, there corresponds an

operation of type (2), denoted by 2,., and defined as follows: Consider all indexed

families of sets {Lad: a E A, d E D) satisfying (i) d> d' implies Lad C Lad, for each

a, and (ii) Lad — La,d, whenever (a, d) ~ (a', d'). Then the operation 2 associates

with each such family {Lad} the set

2*{Lad} = U   H Lad.

When the operation 2+ is restricted to the subfamilies of a given family £ we let 2^2

denote the class of all sets so obtained. If 2^£ is a lattice of sets whenever £ is, then

we say that 2^ is an elementary descriptive operation (of type (2)), and we call 2„,£ a

descriptive class (for any lattice £).

The following examples will be of primary interest.

1.3. Examples, (a) Let A = co, D = (0) (with the obvious order), and let ~ be the

discrete equivalence relation on A X D. Then the corresponding operation, denoted

20, is defined for all indexed families of the form {Ln0: n E co}, and

SoiAo) =  U L„o-
flEiO

For any family £ we have 20£ = £0, and thus 20 is an elementary descriptive

operation (of type (2)).

(b) Let A = co", D = u> (with its usual order), and define (t, n) ~ (s, m) if, and

only if « = m = 0, or n — m>0 and ti — s¡ for i — 0,...,n — 1. We consider all

families {Lln: t E co", n E co} satisfying (i) n > m implies Ltn C Llm for each t, and

(ii) Lln = Lsn whenever (t, n) ~ (s, n). For such collections we define the operation

2} by

2!{Fin} = u   n L,„.

One easily sees that 2j£= Souslin £ whenever £ is a lattice, and thus 2¡ is an

elementary descriptive operation.
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1.4. Operations of type (Ti). Again, assume given a set A, a directed set (D, >),

and an equivalence relation ~ on D X A. Consider all indexed families of the form

{Lda: d E D, a E A) satisfying (i) d^ d' implies Lda C Ld,a for each a, and (ii)

Lda — Ld,a, whenever (d, a) ~ (d', a'). For such families we define an operation of

type (II), denoted in this case by n*, which associates with each family {Lda} of the

given type the set

n*{Lda} = n U Lda.
d£Da&A

In analogy with operations of type (2), we define n^£ and call Ii* an elementary

descriptive operation (of type (n)) if Tl^t is a lattice whenever £ is; in this case, IT^fi

is called a descriptive class.

1.5. Examples, (a) Let D = co (with its usual order), A = (0}, and let ~ be the

discrete equivalence relation on D X A. The corresponding operation of type (n),

denoted IT0, is defined for all indexed families of the form {Ln0: n E co} satisfying

n s* m implies L„0 C LmQ, and we have

n0{F„0} = n Ln0.
nGti)

Moreover, no£ = £s whenever £ is a lattice, so II0 is an elementary descriptive

operation.

(b) Let D = co", with the pointwise partial ordering (i.e., s > t iî and only if

sn > tn for each n), let A = co, and define (s, n) ~ (t, m) whenever n — m = 0, or

n = m > 0 and s¡ — t,Tor i = 0,... ,n — 1. The corresponding operation of type (Tl)

is denoted II¡, and is defined for all families of the form {Lsn: s E co", n E co}

satisfying (i) s > t implies Lsn C Ltn for each n, and (ii) Lsn = Ltn whenever

(s, n) ~ (i, n). For any such family {Lsn} we have

n\[Lsn) = n U Lsn.

For any lattice £ of subsets of a given set X, we now show that nj£ = [Souslin £c]c,

where for any family 91L of subsets of X we define 91tc = {X - M: M E 911}. To see

this let M be any member of Souslin £c. Then we can write

m = u n MAn
îëu" «Eco

where {Ms^} is a subfamily of £c indexed by the finite sequences of co with s | 0 = 0

and s\n = (s0, ...,sn_x)iorn>0. Furthermore, since £c is a lattice, we may assume

that Mt,n C Ms,n whenever s\n> t\n (the pointwise partial order) by [8, Lemma 2].

Now let Lsn = X — Ms\n for each s E u" and n E co, and note that i > t implies

Lsn C Lln and Lsn = Ltn whenever (s, n) ~ (t, n). Consequently,

x-m= H U4„En|£.
sSíúu «Gw

Since the reverse inclusion is clear, it follows that II]£ = [Souslin £c]c. In particular,

n¡£ is closed to countable unions and countable intersections, and thus II ¡ is an

elementary descriptive operation.
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1.6. General descriptive operations and classes. We define the family of descriptive

operations inductively as the smallest family fy of maps taking lattices of sets to

lattices of sets such that:

(1) ty contains every elementary descriptive operation;

(2) tf) is closed under composition;

(3) For any increasing sequence {A„}neu in ^ (that is, A„£ C A„+1£ for each

n E co and any lattice £), the operations T and A, defined by

r£ = UA„£
nGu

and   A£ = UA„£

are also in fy.

Note. Since {A„£}„eu is increasing, Un6uA„£is a lattice, and thus so are T£ and

A£.

For any descriptive operation A and any lattice of sets £ we will call A£ a

descriptive class.

1.7. Borel sets of additive and multiplicative class a. If £ is a lattice of sets, we

define the descriptive classes 2a£ and Ila£ by induction on a < co,, as follows:

20L = La, noL = Ls,

2a+1£= 2,(na£) =[n„£]a, na+1£= n,(2a£) = [2a£]s,

2,£ Un„£ U2a£ n,£: U2a£
a<X

Una£

The equivalences for the classes corresponding to a limit ordinal X follow from the

easily proven fact that 2/3£cIl/3£c2Y£ whenever a < ß < y. One easily observes

that 2a£ and Ila£ are descriptive classes in the sense of 1.6.

If X is a metrizable space, and % (respectively, ^) denotes its family of open

(closed) sets, then we have

G  =

F =

2aS, the sets of additive class a, when a is even,

Tla§, the sets of multiplicative class a, when a is odd,

2„5", the sets of additive class a, when a is odd,

TIJF, the sets of multiplicative class a, when a is even,

using the standard classification of Borel sets [13, §30], and Borel sets of X =

a<a¡    a v-' a<u,   of

2. General properties of hereditarily-additive families. Throughout this section,

unless otherwise stated, we assume that £,911, and 91 denote arbitrary collections of

sets. If S and DC are given families of sets, we denote the family [E n H: E E <S,

HE%) by D(&,%), and we define S" recursively by £' = Ê and &" =

n(S,g"-')for« = 2,3,... .
2.1. Definition. A family S of sets is said to be t-additive if whenever &' C &,

then US' belongs to £; it is said to be <s%-hereditarily Eradditive if & is £-additive

and, given any subfamily of 91L of the form {ME: E E S}, the family {ME D E:

E E &} is £-additive. If this is the case when 91L = £, then we will say that S is

t-hereditarily-additive, and abbreviate this by writing £-h.a.
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Note. In this context we will always assume that 0 E 91L so that & will be

91L-hereditarily £-additive if, and only if, U {ME D E] E £ for an arbitrary family

{ME} C 91L.

2.2. Lemma. IfêH is an ^h-hereditarily ^additive family for each H in%, and DC is

^hereditarily ^additive, then {E n H: E E &H, H E DC} is ^hereditarily ^addi-

tive.

Proof. Let {MEH: E E &H, H E DC} be a given subfamily of 911. For each H in

DC,let

NH= U {MEHnE:EE&H}.

Then NH belongs to 91 for each H, since &H is 91L-hereditarily 9l-additive. Conse-

quently, since DC is 9l-hereditarily £-additive, the set

U    U  (MEH nEDH)=  U NHDH
HE%E<E&H H<E%

belongs to £ as required.    G

2.3. Corollary. If & is 9H-hereditarily 9l-additive, and DC is 9c-hereditarily

£-additive, then D(S, DC) is 9H-hereditarily £-additive.

Proof. This follows from 2.2 upon taking &H = S for each H in DC.    D

2.4. Corollary. If& is t-h.a., then so is &" for n = 1,2,... .

Proof. This follows from 2.3 and finite induction.    D

Although the following lemma is not needed here, we include it for the sake of

completeness; the routine proof is omitted.

2.5. Lemma. If& is ^^hereditarily t-additive and DC is ^Mradditive, then H(S, DC)

is Qradditive.

Note. If DC is not 9H-h.a. in 2.5, then D(S,DC) need not be 9H-hereditarily

£-additive—simply take 9H = £ and S = { U 911}.

2.6. Lemma. If t— U{£m:wEco} and S is ^^hereditarily t-additive for each m,

then & is ta-h.a.

Proof. Suppose {LE: E E &} C La. For each E in S, write LE = U LEn (n E co)

where LEn belongs to £m(£n). Since, for fixed n and m, the set

Lnm=  U {LEnnE:EE&,m(En) = m}

belongs to £ by hypothesis, the desired conclusion follows upon observings that

(jL£nF=  U   U Lnm.    □
EES «Eco m£ü

2.7. Definitions. If £ is a family of subsets of a given set X, we define:

£c = {X- L: LE £}; £"= {L - L': L, L' E £}; tbi = {L: L E £ and X - L E

£}. Also, if Y is any set, we let Y n £ = {Y n L: L E £}.
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2.8. Lemma. Let S be an ^hereditarily ^additive family, where Ut C X. Let Y be

a set for which Y n & is disjoint. Then

(a) // 91L is closed to finite intersections, then Y D & is ^'-hereditarily Y n £~-

additive.

(b) If YE US, then Y D S is ̂ -hereditarily Y n <¿c-additive.

(c) // £ is a lattice,   Y C U S and  Y E £*'',  then   Y n S w <$lbi-hereditarily

£" '-additive.

Proof. The proofs make use of the following simple set-theoretic identity: For

any family of sets {NE: E E&),

(*) U (YHE) HNE= YD
£ES

US- U En(x-NE)
Ee&

(a) For each F in S let ME and M'E be given members of 9lt. Applying (*) to the

disjoint family Y n {E n M£} (and with NE = X- M'E) we get

U [(TnF) n MEn (x- M'E)] = y n
£ES

U f n aí£
L£eS £e£

U f n m£ n m¿

and the latter set is easily seen to belong to Y D £ .

(b) Given {ME: E E S} C 9HC, first note that U {E (1 (X - ME): E E S} will

belong to £. Applying (*) and the fact that Y C U S, we get

U (yd e) n m£= rn
£e£

x- \J En (x-ME)
E<=&

and the latter clearly belongs to Y n £c.

(c) If [ME: E E S} C 9H*', then clearly U {y n F n M£: F E S} belongs to £

(since Y does and £ is a lattice). On the other hand, since Y C U S, (*) implies that

jr- U ynFnM£ = (A--y)u U [En (x- me)],
£eS £e6

and the latter set belongs to £ when £ is a lattice.    D

3. Hereditarily-additive families and descriptive operations. The following theorem

is fundamental to most of the results which follow.

3.1. Theorem. Let £ and 91L be any two lattices of sets, and let A be a given

descriptive operation (as defined in 1.6). // S is any point-finite ^h-hereditarily

t-additive family, then S is also à6Jiirhereditarily ätradditive.

Proof. Let S be point-finite and 9H-hereditarily £-additive. For convenience of

notation we write S = [Es: s E S} where {s E S: x E Es) is finite for each x in

US.
We first prove the theorem when A is an elementary descriptive operation of type

(n), and we may assume A is the operation n* described in 1.4. Thus, for each s in

S, let

(1) Ms = TL,{M*da}=  D   U Mda
d<ED aSA
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be a given member of A91L. It suffices to show that U {Ms n Es: s E S] belongs to

A£. To see this, we put

(2) Esd = U Mda D Es   and    Lda =\jM*danEs.
aeA seS

We observe that, since d> d' implies Mda C Md,a for each a and s (by the definition

of II*), we have

(3) EsdEEsd,   and   LdaELd.a

whenever d > d'. Also, since {Es} is point-finite, {s E S: x E Esd for some d) is

finite for each x in US. Consequently, applying Lemma 1.1 together with (1) and

(2), we get

\jMsnEs= U   HEsd= ft   UEsd
ses sesdeD deDses

n u
deDaeA

U M'da n Fda

L ses

= n u Lda.
deD aeA

Moreover, since S is 91L-hereditarily £-additive, each Lda E £. Finally if (d, a) ~

(d\ a'), then Mda = M¿v for each s, and thus from (2) we have Lda = Ld,a,. It

follows that

U Ms n Es = Pi   U Frfa E A£

as required.

The argument for elementary descriptive operations of type (2) is entirely

analogous and is omitted.

Let öD* denote the family of all descriptive operations for which the theorem is

true. Then 6D* contains all elementary descriptive operations, and it is routine to

check that 6íi* is closed under composition. It thus remains to show that, for any

increasing sequence (A„: n E co} in 6¡)*, the operations T and A as defined in 1.6(3)

also belong to 6îl*.

To this end, let S be a point-finite 911-hereditarily £-additive family for given

lattices 91L and £, and let {ME: F E S} C A9H. It is easy to see that, for each

F E S, there is an nE in co and sets MEn in A„911 (not necessarily distinct) for n > nE

such that {HEn}n>„E is decreasing and (~]n>„EMEn = ME. If nE > 0, define ME„ = E

for each « = 0,...,nE— 1. Since S is A„9H-hereditariiy A„£-additive, it follows that

the set Ln = U {MEn n F: F E S} belongs to A„£ for each n in co. By Lemma 1.1

we have

\J MEnE= C\l„,
EG& neu

proving that S is A91L-hereditarily A£-additive. Hence A belongs to ty*. That T

belongs to 6îl* follows easily from Lemma 2.6.

It follows that ty* contains the family fy of all descriptive operations.    D
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3.2. Definitions. By an expansion of a family of sets S we mean a family (F£:

E E S} such that E C LE for each F. By a o-expansion of S we mean a family (F£n:

E E S, n E co} such that F C UneuL£(1. When the latter term is preceded by an

adjective (such as discrete, or 91L-hereditarily £-additive, etc.), then it is understood

that the adjective(s) applies to each of the families {LEn: F E S}.

3.3. Corollary. Let £ and 91L be lattices of sets, A a descriptive operation. If

S C A91t and S has a point-finite ^Krhereditarily t-additive expansion [o-expansion],

then S is A^Rrhereditarily At-additive {respectively, A^Krhereditarily (Ht)„-additive].

Proof. The corollary follows from the general observation that, if S C A91L and

{LE: E E S} is any point-finite 91t-hereditarily £-additive family, then {LE} is

A91L-hereditarily A£-additive, by 3.1, and hence so is (F D LE), since A91L is a

lattice.    D

3.4. Corollary. Let (X,§) be a topological space and let <$ denote the family of

closed sets in X. Let Abe a descriptive operation. //S C a*$ is locally-finite, then S is

hS-h.a. If& C AS has a point-finite open expansion (e.g., if S is locally-finite and X is

metacompact), then S is A@-h.a. In particular, every point-finite collection of open sets

is AQ-h.a., and every locally-finite collection of closed sets is A^-h.a.

Proof. If S C AÍF is locally-finite, then {F: F E S} (where the bar denotes

closure in A') is a point-finite, "¿F-h.a. family, and thus S is A?F-h.a. by 3.3. The same

argument applies to the second part since any open family is obviously S-h.a. (The

parenthetical remark follows from the fact that locally-finite families in metacom-

pact spaces have point-finite open expansion.)    D

The next theorem deals with the general question of when "additivity" implies

" hereditary additivity". Recall that a collection of sets % is called a base for another

collection 6E if each member of 6B is a union of members of ®.

3.5. Theorem. Let £ and § be any collections of sets, and let <5J = U %n (n E co) be

a base for §. If ÍB is t-h.a. (respectively, each ®„ is t-h.a.), then every t-additive

family is %-hereditarily t-additive (respectively, ^-hereditarily ta-additive).

Proof. We prove the parenthetical part, from which the other part will be clear.

Let S be any £-additive family, and let (G£: E E S} be a given subfamily of §.

For each 5Eiwe define LB = U {F E S: B C GE). Since, for each n E co, {LB:

B E <$„} is a subfamily of £ and $„ is £-h.a., the theorem follows upon observing

that

U ge n f = U   U lb n b.   a
Ee& new se9,

3.6. Corollary. Let (X, §) be a topological space and let *% denote the family of

closed sets in X. Let A be a descriptive operation. If % has a a-point-finite open base,

then any A§-additive family is ^-hereditarily (A§) „-additive. If % has a a-locally-finite

base of closed sets, then any A^-additive family is %-hereditarily (A0/)„-additive.
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Proof. This follows immediately from the preceding theorem in view of 3.4.    □

A descriptive operation A is said to be a-additive if A£ = (A£)0 for any lattice of

sets £; A is said to be closed if A(A£) = A£. The Souslin operation 2j (1.3(b)) is an

example of a descriptive operation which is both a-additive and closed.

3.7. Corollary. Let A be a closed and a-additive descriptive operation. Let £ and §

be any two lattices of sets such that At = A§ and § has a Atrh.a. base. Then any

point-finite Atradditive family is Atrh.a.

Proof. Let S be point-finite and A£-additive. By 3.5, S is ^-hereditarily A£-addi-

tive, and hence A(?-hereditarily A(A£)-additive by 3.1. Since AS = A£=A(A£), Sis

A£-h.a. as required.    D

Remark. We defer until §6 a discussion of the corresponding property for

nonclosed descriptive operations. See, in particular, 6.5.

3.8. Corollary. Let (X, %) be a topological space, Sthe family of closed sets in X,

and suppose £ = 2|S = 2¡CJ. Suppose further that § has an tb'-h.a. base. Then every

point-finite tbi-additive family is tbi-h.a.

(Note that we also have Tl\§ — n,löJ, and so the assumption on § is satisfied, for

example, whenever % has a a-point-finte open base or a a-locally-finite closed base.)

Proof. This follows from a double application of 3.7, taking A to be first 2j and

thennj.    D

3.9. Definition. If A is a descriptive operation and § is a lattice of sets, we define

the classes A"S recursively, for « = 0,1,..., by defining A°§ = §, and A"§ —

A(A"~X§) (n> 0). When the collection § is clear from the context, we will write A"

for A"§.

3.10. Theorem. For a given descriptive class A§, if $ is point-finite and §-heredi-

tarily AQ-additive, then S" is Am%-hereditarily Am+"§-additive for every m = 0,1,...,

for each n = 1,2,_

Proof. For n — 1, the theorem follows from 3.1 and finite induction. Assuming

the theorem holds for £"-1 (for some n > 1), then, since S is Am-hereditarily

Am+'-additive and S"~' is Am+ '-hereditarily Am+"-additive, it follows from 2.3 that

S" = H (S, S"~') is Am-hereditarily Am+"-additive for each m = 0,1,.... Hence the

theorem follows by induction.    D

3.11. Corollary. Given &" and AS as in 3.10, ift= UAm@ (m E co), then S" is

t„-h.a.

Proof. This follows from 2.6, since S" is Am§-hereditarily £-additive by 3.10.    D

3.12. Boundedly hereditarily-additive families. We write {£m} î £ to indicate £ =

U (£m: m E co} and £m C £m+, for each m. If {£m} î £, we say that a family S is

boundedly trh.a. if for each m in co there exists some « in co such that S is

£m-hereditarily £n-additive. 3.10 implies that S" is boundedly £-h.a., where {Amg} î £,

whenever S is point-finite and S-hereditarily AS-additive. We will need the following

analogs of 2.3 and 2.4.
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3.13. Lemma. Let {tm} î £. //S and DC are both boundedly t-h.a., then so is

H (S, DC). In particular, S" will be boundedly t-h.a. for each n = 1,2, —

Proof. For a given m, find n such that S is ^-hereditarily £„-additive, and then

choose p such that DC is ^-hereditarily ^-additive. It follows that D(S, DC) is

£m-hereditarily ^-additive by 2.3, and hence boundedly £-h.a. The second part of

the lemma follows by finite induction.    D

4. The theorems on o -partition and reduction.

4.1. Definitions. By a disjoint a-decomposition for a family S we mean a family of

sets (Fn: F E S, n E co} such that F = UF„ (n E co), for each E in S, and {F„:

F E S} is disjoint for each n. A point-finite a-decomposition is defined analogously.

If either term is preceded by an adjective (such as discrete, £-h.a., etc.), then it is

understood that the adjective applies to each of the indexed families (F„: F E S}. A

disjoint a-decomposition will also be called a a-partition.

4.2. Theorem (On o-partition). Let t be a lattice of sets (additionally, (£m} î £

where each tm is closed to finite intersections). If S is point-finite and (boundedly)

t-h.a., then S has a (boundedly) t~-h.a. a-partition (where {£m} î £").

Proof. It suffices to prove the second part since the first follows upon taking

£ = tm for each m.

Let S be point-finite and boundedly £-h.a. For each n = 1,2,..., we define

S[h] = { H ^:f C Sand card Sr=«).

Since &[n] C S", &[n] is boundedly £-h.a. for each n by 3.11. Thus, if we put

Dn = US[«] - US[« + 1], then {£>„: n = 1,2,...} is a subfamily of f, and

partitions U S since S is point-finite.

Now, for each F in &[n], we choose a finite collection S£ C S such that

card S£ = n and F= nS£, and we write S£ = {EFX,...,EFn}. Given F in S,

n = 1,2,..., and p — 1,..., n define

(1) En,= U {FE&[n]:EFp = E}.

We now show that: (i) [Enp: F E S} is boundedly £-h.a. (for fixed n and p); (ii)

{Dn n Enp: F E S} is disjoint and boundedly £"-h.a.; and (iii) for each F in S,

£=u;=1u;=lö„nv
To verify (i) we need only note that, for fixed n and p, each F in &[n] is associated

with exactly one of the sets Enp via (1). Now (i) follows from the fact that &[n] is

boundedly £-h.a.

That the family in (ii) is disjoint is routinely verified. But then this family must

also be boundedly £"-h.a.: For if {Enp} is £m-hereditarily £?-additive, then by

(2.8)(a) D„ n {Enp} is £m-hereditarily Dn n £~-additive; and since Dn E £; for some

r in co, and £~ is closed to finite intersections whenever £ is a lattice, it follows that

{Dn n Enp: F E S} is £m-hereditarily £ "-additive for some s.

To prove (iii), let x E E and find n so that x E Dn. Then x belongs to some F in

S[h], and F = EF for some/? in {1,...,«} (otherwise we would have x E S[« + 1],

contradicting x E £>„). Thus x E Dn n Enp. Since the reverse inclusion is clear, (iii)

follows.
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Using an obvious change in indexing, we obtain the required a-partition of S.    D

4.3. Corollary. // £ is a lattice and S is a point-finite tb'-h.a. family (relative to

some XD US), then S has a tb'-h.a. a-partition.

Proof. Since £ is a lattice, so is tbi, and (£*')" C tb'.    D

4.4. Corollary. Assume [tm] î £, where t is a lattice and tm is closed to finite

intersections for each mEu.If& is point-finite and boundedly trh.a., then (i) S has a

^„-h.a. a-partition, where ty — £", and (ii) S has a disjoint refinement of the form

U^=1DCn where each DC„ is boundedly t~-h.a.

Proof, (i) Letting Dn and Enp be defined as in the proof of 4.2, it suffices to note

that since {Dn D Enp: E E S} is £m-hereditarily £ "-additive and

£"= U {£m:mEco},

it follows that {D„ D Enp] is ^„-h.a. by 2.6.

(ii) One easily verifies that {Dn n F: F E $[n], n = 1,2,...} is the desired refine-

ment, where Dn and S[n] are defined as in the proof of 4.2.    □

4.5. Theorem (On reduction). Assume {tm} î £, where t is a lattice and tm is

closed to finite intersections for each m E co. Let ty = £". If the family S has a

refinement U {DC„: n E co} where each %n is disjoint and t-additive (respectively, each

%n is point-finite and boundedly trh.a.), then there is a <$a-(hereditarily-)additive

partition {DE: E E S} of U S, such that DE C F for each E.

Proof. Suppose DC„ is disjoint and £-additive for each n. Let H„ = UDC„ and

define D0 = H0, D„ = Hn - U"m=0Hm («=1,2,...). Since Dn E £" for each n E co,

and £ is closed to finite intersections, it easily follows that {H n Dn: H E %n,

n E co} is a ^„-additive disjoint refinement of S. We obtain the desired partition of

S by simply choosing, for each H in U{DCn:«Eco}, some EH in S such that

H C EH, and defining

DE = U   U {H n D„: H E %n and EH = E).
neu

If each DC„ is point-finite and boundedly £-h.a., we first uses 4.4 to obtain a

disjoint refinement U {DC„m: m E co} of DC„ where each DC„m is boundedly £"-h.a.,

and hence ^„-h.a. by 2.6. Hence, defining Hn and Dn as before, it follows that

{H n Dn: H E%nm, n and m in co} is a disjoint refinement of S consisting of

countably many ^„-h.a. families, and thus itself ^„-h.a. (by 2.6). The rest of the

argument follows as before.    D

4.6. Corollary. Let t be a lattice. If the family S has a refinement which is a

countable union of point-finite tb'-h.a. families, then there is a (tb')a-h.a. partition

{DE: E E S} of U S such that DE C F for each E.

Proof. This follows directly from 4.5, upon taking £m = t1" for each m, and the

fact that (£*'')" CE".    D
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5. Â>analytic spaces and measurable selections.

5.1. k-analytic spaces. For an infinite cardinal k, we recall that the Baire space of

weight k is the completely metrizable space B(k) = T(k)", where T(k) is a discrete

space of cardinal k. For t E B(k) we write t = (tQ, tx,...), t\n = (t0, tx,...,t„_x)

(for n = 1,2,...), and t | 0 = 0. We also write Bn(k) = {t \ n: t E B(k)} for each

n = 0,1,... ; thus Un(Sùj!?„(&) is the set of all finite sequences in T(k) (including the

empty one).

A subset S of a topological space A' is a k-Souslin set of X [5] if there are closed

subsets F(t | n) of X, for each t\n E Bn(k) and n E co, such that

E(h) S=    U     f]F(t\n),
teB'k) nEu

F(2k) {F(t | n): 11 n E Bn(k)} is (index) a-discrete for each n.

The &-Souslin subsets of a space X are in fact equivalent to the familiar Souslin-'iF

(= S0-Souslin) subsets [7]; their advantage lies in the additional flexibility in the

representation, particularly in "nonseparable" spaces (cf. [5 and 6]). We obtain an

equivalent definition if in F(2k) we replace "is a-discrete" by "has a discrete

a-partition" [5]. Sets satisfying only F(\k) were first introduced in [18]; we will call

these weak k-Souslin sets.

We will be primarily interested in representing spaces by means of a "fc-Souslin

stratification". Let 5 be a A>Souslin subset of X with representation {F(t | «)} and

define

Sf|„=    U     PlF(t\n)
s£/(/|n) neu

where /(/1 n) = {s E B(k): s \ n = t \ n) (the so-called "Baire intervals" of B(k)).

Then we have (cf. [5 and 7])

S(\k) S = S(0),

S(2k) S(t\n)= U {S(j|h + l):sEl(t\n)},

S(3k ) {S( 11 n ) : t \ n E Bn(k )} is index a-discrete for each n,

S(4k) H S(t\n) = H  S(t\n)    for each t E B(k)
neu neu

(the bar denoting closure in X). The family {S(t\n)} will be called a k-Souslin

stratification for S in X. Conversely, any set which has a A>Souslin stratification in X

is a A>Souslin subset of X [7]. We remark that S(3k) could be stated with "is index

a-discrete" replaced by "has a a-discrete base" (see [7]); one advantage with working

with a-discrete bases is that they avoid the reference to an indexed family. A weak

k-Souslin stratification is defined analogously by omitting 5(3^.).

We now propose to call a topological space X (weakly) k-analyticx if it has a

(weak) A:-Souslin stratification ( X(t \n): t\n E Bn(k), n E co} (relative to itself) with

'in [18] the sets we are calling "weak fc-Souslin" are called "^-analytic". For metrizable spaces our

present use of the term "fc-analytic" is equivalent with "absolutely analytic" as previously used in [18] and

[5,6,7]. The present terminology is intended to reflect more accurately the current usage of these terms.
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the additional property

for t E B(k), if X(t\n)¥= 0 for each n, then there exists

w,-, some x(t) in r\nEuX(t \ n) such that {X(t | «)}„ew is a local

network at x(t) (i.e. each neighborhood of x(t) contains

X(t\n) for some n).

In this case we say that [X(t \ n)] is a k-analytic stratification for X It can be shown

(cf. [6, Theorem 4.1]) that a F, -space X is fc-analytic if, and only if, X is the image of

B(k) under a map which is continuous and base-a-discrete (i.e., the image of each

discrete family in B(k) has a a-discrete base in X [17]). In particular, a metric space

X of weight k or less is analytic in the classical sense (i.e., A" is a Souslin set in every

metrizable embedding) if, and only if, X is ^-analytic [6]. The weak ^-analytic

F,-spaces are precisely the continuous images of B(k) (cf. [18, Theorem 19]).

5.2. Definition. A family S is said to have the complete reduction property with

respect to the family 911 if for every S' C S there is an 91t-h.a. family {ME: E E &'}

which partitions U S' and is such that ME C F for each F in S'.

5.3. Lemma (On selection). Let 91L be a family of subsets of the set X closed to

finite intersections. Let F: X -» Y be a multimap whose values are closed, nonempty

subsets of Y. Assume Y has a weak k-analytic stratification, {Y(t \ n)}, such that, for

each n E co, {F'(Y(t | «))} has the complete reduction property with respect to 9H.

Then F has a selector f such that [f'x(U): U open in Y] has a base U {9H„: n E co}

where each 91L„ is disjoint and 9H-«.cz.; in particular, f'x(U) belongs to 9Ha for each

open U C Y.

Proof. We first construct by induction on « a subfamily of 911, {M(t\n):

t\n E Bn(k), n E co}, satisfying

(i)       M(0) = X,
(ii)„     M(t | n) = U {M(s | n + 1): s E B(k) and s | n = 11 «} C F"(7(í | «)),

(iii)„    {M(t | n): 11 n E Bn(k)} is disjoint and 9tt-h.a.

Assume we have constructed the families {M(t \ m)} for m = 0,1,...,«, having

the requisite properties, and fix a given /1 n in B„(k). Since the family

{F-(Y(s\n+l)):sEl(t\n)}

has the reduction property, we can find a corresponding partition {N(s\n + 1)} of

F-(Y(t | n)) which is 9H-h.a. and satisfies N(s \ n + 1) C F~(Y(s \ n + 1)) for each s

in I(t | n); we then define

M(s\n+ l)=N(s\n+ 1) n M(t\n).

Since {N(s \n+ l):s E I(t\ «)} partitions F'(Y(t | «)), it will cover M(t | n) by (ii)„,

so (ii)n+1 is satisfied. If we do this for each t\n, then (since each of the families

{N(s\n + 1)} will be 9H-h.a.) it follows from 3.3 that (iii)„ implies (iii)n+1. The

construction is therefore complete.

Now observe that, for each x in X, there is a unique t in B(k) such that

x E M(t | n) for each n. Consequently, by (ii),, and the definition of weak /c-analytic-

ity, there exists a pointy in HY(t\n)(n Eco) such that {Y(t \ n)} is a local network

!
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at y, in Y. Accordingly, we define/: X -> Y by

f(x)=y,   iifxe P\M(t\n).
neu

We now show that f~(U) = U {M(t \n): Y(t | n) C U, n E co} for each open set

(7 C T. Thus suppose x E M(í | «) for some t\n for which Y(t \ n) C ¿7, and let

f(x) = ys. Since x then belongs to both M(t\n) and Af(s|«), we must have

t\n = s\n, and so ys E Y(s \ n) = Y(t \ n) C U; i.e., x Ef'x(U). Conversely, if

x £/"'([/) and/(x) = y,, thenyt E U and, by the property of a local network, there

is some n such that Y(t\n) C U. Since x must belong to M(t\n), the desired

inclusion (and hence equality) holds. It follows that/"'(t7) belongs to 91t0 by (iii),,.

Finally, we must show that/is a selector for F If f(x) = yt, then x E M(t \ n) C

F'(Y(t\n)) (by (ii)„), and thus we can choose a point y(n) in F(x) n Y(t\n) for

each «. But then {y(n)} converges toy,, since {Y(t | «)} is a decreasing network for

T,, and thus>>, belongs to F(x), since the latter is closed. This completes the proof of

the lemma.    D

5.4. Lemma. Let Y be a completely metrizable space of weight k or less, k an infinite

cardinal. Let p be a complete metric for Y and d any compatible metric. Then Y has a

k-analytic stratification {U(t\n): t\n E Bn(k), «Eco} such that, for each fixed

« = 1,2,...:

(i) [U(t | «)} is a locally-finite open cover of Y by sets having diameter < \/n with

respect to both metrics; and

(ii) {U(t | «)} has an open a-partition {Um(t | «)} (m E co) such that, for fixed m and

n, {Um(t | «)} is metrically-discrete in both metrics (i.e., there exists enm > 0 such that

the distance between Um(t \ n) and Um(s \ n) is > enm when t\n ¥^ s\n).

Proof. Since Y has weight k or less, if % is any locally-finite cover of Y, then

card %< k, and so we can write %= [U, : t0 E T(k)} (adjoining empty sets if

necessary), where the indexed family is locally-finite. By the paracompactness of Y,

we easily obtain for each « E co a locally-finite open cover, {[/, : tn E T(k)}, of Y

such that the diameter of each member is *£ l/(« + 1) in both metrics. Hence,

defining U(t | 0) = Y, and

u(t\n) = ulon---nutii_]     («>o),

we obtain a /c-analytic stratification of Y satisfying (i).

It is routine to verify that any locally-finite open family in a metric space has an

open discrete a-partition. In turn, any discrete open family will have an open

metrically-discrete a-partition. If {Ut} is open and discrete in Y, for each x E U, we

can find a positive integer m(x) such that both distances p(x, Ut.) and d(x, Ur)

are > l/m(x) for all t' ¥= t. Thus, defining Utm = (x E Ut: m(x) = m) (m = 1,

2,...), we obtain the desired a-partition. This completes the proof of the lemma.

D

5.5. Theorem (On selection). Let 911 be a family of subsets of the set X closed to

finite intersections. Let t be a class of sets such that every t-additive, point-finite

a-decomposable family has the (necessarily complete) reduction property with respect to
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91L. Let Y be a completely metrizable space, and let d be any compatible metric for Y.

If F: X -* Y is a multimap such that F(x) is closed, nonempty, and d-totally bounded in

Y for each x in X, and F~(U) belongs to tfor every open U C Y, then F has a selector

f such that {f~x(U): U open in Y} has a base of sets U {91tn: « E co} where each 91c„

is disjoint and 9lt-«.a.

Proof. Let p be a complete metric for Y. By 5.4 Y has a ^-analytic stratification

{U(t | «)} such that U(t \ n) = UmeJJm(t \ n), where {Um(t \ n): t | « E Bn(k)} is an

open, metrically-discrete family (for fixed m and n) relative to both metrics p and d.

By the assumptions on F it follows that each of the families {F~(Um(t\ «)):

í | « E Bn(k)} is point-finite and £-additive, and thus {F~(U(t | «))} has an £-addi-

tive point-finite a-decomposition. Since by 4.5 such families have the complete

reduction property with respect to 911, the theorem now follows from Lemma 5.3.

D

5.6. Corollary (Kuratowski and Ryll-Nardzewski [14]). Let X be a set, Y a

Polish space, and F: X -» Y a multimap with nonempty, closed values. Let tbe a lattice

of subsets of X, and put 9H = (t')a. If F "( U) belongs to tBfor every open U in Y, then

F has a selector f such that f'x(U) E 9H/or each open set U (cf. [16, Theorem 3.2]).

Proof. From the proof of 5.5 we note that, for separable Y, the condition on £

(= £0 here) need only hold for countable families; and this is the case [16, Lemma

3.1]. Moreover, every separable metrizable space has a metrizable compactification,

and hence a totally bounded compatible metric. The corollary now follows from 5.5.

D

5.7. Corollary. Let § be a lattice of subsets of X, A a a-additive descriptive

operation, and suppose § has a base of sets which is Aê-h.a. Then the conclusion of 5.5

holds whenever we have {Am§} î £ and 9H = (£")a.

Proof. This follows from 5.5 in view of 3.5, 3.11 and 4.5.    D

5.8. Definitions. If F is a multimap from a set X to a space Y, and 9H is a family

of subsets of X, we will say that F is lower-6J\Lrmeasurable provided F~(U) E 91L

whenever U is open in Y. If, in addition, F is single-valued (in which case

F'(U) — F~X(U)), then F is said to be GRrmeasurable. (Although we use the term

" measurable", the family 91L is not assumed to be a a-algebra.)

5.9. Corollary. Let X be a topological space such that § C <§a, where § is the

family of open sets and ÍF the family of closed sets in X, and suppose § has a

a-point-finite open base. Let Y be a completely metrizable space, and let d be any

compatible metric for Y. Let F: X -» Y be a multimap such that F(x) is closed,

nonempty, and d-totally bounded in Y for each x in X. Then the following hold with DC

equal to either § or ®s\

(i) If F is lower-immeasurable for some a < co,, then F has a 2.aa%-measurable

selector.

(ii) Assume MA(ux). If F is lower-Borel-measurable, then F has a 2 ¿immeasurable

selector for some a < co,.
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(iii) If F is lower-(Sous\in%)b'-measurable, then F has a (Sous\m%)b'-measurable

selector.

(iv) If F is lower-Sousiin%-measurable (resp. lower-(Souslin%)c-measurable), then

F has an G%-measurable selector where 91t = [(Souslin DC)"]a (resp. 91L =

[( Souslin DQTU-

Proof. We will give the proofs in the case when DC = %. The case when DC = ^ is

entirely analogous, since the assumptions on X also imply that X has a a-discrete

base of closed sets (because each point-finite, open family has a closed and discrete

a-partition).

(i) If {2a1S} î £, then (£")„ = ta = 2uaS by 6.7 and 6.14 of §6. The conclusion

now follows from 5.7.

(ii) First note that, if % is the family of Borel sets of X, then (cf. 6.13)

® =  U 2aS =  U 2a^.

Now it is shown in [4, Corollary 11] that under MA(ux), every point-finite iS-addi-

tive family is 2aS-additive for some a < co,. It follows that if F is lower-Borel-mea-

surable, then F is in fact lower-2aS-measurable for some a < co,, and so (i) can be

applied.

(iii) This follows directly from 5.5 in view of 3.7 and 4.6.

(iv) This is an immediate consequence of 5.7.    □

In the case that Y is not completely metrizable, one can still obtain, using similar

methods, the following

5.10. Theorem. Let (X,§) be a topological space, £ a family of sets such that

Souslin § = Souslin £, and suppose S has a Souslin trh.a. base. Let Y be a metrizable

(resp. regular) k-analytic space and d any compatible metric for Y. Suppose F: X -* Y

is a multimap such that F(x) is closed, nonempty, and d-totally bounded (resp.

compact) in Y for each x in X. If F~(H) belongs to Souslin £ whenever H is closed in

Y, then F has an GJ\Lrmeasurable selector where 9H = [(Souslin £)"]„.    □

6. Borel measurability of complex mappings and the problem of Kuratowski. In

1935 K. Kuratowski raised the following question: If/: X -» y is Borel measurable

of class a < co,, and g: X -» Z is Borel measurable of class ß < co,, where X, Y and

Z are metrizable spaces, is the complex mapping (f,g): x h> (f(x), g(xy) Borel

measurable (of some bounded class)? (See [12,8, Problem 2], where the problem is

stated in a somewhat more restrictive form.) Kuratowski [13, p. 382] showed that if Y

and Z are separable (only one need be), then (/, g) will be of class max(a, ß). In

[10] we showed that this continues to hold in the nonseparable case provided we

assume that X is absolutely analytic. (Strictly speaking, both results were proven for

the case when a = ß, but the above are easily deduced using the same methods.) We

will show below that, without any further restrictions, (/, g) will always be of class

min(a + ß, ß + a). That this bound cannot be sharpened in general (such as in the

previous cases) is consistent with the usual axioms of set theory.

6.1. Example. W. Fleissner [2] has shown that it is consistent for there to exist a

subset A' of the reals, every subset of which is a relative F„-set (a so-called Q-set),
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such that X2 does not have this property. Thus if we let Y denote the set X with the

discrete topology and define the two functions /, g: X2 -» Y by f(x, y) = x and

g(x, y) = y, for all (x, y) in X2, then f~\U) = U X X, g'[(U) = X X U, for any

U C y and it follows that both/and g are of class 1 (inverse images of open sets are

F„-sets). Now consider (f, g): X2 -* Y2. Since Y2 is discrete, (/, g) is of class 1 if,

and only if, every subset of X2 is an FCT-set, and this is not the case. ( /, g) will be of

class 2 (see 6.16 below).

6.2. hap. Our first results of this section deal with the general question of

" measurability" of complex mappings, and for this it is desirable to introduce the

following concept:

A family £ is said to have hap (the hereditary additivity property) if every

point-finite £-additive family is £n-h.a.

We have seen (3.7) that the collection of all Souslin ̂  sets of a metrizable space,

for example, is a family having hap. Of course this is not the case for the collection

of all Borel sets: if {t/a: a < co,} is an open, discrete family, and Ba C Ua is a Borel

set which is not of class < a, then U„«,„ B„ is not Borel. (I do not know if the

"extended Borel" sets, introduced in [5] for metrizable spaces, have hap.) If £

denotes the family of all Borel sets of additive class a < co, (or multiplicative class a)

in an absolutely analytic metric space, a fixed, then £ will have hap, since any

point-finite £-additive family will have a discrete a-partition [11]. W. Fleissner has

constructed a model of set theory in which the last property holds for any metrizable

space [1] (cf. also [3]). We now give an example to show that it is consistent for the

family of Fa-sets of a separable metric space not to have hap.

6.3. Example. Let X2 have the same properties as in 6.1. Let B C X2 be a

non-F0-set of X2,11,(5) = {x E X: (x, y) E B, for some.y E X), and Bx = {y E X:

(x, y) E B). For each x E X define Lx to be {x} X Bx, if x E Tlx(B), and Lx = 0

otherwise. Clearly B = UxexLx D ({x} X X), and Lx is an F0-set in X2, as the

product of two F„-sets in X. But ({x} X X: x E X] is clearly disjoint and F0-addi-

tive in X2. Hence the family of FB-sets in X2 does not have hap.

The question remains whether or not every Borel class is contained in some Borel

class having hap. We will show that this is the case, at least for metrizable spaces.

6.4. Lemma. Let {£m} î £(m E co), where 0 E £0 and tm is a a-lattice for each m.

If& is any t-additive family, then S is t-additive for some m.

Proof. Write S = (F,: i E 1} and define

t*=¡Aci:  UF,e£m),
1 ieA '

im = {A C F A' E £* for every A' C A),

for each m E co. Then {£*} î I, and each £* is a-additive.

Suppose, on the contrary, there is some A El such that A E im for every m. We

first show that for any such A the following is true:

(a) for each « E co there exist disjoint subsets of A neither of which belongs to £*.

If this were not true, then there would be some «0 such that whenever A', A" are

disjoint subsets of A either A' E i„o or A" E 3„o. Assuming this, select any A0 C A
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such that A0 E £* — £ * (possible since A & i„ ). Since we must have A — A0 E i„ ,

A0 & i„ (otherwise A E 3„ ), we may choose some Ax C A0 such that Ax E £* — £*

(for some «2 > «,). Again we must have A — Ax E i„ and ^4, £ i„ , and so the

selection process can be continued. This generates a decreasing sequence {An } of

subsets of /I such that A„ Et*    — £*, A — A„ £t, and where f«,} increases
nj nj+\ nj nj n0 L    JJ

without bound. Now let Au = n°°= XA„ , and choose m and np such that np> m > n0

with ,4,, E £*. But then

3*

since A — An     E§n for each/ = 1,2,... . This contradiction proves (a).

Applying (a) with A = I and « = 0, we obtain disjoint sets A0 and B0 contained in

/ such that neither belongs to £*. Since one of the sets A0, B0, and I — (AQU B0)

does not belong to Umewim, we can again apply (a) to this set and « = 1. Repeating

this argument we obtain a disjoint sequence [Am: m E co} of subsets of / such that

Am e £*.
To obtain a contradiction, partition co into infinitely many disjoint infinite

subsets, say {Ny. j E u), and let 6E. = {Am: m E Nj). For each / E co choose

n(j) 3s/ so that  U(£y. E £*(y), choose m(j) E Nj so that m(j) > «(/), and put

A = UjeuAm(jy Now A e £; for some h and thus A n (U6By) = ^m(i) E £*0);

but Am(j) E £*( j and w(y) > n(j). This contradiction completes the proof of the

lemma.    D

Remark. Whether 6.4 holds when S is (additionally) point-finite, and {£m} î £ is

replaced by {£a} î £ (a < co,) is not known. This is related to the problem of A. H.

Stone as to whether all Borel measurable maps are of bounded class. (See [4] for a

discussion of the problem and some consistency results.)

The following is the promised analog of 3.7 for nonclosed descriptive operations.

6.5. Theorem. Let A be a a-additive descriptive operation. Let £ and § be any two

lattices of sets such that § has a a-point-finite A£-«.a. base, and t C A"°S for some

«0 E co. Then the family

(1) DC=  U Am£=  U AmQ

mew mGu

has hap.

Proof. Since S C A£ and £ C A"°§, the second equality in (1) easily follows.

Now suppose S is a point-finite, DC-additive family. By 6.4, S will be Am'£-additive

for some w,. By 3.1 and the assumed property of §, § has a Am'£-h.a. base, and so S

will be ^-hereditarily Am'£-additive by 3.5, and thus A"S-hereditarily Am'+"£-additive

by 3.1 for each « E co. Consequently (since each Am£ C some A"§) S is A"£-heredi-

tarily DC-additive for each m E co, and hence DC„-h.a. by 2.6.    D

6.6. Lemma. For any lattice of sets, the following hold for all a, ß < co

J2a+js+,     if ß is finite and odd,

W ß{*a) "    2a+/j        otherwise.
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if ß is finite and odd,

otherwise.

if ß is finite and even,

otherwise.

if ß is finite and even,

otherwise.

The proof is a routine induction argument and so is omitted.

6.7. Corollary. For any lattice t, if A is either 2a or Tla (a < ux), then

=  ¿,wJ~-

Proof. Suppose A = 2a. By 6.6 and finite induction we have

2ma£cA",£c2ma+,£,    foreachm= 1,2,...,

and clearly

U 2maL=  U 2ma+1L.
meu meu

The proof for A = na is similar.    D

We now have the following corollary to 6.5.

6.8. Corollary. Let (X, S) be a topological space such that § has a a-point-finite

open base. Then, for each a < to,, the Borel class % = UmEu2ma§ has hap, and every

point-finite %-additive family is 2waS-«.a. Similarly, if % has a a-locally-finite base of

closed sets, then the same is true with % replaced by § (the family of closed sets in X)

provided a > 0.

Proof. The first part follows immediately from 6.5 and 6.7, and so does the

second upon observing that the assumption on § implies that § C%.    G

6.9. Definitions. Unless the contrary is stated, the notation F: F -» X will signify

only that F C F X X; i.e. F is a set-valued mapping, some of whose values may be

empty.

If £ is a family of subsets of F, and X is a topological space, we will follow [15] in

calling F: F -» X lower-t when F~(U) E £ for each set U open in X. Also, we will

say that a family "3à is a base for F: F -» X if % is a base for (F'(U): U open in Y}.

Our general result on " measurability" of complex mappings deals with maps

having a a-point-finite, £-additive base. We now state as a lemma the three primary

cases when this property is satisfied.

6.10. Lemma. Let tbe a family of subsets of the set T, X a topological space, and F:

T -> X a lower-t mapping. Then F will have a a-point-finite, t-additive base if any one

of the following hold:

(i) F is single-valued and X has a a-point-finite, open base.

(ii) F is compact-valued and X has a a-locally-finite, open base.

(iii) F has d-totally bounded values where d is a metric for the topology of X.

[^a+/3

I ilcc+ß

U Am£= IJ 2£,   and so U Am£
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Proof, (i) and (ii) are immediately clear, and (iii) follows from the observation

that X has an open base which is a countable union of ¿/-metrically-discrete families

(cf. 5.4).    D

6.11. Theorem (On complex mappings). Let £ be a family of subsets of a set T and

assume £ has hap. Let F: T -» X and G: T -» Y be lower-t mappings for arbitrary

spaces X and Y, and suppose F has a a-point-finite, tradditive base. Then the complex

map (F,G):t\-> F(t) X G(t) is lower-ta.

Moreover, if Fn: T -» Xn is lower-t and has a a-point-finite, tradditive base for each

« E co, then the complex map (F„): t v+ Tl„eaFn(t) is lower-ta and has a a-point-finite,

ta-h.a. base.

Proof. Let © = U _ <$„ be a base for F such that each %„ is point-finite and

£-additive. Let Whe a given open set in X X Y. Since W = Uie/l/ X V¡, for open

sets U¡E X and V¡ C Y, we have

(F,G)'(W)= \J F-(U,)nG-(V,).
iel

For each B E <$, define

LB= U {G-(V,):BEF-(U,),iEl}.

Then, since ÍB is a base for F,

(F,G)-(W)= U    U BnLB.
new Be6&„

Since [LB] C £ and £ has hap, {B n LB: B E %n} is £0-additive, and so

(F, G)-(W) E £„ as required.

For the general case, we first choose a base UmEu®nm for F„ such that %nm is

point-finite and £-additive for each m E co. For each «j |/> E Bp(u) (p = 1,2,...),

define

<$>(m\p) = {Bon---nBp_x:B„E®nmn,n = 0,...,p-l}.

Since each ®nm is £„-h.a., it follows from 2.5 and finite induction that %(m \p) is

£0-h.a. and point-finite. Since the set U^=1.£L,(co) is countable, it will suffice to show

that the union of the families %(m \p) is a base for (F„). But this follows from the

two obvious facts: (i) this collection is clearly a base for all sets of the form

<FB>"(£/) = F0-(<y0) n • • • nFp-_x(Up_x), where U= U0 X • • • Xl£_, X Xp X • • •,

and Un is open in Xn for « = 0,... ,p — 1 ( /> = 1,2,...); and (ii) sets of the form U

described in (i) form a base for the open sets of the product space WXn (n E co).

That completes the proof of the theorem.    □

6.12. Theorem (On product mappings). Let N denote a (nonempty) finite or

countably infinite set. For each « E N, let tn be a family of subsets of the set F„, Xn a

topological space, and let Fn: Tn-* Xn be a map having a a-point-finite, t„-additive

base. Suppose £ is a family of subsets of the product set T= WTn (n E N) having hap

and containing-n~x(tn) for each n EN, where % is the projection map from Tonto F„.
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Then the product map F: T -* II Xn, where

F(t) =   n F„MO)        (t E T),
neN

has a a-point-finite, ta-h.a. base (and hence, in particular, F is lower-ta).

Proof. For each n E N, let <$„ = Umew®nm be a base for F„, where %nm is

point-finite and £„-additive. Then it is clear that f~x(%nm) is point-finite and

£-additive for each n E N,m E u.

Letting p„ denote the projection map from ïlXn,(n' E N) onto X„, we claim that

Ume/BTV®«»,) *s a Dase f°r me maP Pn° F: T -* Xn. But this follows easily upon

observing that, for any U C X„,

(p. o F)-(U) = F-(p-x(U)) = Kx[Fn-(p-\U))],

andp~x(U) is open whenever ¿Vis.

Applying 6.11 to the maps p„° F, n EN, it follows that F = (p„° F> has a

a-point-finite £0-h.a. base.    D

For our final theorem, which addresses the question of Kuratowski discussed at

the beginning of this section, we require two lemmas.

6.13. Lemma. Let X be a topological space such that §CÎ0 (i.e., each open set is an

Fa-set in X). Then the following hold for each a < co,.

(i) If a is even, then 2aS C 2af.

(ii) If a is odd, then 2af C 2aS.

(iii) 2a§ = 2„f for all a > co.

(iv) [2„§r = naf a«¿[2af r = na§.

The routine induction arguments are omitted.

6.14. Definition. Let /: X-> Y be a single-valued map between topological

spaces and suppose X satisfies §CÏ„. We say that/is (Borel measurable) of class a

(a < co,) provided f'x(U) is of additive class a whenever t/is open in Y; i.e. (cf. 1.7)

f'x(U)E¡'Ea@'      ÍfttÍSeVen'

1    K    '       [2ß,     if a is odd.

Remark. Note that, in view of 6.13 (i), (ii), f: X -> Y is of class a if, and only if,

f'\U) E 2aS n 2af whenever U is open in Y.

6.15. Lemma. Let f: X -> Y be of class a, where X and Y are metrizable spaces. If&

is a closed, discrete family in Y, then f'x(&) is ^-hereditarily (IT^n Tiß)-additive

( where <S, § is the family of all closed, open sets in X).

Proof. Let S be closed and discrete in Y. Since Y is collection wise normal, there

is a disjoint, open family {VE: E E S} in Y such that F C BE for each F. Since

{/"'(PE)} is disjoint and (2aS n 2a'5r)-additive, and X has both a a-point-finite

base of open sets and a a-discrete base of closed sets, it follows from 3.6 that

{/"(*£)} isS-hereditarily(2a§ n 2^-additive.
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Letting #=/"'( US), we have H E UJFn Ua§ and H n F'\V3) =f'x(E) for

each F E S. Hence, applying 2.8(b), it follows that H n {f~x(VE)} = {/"'(F)} is

•^-hereditarily (IIafn nag)-additive.    D

We now have the following answer to Kuratowski's question (cf. [13, footnote,

p. 382]).

6.16. Theorem. Let f: X -> Y be of class a, g: X -* Z of class ß, where X, Y and

Z are metrizable spaces. Then the complex map ( f, g ) : X -» Y X Z is of class

min(a + ß, ß + a).

Proof. We will show that (f, g) is of class a + ß and, hence, that (g, /> is of

glass ß + a. Since (/, g> and (g, /) are equivalent modulo a homeomorphism, it

will follow that (/, g) is of class min(a + ß, ß + a). We consider two cases:

(i) ß is an even or infinite ordinal. In this case take % — Un6u®n to be a base for

y, where each <•$„ is a point-finite, open family. Let IF be a given open set in Y X Z,

and define

VB = U {F: Fis open in Z, and 5 X FC IF}

for each 5 6l Then we have

(2) W= U    U BX VB,
neu Be<3>„

and so

(3) (f,g)-\w)= U   U f-\B)ng-x(vB).
neu Be<$>„

Now each of the families/"'^,,) is point-finite and (2a<? n 2aSr)-additive. Since

X is metrizable, it follows from 3.1 and 3.6 that f'x(9>„) is 2^0-hereditarily

[2^(2aS) n 2^(2a^)]-additive. But {g-'(FB)} C 2B§, and 2/?(2a£) = Za+8t for

£ = g or f by 6.6(i). It now follows from (3) that (/, g)"'(IF) belongs to both

^•a+ß® and ^a+ß^as required.

(ii) ß is finite and odd. In this case we let %* = Ungw<$* be a base for the

topology of y, where each %* is a closed, discrete family. Let IF be a given open set

in Y X Z, and define VB just as in case (i) for each B E $*. Again we have the

relations (2) and (3), with <$* in place of \.

By 6.15, /"'($*) is ^-hereditarily (ELJFn na§)-additive, and hence 2^-heredi-

tarily [2ß(Tlß) n 2/3(IIaö)]-additive (by 3.1), since it is also disjoint for each

n E co. The proof is now completed by observing that (g"'(FB)} C 2^, and so by

(3) and (iii) of 6.6, </, g)~x(W) belongs to both 2a+^and 2a+/Jg as required.    D

The following corollary answers a question raised by A. H. Stone (see [19] for the

case when the metrizable space X is absolutely analytic and a consistency result).

6.17. Corollary. Let X be a metrizable space, (Y, +) a metrizable topological

abelian group. Suppose f, g: X -> Y are Borel measurable of some bounded class. Then

the map f + g is Borel measurable (and of bounded class).
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Proof. We can regard/ + g as the composition

</■*> h
x -> yx y^y

where « is the continuous addition map, «: (_y,, j>2) -»;>, + y2. The result now

follows immediately from 6.16, since the composition of two Borel maps is again

Borel.    D

References

1. W. G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979),

309-328.
2._, Square of Q sets, preprint.

3. W. G. Fleissner, R. W. Hansell and H. J. K. Junnila, PMEA implies position P, Topology Appl. 13

(1982), 255-262.
4. D. H. Fremlin, R. W. Hansell and H. J. K. Junnila, Borel functions of bounded class, Trans. Amer.

Math. Soc. (to appear).

5. R. W. Hansell, On the nonseparable theory of k-Borel and k-Souslin sets, General Topology Appl. 3

(1973), 161-195.
6. _, On characterizing non-separable analytic and extended Borel sets as types of continuous

images, Proc. London Math. Soc. (3) 28 (1974), 683-699.

7. _, On the representation of nonseparable analytic sets, Proc. Amer. Math. Soc. 39 (1973),

402-408.

8. _, Some consequences of (V = L) in the theory of analytic sets, Proc. Amer. Math. Soc. 80

(1980), 311-319.
9. _, Borel-additive families and Borel maps in metric spaces. General Topology and Modern

Analysis (L. F. McAuley and M. M. Rao, eds.), Academic Press, New York, 1981.

10. _, Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161

(1971), 145-169.
ll.J. Kaniewski and R. Pol, Borel measurable selections for compact-valued mappings in the non-separa-

ble case, Bull. Acad. Polon. Sei. Sér. Sei. Math. Astronom. Phys. 23 (1975), 1943-1050.
12. K. Kuratowski, Quelques problèmes concernant espaces métriques nonséparables, Fund. Math. 25

(1935), 532-545.
13._, Topology, Vol. 1, Academic Press, New York, PWN, Warsaw, 1966.

14. K. Kuratowski and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sei. Sér.

Sei. Math. Astronom. Phys. 13 (1965), 397-403.
15. K. Kuratowski and A. Mostowski, Set theory (with an introduction to descriptive set theory),

North-Holland, Amsterdam, 1976.

16. S. J. Leese, Measurable selections and uniformization of Suslin sets, Amer. J. Math. 100 (1978),

19-41.

17. E. Michael, On maps related to o-locally finite and a-discrete collections of sets, Pacific J. Math. 98

(1982), 139-152.
18. A. H. Stone, Non-separable Borel sets, Rozprawy Mat. 28 (1962).

19. _, Some problems of measurability (Topology Conf.,Blacksburg, Va., 1973), Lecture Notes in

Math., no. 375, Springer-Verlag, Berlin and New York, 1974, pp. 242-248.

Department of Mathematics, University of Connecticut, Storrs, Connecticut 06268


