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HEREDITARILY-ADDITIVE FAMILIES IN DESCRIPTIVE
SET THEORY AND BOREL MEASURABLE MULTIMAPS
BY
ROGER W. HANSELL

ABSTRACT. A family % of Borel subsets of a space X is (boundedly) Borel additive if,
for some countable ordinal a, the union of every subfamily of % is a Borel set of
class « in X. A problem which arises frequently in nonseparable descriptive set
theory is to find conditions under which this property is “hereditary” in the sense
that any selection of a Borel subset from each member of B (of uniform bounded
class) will again be a Borel additive family. Similar problems arise for other classes
of projective sets; in particular, for Souslin sets and their complements. Positive
solutions to the problem have previously been obtained by the author and others
when X is a complete metric space or under additional set-theoretic axioms.

We give here a fairly general solution to the problem, without any additional
axioms or completeness assumptions, for an abstract “descriptive class” in the
setting of generalized metric spaces (e.g., spaces with a o-point-finite open base). A
typical corollary states that any point-finite (co-) Souslin additive family in (say) a
metrizable space is hereditarily (co-) Souslin additive. (There exists a point-countable
F, additive family of subsets of the real line which has a point selection which is not
even Souslin additive.) Two structure theorems for “hereditarily additive” families
are proven, and these are used to obtain a nonseparable extension of the fundamen-
tal measurable selection theorem of Kuratowski and Ryll-Nardzewski, and a com-
plete solution to the problem of Kuratowski on the Borel measurability of complex
and product mappings for nonseparable metric spaces.

0. Introduction. In 1935 K. Kuratowski [12] raised a number of fundamental
problems regarding properties of Borel measurable maps between nonseparable
metric spaces, some of which have yet to be completely resolved. Most of the
problems have been resolved under additional assumptions, such as when the spaces
are particularly nice (e.g. absolutely analytic; see [10]), or under additional set-theo-
retic axioms (see [1 and 3]). Here we will give a solution (without any additional
assumptions) of the problem concerning the Borel measurability of the complex
mapping, x > ( f(x), g(x)), of two Borel measurable maps of bounded class (cf.
[12, 8, Problem 2]).

In the separable case, proofs generally reduce a problem to one about countable
collections of sets. Some of the properties possessed by countable families of Borel
sets are so simple and obvious that one hardly mentions them explicitly, let alone
gives them a name. We can illustrate the property we have in mind with the
following example. Let X and Y be metric spaces and let f and g be Borel maps of
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class 1 from X into Y (that is, f ~'(U) is an F, subset of X for any open subset U of
Y). Let h = (f, g) be the complex map from X into Y X Y defined by h(x) =
(f(x), g(x)). Any open set Wof Y X Y can be written in the form W= U, _, U, X V,,
where U, and V; are open in Y. Then h™'(W) = U,_,f'(U) N g~'(V,). Of course,
U, f7'(U) = f'(U,,U) and is therefore F, for any family {U} of open sets; we
could say that {f~'(U): U an open subset of Y} is F,-additive. Now if Y is
separable, then we can assume that I is countable, so that A~ (W) is F, and the map
h is also of class 1. In the nonseparable case, ] may have to be uncountable.
However, by putting a suitable restriction on the open sets U; (which will be satisfied
when Y is metrizable), we can show that for any family of F, sets B, U,_,f'(U;) N
B, will be a Gy, set. We will say in this case that { f ~'(U)): i € I} is F,-hereditarily
G;,-additive. This will lead to the conclusion that the map 4 is of Borel class 2.

The family {f~'(U,)} in the preceding example illustrates a property of families
which we call “Borel-hereditary additivity”. This property is used in an essential way
in a number of proofs in the separable case, particularly in proving the Borel
measurability of complex and product maps, and the reduction property for Borel
sets, which is the basis for proving the existence of Borel measurable selectors.

Hereditarily-additive families. In its most general form, the basic concept which we
study here is defined as follows: If 9 and £ denote arbitrary collections of sets, we
say that a family & of sets is 9N-hereditarily £-additive if whenever {M(E):
E € &) CIN, then {M(E) N E: E € &} is L-additive (i.e., the union of every
subfamily belongs of £); when 9 = £, we say that & is £-hereditarily-additive.
Families which are £-additive arise naturally as the inverse image of open families
under (lower) £-measurable (multi)maps and various fundamental problems lead
naturally to questions of when such families are C-hereditarily-additive. Since there
exists a point-countable, F,-additive family of subsets of the reals which is not even
closed-hereditarily Souslin-additive [9, Example 3.9], most of our results require that
families be point-finite and /or spaces have a o-point-finite base (= network).

In §1 the notion of an abstract descriptive operation, A, and descriptive class, AL,
are defined, the latter containing as particular cases the familiar classes of Souslin
sets, complements of Souslin sets, and Borel sets of class a generated from the family
£. In this section we also prove a fundamental result (Lemma 1.1) stating conditions
under which the set operations of intersection and union may be permuted. In §2 we
prove several lemmas which describe the general invariance properties of 9M-heredi-
tarily £-additive families under standard set-theoretic operations. In §3 we prove the
basic result of the paper (Theorem 3.1), which states that if A is any descriptive
operation and & is any point-finite 9 -hereditarily £-additive family, then & is also
A9 -hereditarily AC-additive. This is applied, in particular, to obtain the result: If
(X, 9) is a topological space such that § has a ¢-point-finite open base (e.g., if X is
metrizable), then any point-finite AS-additive family is AS-hereditarily A[(AS),]-ad-
ditive, where A is any descriptive operation (see 3.1 and 3.6). A similar result is given
for the classes A%, where % is the family of closed sets in X. Hence, if X is
metrizable, and we let =] denote the class of all Souslin sets in X, and =, the class of
Borel sets of additive class @ < w,, then it follows that every point-finite 2!-additive
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family is =}-hereditarily-additive, and every point-finite 2 -additive family is 2 -
hereditarily-additive and 24-hereditarily 2, 4, -additive (see 3.8, 6.6, and 6.8). The
short §4 is devoted to proving two fundamental theorems: The theorem “on
o-partition” states that the members of a point-finite, £-hereditarily-additive family
& can be countably decomposed, E = UE,, so that {E,: E € &} is disjoint and
£ ~-hereditarily-additive, for each n, where £~ is the family of differences of sets in £.
This is then used to prove a similar theorem “on reduction”, which is preliminary to
our results on measurable selectors. In §5 we introduce the concept of a k-analytic
space (not necessarily metrizable) as one having a particular type of “k-Souslin
stratification” (5.1), the latter having been previously used by the author in his study
of analytic sets in nonseparable metric spaces [5,6,7]. The properties of k-analytic
spaces will not be investigated here, but rather they are used as a vehicle to obtain
our results on the existence of measurable selectors. After proving a general lemma
“on selection” (5.3), we obtain a generalization of the Kuratowski and Ryll-Nard-
zewski selection theorem for multimaps whose values are d-totally bounded in some
completely metrizable space Y, where d is any compatible metric (not necessarily
complete) for Y (5.5). Specifically, the selection theorem holds when the domain
space X is metrizable and the multimap is lower-Z -measurable (the selector is then
of class wa), or lower-=}-measurable (the selector is then “measurable” with respect
to the family of all countable unions of differences of sets in =}) (see 5.9). Our final
section, §6, deals with the general question of “measurability” for complex and
product maps. Two general results (Theorems 6.11 and 6.12) are stated for lower-£
multimaps, i.e. multimaps F such that F~(U) = {x: F(x) N U # @} belongs to £
whenever U is open, where £ is a family of sets having “hap” (the hereditary
additivity property). A family £ has hap if every point-finite £-additive family is
£,-hereditarily-additive. Here we prove a technical lemma (6.4) to establish that the
family U, _ =, has hap, for any a < «,, where Z; is the family of sets of additive
class B in some (say) metrizable space. Our final theorem (6.16) addresses the
specific question of Kuratowski on the Borel measurability of the complex map
{f, g), where fis of class « and g is of class 8, and we show that, for general metric
spaces, { f, g) will always be Borel measurable of class min{a + 8, B + a}. Al-
though this bound can be sharpened to max{«, 8} in the separable case, or when the
domain space is absolutely analytic [10, Theorem 4], we use a model of Fleissner to
show that it is consistent for the above bound to be the best possible.

Throughout the paper, we use w to denote the set of all nonnegative integers. If £
is a family of sets, £, and £, denote, respectively, the family of all countable unions
and countable intersections of sets from £; Souslin £ denotes the family of sets
obtained by applying the Souslin operation to members of £ (1.3(b)). A family £ is a
lattice of sets if it is closed to finite intersections and finite unions; it is a o-lattice if,
in addition, it is closed to countable unions.

Some of the results in this paper were first announced by the author in [9)].

1. Descriptive operations and classes. Although we will not make use of the
following fundamental lemma until §3, we include it here to partially motivate our
present definition of an elementary descriptive operation. Recall that (D, =) is a
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directed set if = is a transitive relation on D with respect to which every pair of
elements of D has an upper bound.

1.1. LEMMA. Let (D, =) be a directed set and A an arbitrary indexing set. Suppose
{E,q: a € A, d € D} is a family of sets such that, for some fixed d, in D, {a € A:
x € E,, } is finite for every point x, and E,; C E,, whenever d = d’ in D, for each a.
Then
(1) U N E,=MN U E,y.

a€A4 deD dED a€A

PRrOOF. Since the left side of (1) is always contained in the right, assume that, for
each d in D, x belongs to E, , for some a, in A. For the given d; in D, let
{a(1),...,a(n)} be an enumeration of the set {a € A: x € E_, }. It follows from the
hypothesis of the lemma that each d > d, belongs to at least one of the sets
D,={(d€ D:d>dy, a;= a(i)}, i = 1,...,n. For some j, D, is cofinal in D, and
from this it easily follows that x belongs to M, ,E ;) 4o O

1.2. Operations of type (). To each triple, consisting of a set A, a directed set
(D, =), and an equivalence relation ~ on the set 4 X D, there corresponds an
operation of type (2), denoted by Z,, and defined as follows: Consider all indexed
families of sets {L,,: a € A, d € D} satisfying (i) d = d' implies L,, C L, for each
a, and (ii) L,, = L,,, whenever (a, d) ~ (a’, d’). Then the operation X associates
with each such family {L,,} the set

E:|={Lad} = U m Lad'
a€A deD
When the operation Z, is restricted to the subfamilies of a given family £ we let 2,2
denote the class of all sets so obtained. If =_£ is a lattice of sets whenever £ is, then
we say that =, is an elementary descriptive operation (of type (2)), and we call =, £ a
descriptive class (for any lattice £).

The following examples will be of primary interest.

1.3. ExaMPLES. (a) Let A = w, D = {0} (with the obvious order), and let ~ be the
discrete equivalence relation on 4 X D. Then the corresponding operation, denoted
2, is defined for all indexed families of the form {L, ,: n € w}, and

Zo{Lyo} = U L,
ncEw
For any family £ we have 2,£ =, and thus 2 is an elementary descriptive
operation (of type (2)).

(b) Let 4 = w®, D = w (with its usual order), and define (¢, n) ~ (s, m) if, and
onlyifn=m=0,orn=m>0and ¢,=s, for i =0,...,n — 1. We consider all
families {L,,: t € w*, n € w} satisfying (i) n = m implies L,, C L,,, for each ¢, and
(i) L,, = L,, whenever (¢, n) ~ (s, n). For such collections we define the operation
=! by

L,y = U ML,
€W’ NEw
One easily sees that Z!£ = Souslin £ whenever £ is a lattice, and thus =} is an
elementary descriptive operation.



BOREL MEASURABLE MULTIMAPS 729

1.4. Operations of type (II). Again, assume given a set A, a directed set (D, =),
and an equivalence relation ~ on D X A. Consider all indexed families of the form
{L,,: d € D, a € A} satisfying (i) d = d’ implies L,, C L,, for each a, and (ii)
L,, = L., whenever (d, a) ~ (d’, a’). For such families we define an operation of
type (II), denoted in this case by II,, which associates with each family {L,,} of the
given type the set

H*{Lda} = m U Lda'
dED a€A
In analogy with operations of type (Z), we define II,£ and call I1, an elementary
descriptive operation (of type (IT)) if IT £ is a lattice whenever £ is; in this case, IT,£
is called a descriptive class.

1.5. ExampLEs. (a) Let D = w (with its usual order), 4 = {0}, and let ~ be the
discrete equivalence relation on D X 4. The corresponding operation of type (II),
denoted II,, is defined for all indexed families of the form {L,,: n € w} satisfying
n = mimplies L,, C L,,,, and we have

o{L,o} = N L.

ncEw

mQ0>

Moreover, I1,£ = £, whenever £ is a lattice, so II, is an elementary descriptive
operation.

(b) Let D = w“, with the pointwise partial ordering (i.e., s =t if and only if
s, =t, for each n), let A = w, and define (s, n) ~ (¢, m) whenever n = m = 0, or
n=m>0ands; = ¢ fori =0,...,n — 1. The corresponding operation of type (II)
is denoted IT|, and is defined for all families of the form {L,,: s € w*, n € w}
satisfying (i) s =t implies L, C L,, for each n, and (ii)) L,, = L,, whenever
(s, n) ~(t, n). For any such family {L_,} we have

H}{Lsn} = m U LJ”'
SEwY n€Ew
For any lattice £ of subsets of a given set X, we now show that IT}£ = [Souslin £°]¢,
where for any family 9 of subsets of X we define M = (X — M: M € IM}. To see
this let M be any member of Souslin £¢. Then we can write

mM=U MM,

SEw” n€Ew

where {M,,} is a subfamily of £° indexed by the finite sequences of w with s |0 = &
and s|n = (s,...,8,_,) for n > 0. Furthermore, since £°is a lattice, we may assume
that M,, C M, whenever s |n = 1| n (the pointwise partial order) by [8, Lemma 2].
Now let L,, = X — M, for each s € w* and n € w, and note that s = 1 implies
L, CL,and L, =L, whenever (s, n) ~ (¢, n). Consequently,

X-M=( UL, elge.
SEwY n€w
Since the reverse inclusion is clear, it follows that IT}2 = [Souslin £¢]¢. In particular,
IT}£ is closed to countable unions and countable intersections, and thus IT} is an
elementary descriptive operation.
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1.6. General descriptive operations and classes. We define the family of descriptive
operations inductively as the smallest family %) of maps taking lattices of sets to
lattices of sets such that:

(1) D contains every elementary descriptive operation;

(2) D is closed under composition;

(3) For any increasing sequence {A,},c, in 9 (thatis, A,£ C A, L foreach
n € w and any lattice £), the operations I" and A, defined by

re = UA,,B] and AE:[UA,,B],

n€Ew n€w 8

are also in 9.

Note. Since {A,L},c,, is increasing, U, _ AL is a lattice, and thus so are I' and
AL.

For any descriptive operation A and any lattice of sets £ we will call AR a
descriptive class.

1.7. Borel sets of additive and multiplicative class a. If £ is a lattice of sets, we
define the descriptive classes 2 £ and IT £ by induction on a < w), as follows:

Eoﬁz Bo, HOB: Bs,

2:o:+l‘3 = 21(11:0({3) = [Hae]a’ 1-Iaz+IB: Hl(zae’) =[2aﬁ]8’
se=| U nae] -lU zae] , nxe=[ U zae] -luU nae] .
a<<A o a<A o a<<A & a<<A )

The equivalences for the classes corresponding to a limit ordinal A follow from the
easily proven fact that 25€ C I1,E C 2, £ whenever a < 8 <'y. One easily observes
that 2 _£ and II £ are descriptive classes in the sense of 1.6.
If X is a metrizable space, and § (respectively, %) denotes its family of open
(closed) sets, then we have
G =

a

2,8, the sets of additive class a, when a is even,
I1,8, the sets of multiplicative class a, when a is odd,

I1,%, the sets of multiplicative class a, when a is even,

a

_ {20,65 , the sets of additive class o, when a is odd,
=

using the standard classification of Borel sets [13,§30], and Borel sets of X =
u..G,=U F,

a<w, a<w,ra

2. General properties of hereditarily-additive families. Throughout this section,
unless otherwise stated, we assume that £, 91, and 9 denote arbitrary collections of
sets. If & and JC are given families of sets, we denote the family (E N H: E € b,
He X} by N(&,I), and we define &” recursively by &' =& and &" =
N6, 6" HYforn=23,....

2.1. DEFINITION. A family & of sets is said to be C-additive if whenever &’ C &,
then U&’ belongs to £; it is said to be M-hereditarily L-additive if & is L-additive
and, given any subfamily of O of the form {M;: E € &}, the family {M N E:
E € &} is L-additive. If this is the case when 9 = £, then we will say that & is
C-hereditarily-additive, and abbreviate this by writing -h.a.
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Note. In this context we will always assume that @ € 9 so that & will be
M-hereditarily £-additive if, and only if, U {M; N E} € £ for an arbitrary family
{Mg} CO.

2.2. LEMMA. If & is an M-hereditarily N-additive family for each H in 3, and K is
N-hereditarily C-additive, then {E N H: E € &y, H € 3} is M-hereditarily L-addi-
tive.

PROOF. Let {Mgy: E € by, H € 3} be a given subfamily of 9. For each H in
IC, let

Ny=U {Mz NE:E€b,).

Then Ny belongs to 9 for each H, since &by is IM-hereditarily 9-additive. Conse-
quently, since I is I-hereditarily £-additive, the set

U U (MgznENH)= U NN H
HeX E€by HeX

belongs to £ as required. O

2.3. COROLLARY. If & is ON-hereditarily 9-additive, and JC is 9-hereditarily
£-additive, then M (&, I0) is M-hereditarily L-additive.

PrOOF. This follows from 2.2 upon taking &, = & for each H in 3. O
2.4. COROLLARY. If & is £-h.a., then so is &" forn = 1,2,... .

PRrOOF. This follows from 2.3 and finite induction. O
Although the following lemma is not needed here, we include it for the sake of
completeness; the routine proof is omitted.

2.5. LEMMA. If & is O-hereditarily C-additive and IC is OM-additive, then N (&, H)
is C-additive.

Note. If I is not M-h.a. in 2.5, then N (&, H) need not be M-hereditarily
£-additive—simply take M = £ and & = { UM }.

2.6. LeMMA. If £ = U (L, : m € )} and & is £ -hereditarily £-additive for each m,
then & is £ -h.a.

PROOF. Suppose {L;: E € 6} C L,. For each Ein &, write Ly = ULg, (n € w)
where L, belongs to £, ;.. Since, for fixed n and m, the set

L,,= U {Lg,NE:E€& m(En)=m)

belongs to £ by hypothesis, the desired conclusion follows upon observings that

JUrL,ne=U UwL,. O

Ee€b n€w mew
2.7. DeriNITIONS. If £ is a family of subsets of a given set X, we define:
LC=(X—-LLeR); e ={(L-L:L L elyP=(L:LeERand X—LE
£}. Also, if Yis any set, welet YN E=(YNL: L €L}
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2.8. LEMMA. Let & be an ON-hereditarily C-additive family, where UL C X. Let Y be
a set for which Y N & is disjoint. Then

(a) If O is closed to finite intersections, then Y N & is O -hereditarily Y N £-
additive.

(b)YIfY C Ub, then Y N & is M -hereditarily Y N L -additive.

(©) If £ is a lattice, Y C U& and Y € LY, then YN & is M -hereditarily
Lbi_additive.

ProOOF. The proofs make use of the following simple set-theoretic identity: For
any family of sets {Ng: E € &},

() U(YﬂE)ﬂNE:Yﬂ[U&S—UEﬂ(X—NE).
EE€b Eeb
(a) For each E in & let M and M be given members of 9. Applying (*) to the
disjoint family Y N {E N Mg} (and with Ny = X — M}) we get

UrnEynM,n(x-Mp)]=yYn| UEnM, - U EnMEnMg],
EE€b EE€b E€b
and the latter set is easily seen to belong to Y N £-.
(b) Given {My: E € &} C O, first note that U {E N (X — Mg): E € &} will
belong to £. Applying () and the fact that Y C U&, we get

U@nE)ynM, = YO[X— UEn(x—M)|,
E€b E€b
and the latter clearly belongs to Y N £°.

(c) If {My: E € &)} CONY, then clearly U {Y N E N M,: E € &) belongs to £
(since Y does and £ is a lattice). On the other hand, since Y C U &, (*) implies that

X-UYnEnM,=(x-Y)Uu U [En(X—M)],
EEb EE&

and the latter set belongs to £ when £ is a lattice. O

3. Hereditarily-additive families and descriptive operations. The following theorem
is fundamental to most of the results which follow.

3.1. THEOREM. Let £ and 9N be any two lattices of sets, and let A be a given
descriptive operation (as defined in 1.6). If & is any point-finite I -hereditarily
R-additive family, then & is also AN -hereditarily AR-additive.

PROOF. Let & be point-finite and 9N-hereditarily £-additive. For convenience of
notation we write & = {E;: s € S} where {s € S: x € E,} is finite for each x in
Ub.

We first prove the theorem when A is an elementary descriptive operation of type
(IT), and we may assume A is the operation II, described in 1.4. Thus, for each s in
S, let
(1) M, =1L{M;} = M U M,

dE€ED u€A
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be a given member of A9N. It suffices to show that U {M, N E: s € S} belongs to
A£. To see this, we put
(2) E,= UM,NE and L,,= U M, NE,.

a€A SES
We observe that, since d = d’ implies M, C M, for each a and s (by the definition
of I1,), we have

(3) Esd - Esd' and Lda - Ld'a
whenever d = d’. Also, since {E } is point-finite, {s € S: x € E_, for some d} is

finite for each x in U&. Consequently, applying Lemma 1.1 together with (1) and
(2), we get

UM nE=U NE,=MN UE,

SES s€S deD deD seS

N u UM;aﬂES]

deD a€A [ sES

m U Lda'

deD a€A
Moreover, since & is IM-hereditarily £-additive, each L,, € £. Finally if (d, a) ~
(d’, a’), then M;, = M}, for each s, and thus from (2) we have L,, = L, . It
follows that

UMnE= UL,€eAL
SES deED a€A
as required.

The argument for elementary descriptive operations of type (2) is entirely
analogous and is omitted.

Let )* denote the family of all descriptive operations for which the theorem is
true. Then @)* contains all elementary descriptive operations, and it is routine to
check that D* is closed under composition. It thus remains to show that, for any
increasing sequence {A,: n € w} in 9D*, the operations I' and A as defined in 1.6(3)
also belong to D*.

To this end, let & be a point-finite IM-hereditarily £-additive family for given
lattices M and £, and let {M;: E € &} C AI. It is easy to see that, for each
E € b, there is an ng in w and sets Mg, in A, 9T (not necessarily distinct) for n = n
such that { Hg,},,, is decreasing and M, ., Mg, = M. If ng > 0, define Mg, = E
foreachn =0,...,n; — 1. Since & is A,,%liercditarily A, L-additive, it follows that
the set L, = U{M,, N E: E € &} belongs to AL for each n in w. By Lemma 1.1
we have

UM, nE=(1L,
Eeb nEw
proving that & is A9N-hereditarily Af-additive. Hence A belongs to D*. That I’
belongs to D* follows easily from Lemma 2.6.
It follows that 9D* contains the family ) of all descriptive operations. [J
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3.2. DEFINITIONS. By an expansion of a family of sets & we mean a family {Lg:
E € &) such that E C L for each E. By a g-expansion of & we mean a family {L,:
E € b, n € w} such that EC U, _ L. When the latter term is preceded by an
adjective (such as discrete, or 9N -hereditarily £-additive, etc.), then it is understood
that the adjective(s) applies to each of the families {Lg,: E € &).

3.3. COROLLARY. Let £ and 9N be lattices of sets, A a descriptive operation. If
& C AN and & has a point-finite M -hereditarily -additive expansion [o-expansion),
then & is AN-hereditarily AR-additive [respectively, A0 -hereditarily (AR),-additive].

PrOOF. The corollary follows from the general observation that, if & C A9 and
{Lg: E € &)} is any point-finite 9N-hereditarily £-additive family, then {L;} is
A9M-hereditarily Af-additive, by 3.1, and hence so is {E N L}, since AIN is a
lattice. O

3.4. COROLLARY. Let (X, §) be a topological space and let % denote the family of
closed sets in X. Let A be a descriptive operation. If & C A% is locally-finite, then & is
A%-h.a. If & C ASG has a point-finite open expansion (e.g., if & is locally-finite and X is
metacompact), then & is AG-h.a. In particular, every point-finite collection of open sets
is AG-h.a., and every locally-finite collection of closed sets is A%-h.a.

PROOF. If & C A is locally-finite, then {E: E € &} (where the bar denotes
closure in X) is a point-finite, %-h.a. family, and thus & is A%-h.a. by 3.3. The same
argument applies to the second part since any open family is obviously §-h.a. (The
parenthetical remark follows from the fact that locally-finite families in metacom-
pact spaces have point-finite open expansion.) []

The next theorem deals with the general question of when “additivity” implies
“hereditary additivity”. Recall that a collection of sets % is called a base for another
collection @ if each member of @ is a union of members of B.

3.5. THEOREM. Let £ and § be any collections of sets, and let B = UB, (n € w) be
a base for G. If B is L-h.a. (respectively, each B, is £-h.a.), then every L-additive
family is G-hereditarily £-additive (respectively, G-hereditarily £ -additive).

PROOF. We prove the parenthetical part, from which the other part will be clear.

Let & be any £-additive family, and let {G: E € &} be a given subfamily of &.
For each B € % we define L, = U{E € &: B C G}. Since, for each n € w, {Ly:
B € ®,} is a subfamily of £ and B, is £-h.a., the theorem follows upon observing
that

UG.nE=U U Ly,nB. O

Eeb nEw BeEB,

3.6. COROLLARY. Let (X, §) be a topological space and let ¥ denote the family of
closed sets in X. Let A be a descriptive operation. If § has a o-point-finite open base,
then any AG-additive family is G-hereditarily (AG)-additive. If G has a o-locally-finite
base of closed sets, then any A%-additive family is S-hereditarily (A% ),-additive.
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PRrOOF. This follows immediately from the preceding theorem in view of 3.4. [

A descriptive operation A is said to be o-additive if AL = (AL), for any lattice of
sets £2; A is said to be closed if A(AL) = AL. The Souslin operation =} (1.3(b)) is an
example of a descriptive operation which is both o-additive and closed.

3.7. COROLLARY. Let A be a closed and o-additive descriptive operation. Let £ and §
be any two lattices of sets such that AL = AG and § has a AL-h.a. base. Then any
point-finite AR-additive family is AC-h.a.

PROOF. Let & be point-finite and Af-additive. By 3.5, & is S-hereditarily AL-addi-
tive, and hence AG-hereditarily A(AL)-additive by 3.1. Since A§ = AL = A(AR), & is
Af-h.a. as required. O

REMARK. We defer until §6 a discussion of the corresponding property for
nonclosed descriptive operations. See, in particular, 6.5.

3.8. COROLLARY. Let (X, §) be a topological space, ¥ the family of closed sets in X,
and suppose £ = 216 = S\F. Suppose further that § has an £*-h.a. base. Then every
point-finite £*-additive family is £"-h.a.

(Note that we also have IT1}§ = I1}%, and so the assumption on § is satisfied, for
example, whenever § has a o-point-finte open base or a ¢-locally-finite closed base.)

PrOOF. This follows from a double application of 3.7, taking A to be first =} and
thenII}. O

3.9. DerINITION. If A is a descriptive operation and § is a lattice of sets, we define
the classes A"G recursively, for n =0,1,..., by defining A°G =G, and A"S =
A(A"'8) (n > 0). When the collection § is clear from the context, we will write A"
for A"G.

3.10. THEOREM. For a given descriptive class AS, if & is point-finite and G-heredi-
tarily AS-additive, then &" is A™G-hereditarily A" "G-additive for every m = 0,1,. ..,
for eachn=1,2,....

Proor. For n = 1, the theorem follows from 3.1 and finite induction. Assuming
the theorem holds for &"~' (for some n > 1), then, since & is A™-hereditarily
Am+l.additive and 6"~ ! is A" '-hereditarily A”*"-additive, it follows from 2.3 that
&" = N(&, 6" ") is A™-hereditarily A" *"-additive for each m = 0, 1,.... Hence the
theorem follows by induction. O

3.11. COROLLARY. Given &" and A§ as in 3.10, if = UA™G (m € w), then &" is
Ly-h.a.

ProoF. This follows from 2.6, since &" is A™G-hereditarily £-additive by 3.10. O

3.12. Boundedly hereditarily-additive families. We write {£,} 1 £ to indicate £ =
U{L,mew)and L, CL ., for each m. If {£ } 1L, we say that a family & is
boundedly £-h.a. if for each m in w there exists some n in  such that & is
£,,-hereditarily £ -additive. 3.10 implies that &" is boundedly £-h.a., where {A™"G} 1 £,
whenever & is point-finite and G-hereditarily AG-additive. We will need the following
analogs of 2.3 and 2.4.
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3.13. LeMMA. Ler {£,} 1 L. If & and IC are both boundedly £-h.a., then so is
N (&, IC). In particular, &" will be boundedly ©-h.a. for each n = 1,2,. ...

ProoF. For a given m, find n such that & is £, -hereditarily £ -additive, and then
choose p such that I is £ -hereditarily £ -additive. It follows that M (&, () is
£,,-hereditarily Bp-additive by 2.3, and hence boundedly £-h.a. The second part of
the lemma follows by finite induction. [

4. The theorems on o-partition and reduction.

4.1. DEFINITIONS. By a disjoint o-decomposition for a family & we mean a family of
sets {E,: E € b, n € w} such that E= UE, (n € w), for each E in &, and {E,:
E € b} is disjoint for each n. A point-finite o-decomposition is defined analogously.
If either term is preceded by an adjective (such as discrete, £-h.a., etc.), then it is
understood that the adjective applies to each of the indexed families {E,: E € &6}. A
disjoint o-decomposition will also be called a o-partition.

4.2. THEOREM (ON 0-PARTITION). Let £ be a lattice of sets (additionally, {£,} 1 £
where each £, is closed to finite intersections). If & is point-finite and (boundedly)
£-h.a., then & has a (boundedly) £-h.a. o-partition (where {£} 1 £°).

Proor. It suffices to prove the second part since the first follows upon taking
£ =g, for each m.
Let & be point-finite and boundedly £-h.a. For each n = 1,2,..., we define

b[n] = { ﬂ@:(’}C&Sandcard?f:n}.

Since &[n] C &", b[n] is boundedly £-h.a. for each n by 3.11. Thus, if we put
D,= Ub[n] — Ub[n + 1], then {D,: n=1,2,...} is a subfamily of £, and
partitions U & since & is point-finite.

Now, for each F in &[n], we choose a finite collection &, C & such that
cardb,=n and F= N&, and we write &, = {Eg,...,Eg,}. Given E in &,
n=12,...,and p = 1,...,n define

(1) E,,= U {Fe&[n]: E,,=E}.

We now show that: (i) {E,,: E € &} is boundedly £-h.a. (for fixed n and p); (ii)
{D,NE,, EE€E®&) is disjoint and boundedly £7-h.a.; and (iii) for each E in &,
E=U?,U\_D,NE,,

To verify (i) we need only note that, for fixed n and p, each F in &[n] is associated
with exactly one of the sets E,, via (1). Now (i) follows from the fact that &[n] is
boundedly £-h.a.

That the family in (ii) is disjoint is routinely verified. But then this family must
also be boundedly £7-h.a.: For if {E,,} is £, -hereditarily £ -additive, then by
(2.8)(a) D, N {E,,} is £ -hereditarily D, N £_-additive; and since D, € £ for some
rin w, and £~ is closed to finite intersections whenever £ is a lattice, it follows that
{D,NE,,: E €&} is £, -hereditarily £ -additive for some s.

To prove (iii), let x € E and find » so that x € D,. Then x belongs to some F in
&[n), and E = E, for some p in (1,...,n} (otherwise we would have x € &[n + 1],
contradicting x € D,). Thus x € D, N E, . Since the reverse inclusion is clear, (iii)
follows.
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Using an obvious change in indexing, we obtain the required o-partition of &. [

4.3. COROLLARY. If £ is a lattice and & is a point-finite £%-h.a. family (relative to
some X O UG&), then & has a Lb-h.a. o-partition.

PROOF. Since £ is a lattice, so is £, and (R*)"C R¥. O

4.4. COROLLARY. Assume {£,} 1 L, where £ is a lattice and £, is closed to finite
intersections for each m € w. If & is point-finite and boundedly C-h.a., then (i) & has a
%) -h.a. o-partition, where ) = £~, and (ii) & has a disjoint refinement of the form
U%_ I, where each ), is boundedly £™-h.a.

PROOF. (i) Letting D, and E, , be defined as in the proof of 4.2, it suffices to note
that since {D, N E,,: E € &} is £, -hereditarily £7-additive and

= U {&,:m € w},

it follows that {D, N E,,} is 9D,-h.a. by 2.6.
(ii) One easily verifies that {D, N F: F € &[n], n = 1,2,...} is the desired refine-
ment, where D, and &[n] are defined as in the proof of 4.2. O

4.5. THEOREM (ON REDUCTION). Assume {£,} 1 £, where £ is a lattice and £, is
closed to finite intersections for each m € w. Let ) = £°. If the family & has a
refinement U {3(,: n € w} where each IC, is disjoint and L-additive (respectively, each
IC, is point-finite and boundedly 2-h.a.), then there is a D (hereditarily-)additive
partition {Dg: E € &} of Ub, such that Dy, C E for each E.

PROOF. Suppose J(, is disjoint and £-additive for each n. Let H, = UJ(, and
define D, = H,, D, = H,— U’ _ H, (n=1,2,...).Since D, € £~ for each n € w,
and £ is closed to finite intersections, it easily follows that {H N D,: H € I(,,
n € w} is a 9 -additive disjoint refinement of &. We obtain the desired partition of
& by simply choosing, for each H in U {J(,: n € w}, some E, in & such that
H C E,;, and defining

D,=U U{HnD,:He XK, and E, = E}.
nEw

If each JC, is point-finite and boundedly £-h.a., we first uses 4.4 to obtain a
disjoint refinement U {J(,,: m € w} of I, where each J(,,, is boundedly £7-h.a.,
and hence 9 -h.a. by 2.6. Hence, defining H, and D, as before, it follows that
(HND,: HEYX,,, n and m in w)} is a disjoint refinement of & consisting of
countably many ) -h.a. families, and thus itself %) -h.a. (by 2.6). The rest of the
argument follows as before. [

4.6. COROLLARY. Let £ be a lattice. If the family & has a refinement which is a
countable union of point-finite L%-h.a. families, then there is a (£"),-h.a. partition
{Dg: E € &} of Ub such that Dg C E for each E.

PrOOF. This follows directly from 4.5, upon taking £, = £ for each m, and the
fact that (R*)-Cc R*. O
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5. k-analytic spaces and measurable selections.

5.1. k-analytic spaces. For an infinite cardinal k, we recall that the Baire space of
weight k is the completely metrizable space B(k) = T(k)“, where T(k) is a discrete
space of cardinal k. For t € B(k) we write t = (o, t,...), t|n = (ty, ty,... 1, )
(forn=1,2,...), and t|0 = . We also write B,(k) = {t|n: t € B(k)} for each
n=0,1,...; thus U __B,(k) is the set of all finite sequences in T(k) (including the
empty one).

A subset S of a topological space X is a k-Souslin set of X [5] if there are closed
subsets F(¢| n) of X, for each t|n € B,(k) and n € w, such that

F(1,) s= U N Fn),

tEB(k) n€Ew
F(2,) {F(t|n): t|n € B,(k)} is (index) o-discrete for each n.

The k-Souslin subsets of a space X are in fact equivalent to the familiar Souslin-%
(= ¥ -Souslin) subsets [7]; their advantage lies in the additional flexibility in the
representation, particularly in “nonseparable” spaces (cf. [S and 6]). We obtain an
equivalent definition if in F(2,) we replace “is o-discrete” by “has a discrete
o-partition” [5]. Sets satisfying only F(1,) were first introduced in [18]; we will call
these weak k-Souslin sets.

We will be primarily interested in representing spaces by means of a “k-Souslin
stratification”. Let S be a k-Souslin subset of X with representation {F(¢|n)} and
define

Syn = U M F(e|n)
sEI(fn) nEw
where I(t|n) = {s € B(k): s|n=t|n} (the so-called “Baire intervals” of B(k)).
Then we have (cf. [S and 7])

S(1,) s =5(2),

5(2,) S(tin)= U {S(s|n+ 1):5 € I(t|n)},

S(3;) {S(z|n): t|n € B,(k)} is index o-discrete for each n,
S(4;) M S(t|n) = (N S(t|n) foreacht € B(k)

(the bar denoting closure in X). The family {S(z|n)} will be called a k-Souslin
stratification for S in X. Conversely, any set which has a k-Souslin stratification in X
is a k-Souslin subset of X [7]. We remark that S(3,) could be stated with “is index
o-discrete” replaced by “has a o-discrete base” (see [7]); one advantage with working
with o-discrete bases is that they avoid the reference to an indexed family. A weak
k-Souslin stratification is defined analogously by omitting S(3, ).

We now propose to call a topological space X (weakly) k-analytic' if it has a
(weak) k-Souslin stratification { X(¢|n): t|n € B,(k), n € w} (relative to itself) with

'In [18] the sets we are calling “weak k-Souslin” are called “k-analytic”. For metrizable spaces our
present use of the term “k-analytic” is equivalent with “absolutely analytic” as previously used in [18] and
[5,6,7). The present terminology is intended to reflect more accurately the current usage of these terms.
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the additional property

for t € B(k), if X(t|n) #* @ for each n, then there exists
some x(¢) in N, X(¢|n) such that {X(¢|n)},c, is a local
network at x(¢) (i.e. each neighborhood of x(¢) contains
X(t|n) for some n).

A(k)

In this case we say that {X(¢|n)} is a k-analytic stratification for X. It can be shown
(cf. [6, Theorem 4.1]) that a T}-space X is k-analytic if, and only if, X is the image of
B(k) under a map which is continuous and base-o-discrete (i.e., the image of each
discrete family in B(k) has a o-discrete base in X [17]). In particular, a metric space
X of weight k or less is analytic in the classical sense (i.e., X is a Souslin set in every
metrizable embedding) if, and only if, X is k-analytic [6]. The weak k-analytic
T,-spaces are precisely the continuous images of B(k) (cf. [18, Theorem 19]).

5.2. DEFINITION. A family & is said to have the complete reduction property with
respect to the family O if for every &’ C & there is an 9M-h.a. family {My: E € &'}
which partitions U &’ and is such that My C E for each E in &'.

5.3. LEMMA (ON SELECTION). Let O be a family of subsets of the set X closed to
finite intersections. Let F: X —» Y be a multimap whose values are closed, nonempty
subsets of Y. Assume Y has a weak k-analytic stratification, {Y(t|n)}, such that, for
each n € w, {F~(Y(t|n))} has the complete reduction property with respect to IN.
Then F has a selector f such that { f "(U): U open in Y} has a base U {9 : n € w)
where each O, is disjoint and M-h.a.; in particular, f ~\(U) belongs to M, for each
open U C Y.

PrOOF. We first construct by induction on n a subfamily of O, {M(¢|n):
t|n € B,(k), n € w}, satisfying
O M@)=X,
(i), M(t|n)= U{M(s|n+1):s € B(k)and s|n=t|n} CF(Y(t|n)),
(i), {M(z|n):t|n € B,(k)} is disjoint and I-h.a.

Assume we have constructed the families {M(7|m)} for m =0, 1,...,n, having
the requisite properties, and fix a given ¢ | n in B,(k). Since the family

{(F(Y(s|n+1)):s€(t|n)}
has the reduction property, we can find a corresponding partition {N(s|n + 1)} of
F~(Y(¢| n)) which is 9-h.a. and satisfies N(s |n + 1) C F(Y(s|n + 1)) for each s
in I(t| n); we then define
M(s|n+1)=N(s|n+ 1) N M(t|n).

Since {N(s|n + 1): s € I(t| n)} partitions F ~(Y(t | n)), it will cover M(¢| n) by (ii),,,
so (ii),, is satisfied. If we do this for each ¢|n, then (since each of the families
{N(s|n + 1)} will be 9M-h.a.) it follows from 3.3 that (iii), implies (iii), . The
construction is therefore complete.

Now observe that, for each x in X, there is a unique ¢ in B(k) such that

X € M(t|n) for each n. Consequently, by (ii), and the definition of weak k-analytic-
ity, there exists a point y, in M Y(¢|n) (n € w) such that {¥(¢|n)} is a local network
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at y,in Y. Accordingly, we define f: X — Y by
f(x)=y, iffxe [ M(t|n).

ncEw

We now show that f (U) = U {M(¢|n): Y(¢t|n) C U, n € w} for each open set
U C Y. Thus suppose x € M(t|n) for some ¢|n for which Y(¢|n) C U, and let
f(x) =y, Since x then belongs to both M(t|n) and M(s|n), we must have
t|n=s|n, and so y, € Y(s|n) = Y(t|n) C U; ie, x € fY(U). Conversely, if
x € f~Y(U) and f(x) = y,, then y, € U and, by the property of a local network, there
is some n such that Y(z|n) C U. Since x must belong to M(t|n), the desired
inclusion (and hence equality) holds. It follows that f ~'(U) belongs to I by (iii),,.

Finally, we must show that f is a selector for F. If f(x) = y,, then x € M(¢|n) C
F~(Y(t|n)) (by (ii),), and thus we can choose a point y(n) in F(x) N Y(¢|n) for
each n. But then {y(n)} converges to y,, since {Y(z|n)} is a decreasing network for
¥, and thus y, belongs to F(x), since the latter is closed. This completes the proof of
the lemma. O

5.4. LEMMA. Let Y be a completely metrizable space of weight k or less, k an infinite
cardinal. Let p be a complete metric for Y and d any compatible metric. Then Y has a
k-analytic stratification {U(t|n): t|n € B(k), n € w} such that, for each fixed
n=12,...:

(1) {U(t| n)} is a locally-finite open cover of Y by sets having diameter < 1/n with
respect to both metrics; and

(ii) {U(t| n)} has an open o-partition {U,(t|n)} (m € w) such that, for fixed m and
n, {U,(t|n)} is metrically-discrete in both metrics (i.e., there exists ¢,,, > 0 such that
the distance between U, (t|n) and U,(s|n) is = ¢,,, when t|n # s|n).

PROOF. Since Y has weight k or less, if 9 is any locally-finite cover of Y, then
card U < k, and so we can write U = {U,: t, € T(k)} (adjoining empty sets if
necessary), where the indexed family is locally-finite. By the paracompactness of Y,
we easily obtain for each n € w a locally-finite open cover, {U, : ¢, € T(k)}, of Y
such that the diameter of each member is<1/(n + 1) in both metrics. Hence,
defining U(¢|0) = Y, and

Utln) = U, N0, (n>0),

we obtain a k-analytic stratification of Y satisfying (i).

It is routine to verify that any locally-finite open family in a metric space has an
open discrete o-partition. In turn, any discrete open family will have an open
metrically-discrete o-partition. If {U,} is open and discrete in Y, for each x € U, we
can find a positive integer m(x) such that both distances p(x, U,) and d(x, U, )
are > 1/m(x) for all ¢’ % ¢t. Thus, defining U,,, = {x € U: m(x) =m} (m =1,
2,...), we obtain the desired o-partition. This completes the proof of the lemma.
|

5.5. THEOREM (ON SELECTION). Let O be a family of subsets of the set X closed to
finite intersections. Let £ be a class of sets such that every £-additive, point-finite
o-decomposable family has the (necessarily complete) reduction property with respect to
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. Let Y be a completely metrizable space, and let d be any compatible metric for Y.
If F: X - Y is a multimap such that F(x) is closed, nonempty, and d-totally bounded in
Y for each x in X, and F~(U) belongs to £ for every open U C Y, then F has a selector
fsuch that { f \(U): U open in Y} has a base of sets U {IN,: n € w} where each O,
is disjoint and OM-h.a.

PROOF. Let p be a complete metric for Y. By 5.4 Y has a k-analytic stratification
{U(t|n)} such that U(t|n) = U, . U,(t|n), where {U,(t|n): t|n € B,(k)} is an
open, metrically-discrete family (for fixed m and n) relative to both metrics p and d.

By the assumptions on F it follows that each of the families {F (U, (t|n)):
t|n € B,(k)} is point-finite and £-additive, and thus {F~(U(¢|n))} has an £-addi-
tive point-finite o-decomposition. Since by 4.5 such families have the complete
reduction property with respect to 91, the theorem now follows from Lemma 5.3.
O

5.6. COROLLARY (KURATOWSKI AND RYLL-NARDZEWSKI [14]). Let X be a set, Y a
Polish space, and F: X — Y a multimap with nonempty, closed values. Let £ be a lattice
of subsets of X, and put I = (£7),. If F~(U) belongs to £ for every open U in Y, then
F has a selector f such that f "\(U) € O for each open set U (cf. [16, Theorem 3.2)).

PROOF. From the proof of 5.5 we note that, for separable Y, the condition on £
(= £, here) need only hold for countable families; and this is the case [16, Lemma
3.1]. Moreover, every separable metrizable space has a metrizable compactification,
and hence a totally bounded compatible metric. The corollary now follows from 5.5.
O

5.7. COROLLARY. Let § be a lattice of subsets of X, A a o-additive descriptive
operation, and suppose § has a base of sets which is AG-h.a. Then the conclusion of 5.5
holds whenever we have {A™8} 1 £ and O = (£7),.

Proor. This follows from 5.5 in view of 3.5, 3.11 and 4.5. O

5.8. DEFINITIONS. If F is a multimap from a set X to a space Y, and 9N is a family
of subsets of X, we will say that F is lower-9l-measurable provided F~(U) € M
whenever U is open in Y. If, in addition, F is single-valued (in which case
F~(U)= F~\(U)), then F is said to be M-measurable. (Although we use the term
“measurable”, the family 91 is not assumed to be a o-algebra.)

5.9. COROLLARY. Let X be a topological space such that G C %, where § is the
family of open sets and % the family of closed sets in X, and suppose G has a
o-point-finite open base. Let Y be a completely metrizable space, and let d be any
compatible metric for Y. Let F: X - Y be a multimap such that F(x) is closed,
nonempty, and d-totally bounded in Y for each x in X. Then the following hold with 3
equal to either § or F:

(i) If F is lower-Z J(-measurable for some a < w,, then F has a =, J(-measurable
selector.

(ii) Assume MA(w,). If F is lower-Borel-measurable, then F has a Z J(-measurable
selector for some a < w,.
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(iii) If F is lower-(Souslin JC)?"-measurable, then F has a (Souslin IC)*-measurable
selector.

(iv) If F is lower-Souslin K-measurable (resp. lower-(Souslin 3C)*-measurable), then
F has an W-measurable selector where 9N = [(Souslin ()], (resp. M =
[(Souslin H)°)7],).

ProOF. We will give the proofs in the case when JC = G. The case when 3 = ¥ is
entirely analogous, since the assumptions on X also imply that X has a o-discrete
base of closed sets (because each point-finite, open family has a closed and discrete
o-partition).

() If (=76} 1 £, then (1), = £, = Z_,6 by 6.7 and 6.14 of §6. The conclusion
now follows from 5.7.

(ii) First note that, if % is the family of Borel sets of X, then (cf. 6.13)

a=Uz8= U 5.
a<w, a<w,

Now it is shown in [4, Corollary 11] that under MA(w,), every point-finite $-addi-
tive family is 2, 6-additive for some a < w,. It follows that if F is lower-Borel-mea-
surable, then F is in fact lower-2 §-measurable for some a < w,, and so (i) can be
applied.

(iii) This follows directly from 5.5 in view of 3.7 and 4.6.

(iv) This is an immediate consequence of 5.7. [

In the case that Y is not completely metrizable, one can still obtain, using similar
methods, the following

5.10. THEOREM. Let (X, §) be a topological space, £ a family of sets such that
Souslin § = Souslin £, and suppose § has a Souslin £-h.a. base. Let Y be a metrizable
(resp. regular) k-analytic space and d any compatible metric for Y. Suppose F: X - Y
is a multimap such that F(x) is closed, nonempty, and d-totally bounded (resp.
compact) in Y for each x in X. If F~(H) belongs to Souslin £ whenever H is closed in
Y, then F has an OW-measurable selector where ON = [(Souslin £)7],. O

6. Borel measurability of complex mappings and the problem of Kuratowski. In
1935 K. Kuratowski raised the following question: If f: X — Y is Borel measurable
of class @ < w,, and g: X — Z is Borel measurable of class 8 < w,, where X, Y and
Z are metrizable spaces, is the complex mapping { f, g): x + ( f(x), g(x)) Borel
measurable (of some bounded class)? (See [12, 8, Problem 2], where the problem is
stated in a somewhat more restrictive form.) Kuratowski [13, p. 382] showed that if Y
and Z are separable (only one need be), then { f, g) will be of class max(e, 8). In
[10] we showed that this continues to hold in the nonseparable case provided we
assume that X is absolutely analytic. (Strictly speaking, both results were proven for
the case when a = f3, but the above are easily deduced using the same methods.) We
will show below that, without any further restrictions, { f, g) will always be of class
min(a + B8, 8 + a). That this bound cannot be sharpened in general (such as in the
previous cases) is consistent with the usual axioms of set theory.

6.1. ExaMpLE. W. Fleissner [2] has shown that it is consistent for there to exist a
subset X of the reals, every subset of which is a relative F,-set (a so-called Q-set),
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such that X2 does not have this property. Thus if we let Y denote the set X with the
discrete topology and define the two functions f, g: X* > Y by f(x, y) = x and
g(x, y) =y, for all (x, y) in X2, then f"\(U) = U X X, g7(U) = X X U, for any
U C Y, and it follows that both f and g are of class 1 (inverse images of open sets are
F,-sets). Now consider ( f, g): X*> - Y2 Since Y? is discrete,  f, g) is of class 1 if,
and only if, every subset of X? is an F,-set, and this is not the case. { f, g) will be of
class 2 (see 6.16 below).

6.2. hap. Our first results of this section deal with the general question of
“measurability” of complex mappings, and for this it is desirable to introduce the
following concept:

A family £ is said to have hap (the hereditary additivity property) if every
point-finite £-additive family is £_-h.a.

We have seen (3.7) that the collection of all Souslin % sets of a metrizable space,
for example, is a family having hap. Of course this is not the case for the collection
of all Borel sets: if {U,: a < w,} is an open, discrete family, and B, C U, is a Borel
set which is not of class < a, then U, <, B, is not Borel. (I do not know if the
“extended Borel” sets, introduced in [5] for metrizable spaces, have hap.) If £
denotes the family of all Borel sets of additive class @ < w, (or multiplicative class a)
in an absolutely analytic metric space, a fixed, then £ will have hap, since any
point-finite £-additive family will have a discrete o-partition [11]). W. Fleissner has
constructed a model of set theory in which the last property holds for any metrizable
space [1] (cf. also [3]). We now give an example to show that it is consistent for the
family of F,-sets of a separable metric space not to have hap.

6.3. EXAMPLE. Let X2 have the same properties as in 6.1. Let B C X? be a
non-F,-set of X2, I1(B) = {x € X: (x, y) € B,forsomey € X},and B, = {y € X:
(x, y) € B}. For each x € X define L, to be {x} X B,,if x €II|(B),and L, = &
otherwise. Clearly B= U__,L N ({x} X X), and L, is an F,-set in X7, as the
product of two F,-sets in X. But {{x} X X: x € X} is clearly disjoint and F,-addi-
tive in X2. Hence the family of F,-sets in X? does not have hap.

The question remains whether or not every Borel class is contained in some Borel
class having hap. We will show that this is the case, at least for metrizable spaces.

6.4. LEMMA. Let {£ } 1 £(m € w), where @ € £, and £, is a o-lattice for each m.
If & is any C-additive family, then & is £, -additive for some m.

PROOF. Write & = {E;: i € I} and define

px = {A cr: U E,Eﬁm},
ica
9, ={ACI:A €k forevery A’ C A},

for each m € w. Then {£*} 1 I, and each £} is o-additive.

Suppose, on the contrary, there is some A C I such that 4 & 9, for every m. We
first show that for any such A the following is true:

(a) for each n € w there exist disjoint subsets of 4 neither of which belongs to £*.

If this were not true, then there would be some n, such that whenever A’, 4" are
disjoint subsets of A either ' € 9, or A” € 4, . Assuming this, select any 4, C A
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such that 4, € £ — L* (possible since 4 & §, ). Since we must have 4 — 4, € 4, ,
Ay &9, (otherwise 4 € 9, ), we may choose some 4, C 4, such that 4, € £¥ — £*
(for some n, >n,). Again we must have 4 — 4, €9, and 4, €5, , and so the
selection process can be continued. This generates a decreasmg sequence {4, } of
subsets of A such that 4, €R¥ —£¥ 4—4, €9, and where {n} increases
without bound. Now let A = ﬂ°°_ ny and choose m and n,such thatn,>m > n,
with 4, € £*. But then

e}
4, =4,U U (4, -4, )€t
i=p
sinced — A4, € 9, ,foreachj=1,2,... . This contradiction proves (a).
Applying (a) with A =Tandn =0, we obtam disjoint sets A, and B, contained in
I such that neither belongs to £%. Since one of the sets A, By, and I — (4, U By)
does not belong to U, _ 9,., we can again apply (a) to this set and n = 1. Repeating
this argument we obtain a disjoint sequence {4,,: m € w} of subsets of I such that
A, &LX.
To obtain a contradiction, partition w into infinitely many disjoint infinite
subsets, say {N;: j € w}, and let & = {4,: m € N;}. For each j € w choose
n(j)=j so that U@ € £% ), choose m(j) € N, so that m(j) > n(j), and put

n(j)’
A=U_A Now 4 € £ for some j, and thus 4 N (U@Q)) = 4,,,,) € L}

but Am(l ;: & B,(,,j()j) and m(j) > n(j). This contradiction completes the proof of ;fl)e
lemma. O

REMARK. Whether 6.4 holds when & is (additionally) point-finite, and {£,} 1 £ is
replaced by {£,} 1 £ (a« < w,) is not known. This is related to the problem of A. H.
Stone as to whether all Borel measurable maps are of bounded class. (See [4] for a
discussion of the problem and some consistency results.)

The following is the promised analog of 3.7 for nonclosed descriptive operations.

6.5. THEOREM. Let A be a o-additive descriptive operation. Let £ and G be any two
lattices of sets such that § has a o-point-finite AL-h.a. base, and £ C A™§ for some
no € w. Then the family

(1) %= U a"e= U a"g

mew mew

has hap.

PROOF. Since § C Af and £ C A"6, the second equality in (1) easily follows.

Now suppose & is a point-finite, J(-additive family. By 6.4, & will be A™£-additive
for some m,. By 3.1 and the assumed property of §, § has a A™£-h.a. base, and so &
will be G-hereditarily A™ (-additive by 3.5, and thus A"S-hereditarily A™ *"{-additive
by 3.1 for each n € w. Consequently (since each A”f C some A*§) & is A*R-heredi-
tarily J(-additive for each m € w, and hence J(-h.a. by 2.6. O

6.6. LEMMA. For any lattice of sets, the following hold for all a, B < w,.

) 2, if B is finite and odd,
(i) 2(2,) = {2 o

atB otherwise.
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. I, p+1 if Bis finite and odd,
(if) I,(1L,) = {an otherwise.
2, if B is finite and even,
(l.ll) ZB(Ha) = > ek :
atp otherwise.

I, i p+1 if Bis finite and even,

(IV) H,B(Ea) = {H

atB otherwise.

The proof is a routine induction argument and so is omitted.

6.7. COROLLARY. For any lattice 2, if A is either 2, or I1 , (a < w,), then

Uae=UZ=,,»L, adso | U A'”B] =32,.L.

mew mew mew
PROOF. Suppose A = 2. By 6.6 and finite induction we have
ZLcAcs, L, foreachm=1,2,...,

and clearly
U 2mo:B: U 2moz-i'lﬁ'

mew mew
The proof for A = II , is similar. O
We now have the following corollary to 6.5.

6.8. COROLLARY. Let (X, §) be a topological space such that 8 has a o-point-finite
open base. Then, for each a < w,, the Borel class }0 = U, _ 3, S has hap, and every
point-finite J-additive family is 2 ,,5-h.a. Similarly, if 8 has a o-locally-finite base of
closed sets, then the same is true with G replaced by % (the family of closed sets in X)
provided a > 0.

ProoF. The first part follows immediately from 6.5 and 6.7, and so does the
second upon observing that the assumption on § implies that§ C 9,. O

6.9. DEFINITIONS. Unless the contrary is stated, the notation F: T — X will signify
only that F C T X X; i.e. Fis a set-valued mapping, some of whose values may be
empty.

If £ is a family of subsets of 7, and X is a topological space, we will follow [15] in
calling F: T - X lower-£ when F~(U) € £ for each set U open in X. Also, we will
say that a family % is a base for F: T — X if B is a base for {F~(U): U open in Y}.

Our general result on “measurability” of complex mappings deals with maps
having a o-point-finite, £-additive base. We now state as a lemma the three primary
cases when this property is satisfied.

6.10. LEMMA. Let £ be a family of subsets of the set T, X a topological space, and F:
T — X a lower-£ mapping. Then F will have a o-point-finite, C-additive base if any one
of the following hold:

(i) F is single-valued and X has a o-point-finite, open base.
(ii) F is compact-valued and X has a o-locally-finite, open base.
(iii) F has d-totally bounded values where d is a metric for the topology of X.
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PROOF. (i) and (ii) are immediately clear, and (iii) follows from the observation
that X has an open base which is a countable union of d-metrically-discrete families
(cf. 54). O

6.11. THEOREM (ON COMPLEX MAPPINGS). Let £ be a family of subsets of a set T and
assume £ has hap. Let F: T - X and G: T - Y be lower-C mappings for arbitrary
spaces X and Y, and suppose F has a o-point-finite, -additive base. Then the complex
map (F,G): t v F(t) X G(t) is lower-£,.

Moreover, if F,: T - X, is lower- and has a o-point-finite, 2-additive base for each
n € w, then the complex map { F,): t v 11, F,(t) is lower-£  and has a o-point-finite,
L,-h.a. base.

PrROOF. Let B = U, _ B, be a base for F such that each %, is point-finite and
£-additive. Let W be a given open set in X X Y. Since W = U,,U; X V;, for open
sets U; C X and ¥, C Y, we have
(F,GYy (W)= U F(U) N G-(¥,).
i€l
For each B € %, define

Ly=U {G(V):BCF(U),i€l}.
Then, since P is a base for F,

(F,éY(w)=U U BnL,.
n€w BED,
Since {Lgz} C£ and £ has hap, {BN Ly BE®R,} is £ -additive, and so
(F,G)Y (W) € £, as required.
For the general case, we first choose a base U, . ®,, for F, such that %, , is

point-finite and £-additive for each m € w. For each m|p € B,(w) (p = 1,2,...),
define

B(m|p)={By,N---NB,_:B,€DB,, ,n=0,....p— 1}.

Since each 9,,, is £,-h.a., it follows from 2.5 and finite induction that B(m | p) is
£,-h.a. and point-finite. Since the set U‘l’f:,Bp(w) is countable, it will suffice to show
that the union of the families ®(m | p) is a base for ( F, ). But this follows from the
two obvious facts: (i) this collection is clearly a base for all sets of the form
() (U)=FUy) N NE_(U,_,), where U= Uy X -+ XU,y X X, X -,
and U, is openin X, forn=0,...,p — 1 (p = 1,2,...); and (i) sets of the form U
described in (i) form a base for the open sets of the product space [1X, (n € w).
That completes the proof of the theorem. O

6.12. THEOREM (ON PRODUCT MAPPINGS). Let N denote a (nonempty) finite or
countably infinite set. For each n € N, let £ be a family of subsets of the set T,,, X, a
topological space, and let F,: T, — X, be a map having a o-point-finite, £ -additive
base. Suppose C is a family of subsets of the product set T = IIT, (n € N) having hap
and containing m7\(£,) for each n € N, where m, is the projection map from T onto T,.
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Then the product map F: T — [l X,,, where
F(t)= [[ E(7(1)) (teT),

neN

has a o-point-finite, £ -h.a. base (and hence, in particular, F is lower-£ ).

Proor. For each n €N, let B, = U, . B, . be a base for F,, where B,, is
point-finite and £ -additive. Then it is clear that = '(%,,) is point-finite and
f-additive for eachn € N, m € w.

Letting p, denote the projection map from [ X,.(n’ € N) onto X, we claim that
U, .7 (%,,) is a base for the map p, o F: T - X,. But this follows easily upon

meEw'n

observing that, for any U C X,,,
(.o F)(U) = F(p;'(U)) = = [E- (27 (V)]

and p;'(U) is open whenever U is.

Applying 6.11 to the maps p, o F, n € N, it follows that F = (p,o F) has a
o-point-finite £ -h.a. base. [0

For our final theorem, which addresses the question of Kuratowski discussed at
the beginning of this section, we require two lemmas.

6.13. LEMMA. Let X be a topological space such that § C F, (i.e., each open set is an

F,-set in X). Then the following hold for each a < w,.
(i) If a is even, then = ,§ C = 9.

(i) If a is odd, then £ 5 C = 6.

(i) 2,8 = Z F for all a = w.

W) [28]°=10Fand[2,F]° =116

The routine induction arguments are omitted.

6.14. DEFINITION. Let f: X —» Y be a single-valued map between topological

spaces and suppose X satisfies § C %_. We say that f is (Borel measurable) of class «
(@ < w,) provided f }(U) is of additive class « whenever U is open in Y; i.e. (cf. 1.7)

F(U) e 2.8, ifaiseven,
2%, ifaisodd.
ReMARK. Note that, in view of 6.13 (i), (ii), f: X - Y is of class a if, and only if,
f7'(U) € £,8 N 2,9 whenever U is open in Y.

6.15. LEMMA. Let f: X — Y be of class a, where X and Y are metrizable spaces. If &
is a closed, discrete family in Y, then f (&) is S-hereditarily (I1 F N 11 8)-additive
(where ¥, § is the family of all closed, open sets in X).

ProOF. Let & be closed and discrete in Y. Since Y is collectionwise normal, there
is a disjoint, open family {V;: E € &} in Y such that E C B, for each E. Since
{f~'(Vg))} is disjoint and (2,8 N =,F )-additive, and X has both a ¢-point-finite
base of open sets and a o-discrete base of closed sets, it follows from 3.6 that
{f~(Vg)} is G-hereditarily (2,6 N = 9 )-additive.
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Letting H = f "'(U&), we have H € II.F N II,§ and H N F~'(V;) = f"(E) for
each E € &. Hence, applying 2.8(b), it follows that H N {f~\(V)} = {f(E)} is
%-hereditarily (IT1 % N I1,8)-additive. O

We now have the following answer to Kuratowski’s question (cf. [13, footnote,
p. 382)).

6.16. THEOREM. Let f: X —» Y be of class a, g: X — Z of class 3, where X, Y and
Z are metrizable spaces. Then the complex map {f,g): X - Y X Z is of class
min(a + 8, 8 + a).

ProoF. We will show that { f, g is of class @ + B and, hence, that (g, f) is of
glass B + a. Since ( f, g) and (g, f) are equivalent modulo a homeomorphism, it
will follow that { f, g) is of class min(a + B8, B + «). We consider two cases:

(i) B is an even or infinite ordinal. In this case take B = U, _ B, to be a base for
Y, where each 9, is a point-finite, open family. Let W be a given open set in Y X Z,
and define

Vs= U {V: Visopenin Z,and B X V C W}

for each B € 9. Then we have

(2) w=U U BxV,,
n€w BED,
and so
(3) (fr8)'w)=U LgB f(B) N g™\ (V).

Now each of the families f (%) is point-finite and (2,8 N 2 ¥ )-additive. Since
X is metrizable, it follows from 3.1 and 3.6 that f~'(%®,) is Z6-hereditarily
[2p(2,8) N Zp(Z,9 )l-additive. But {87'(Vp)} C 246, and Zp(2,L) = 2, 4L for
£ =8 or F by 6.6(i). It now follows from (3) that { f, g)~'(W) belongs to both
2,+p8 and 2, ;% as required.

(i) B is finite and odd. In this case we let B* = U _ B* be a base for the
topology of Y, where each %? is a closed, discrete family. Let W be a given open set
in Y X Z, and define ¥} just as in case (i) for each B € %*. Again we have the
relations (2) and (3), with %®* in place of %,

By 6.15, f~(B¥) is F-hereditarily (I % N II,§)-additive, and hence Z;%-heredi-
tarily [Z5(I1,5) N Zp(I1,9)]-additive (by 3.1), since it is also disjoint for each
n € w. The proof is now completed by observing that {g~'(V3)} C 24%, and so by
(3) and (iii) of 6.6, { f, g) ~'(W) belongs to both =, , s;F and =, ;9 as required. [

The following corollary answers a question raised by A. H. Stone (see [19] for the
case when the metrizable space X is absolutely analytic and a consistency result).

6.17. COROLLARY. Let X be a metrizable space, (Y, +) a metrizable topological
abelian group. Suppose f, g: X — Y are Borel measurable of some bounded class. Then
the map f + g is Borel measurable (and of bounded class).
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PROOF. We can regard f + g as the composition

f h
xPyxyly

where 4 is the continuous addition map, h: (y,, »,) =y, + »,. The result now
follows immediately from 6.16, since the composition of two Borel maps is again
Borel. [
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