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FULLY NONLINEAR, UNIFORMLY ELLIPTIC EQUATIONS

UNDER NATURAL STRUCTURE CONDITIONS

BY

NEIL S. TRUDINGER

Abstract. We derive first and second derivative estimates for classical solutions of

fully nonlinear, uniformly elliptic equations which are subject to natural structure

conditions analogous to those proposed and treated by Ladyzhenskaya and Ural'tseva

for quasilinear equations. As an application we extend recent work of Evans and

Lions on the Bellman equation for families of linear operators to families of

quasilinear operators.

1. Introduction. We are concerned in this paper with second order, nonlinear

partial differential equations of the general form

(1.1) F[u] = F(x, u, Du, D2u) = 0

in open subsets Q of Euclidean n space R". Here F is a real function on T — ß X R

X R" X §", where S" denotes the «(« + l)/2-dimensional space of real symmetric

« X « matrices. The function u is assumed twice differentiable in Ü in an appropriate

sense with Du = [D¡u], D2u = [Dtju] denoting, respectively, the gradient and Hes-

sian of u.

The operator F and the equation (1) are called elliptic in ß if

(1.2) F(x,z, p,r)<F(x,z, p,r + y)

for all (x, z, p, r ) E T and 77 > 0, ^ 0, E S". If % is a subset of ß X R X R", F and

(1) are called uniformly elliptic on % if there exists a constant /x and positive

functions X, A on T such that

(1.3) Xtr 7j < F(x,z,p,r + tj) - F(x,z,p,r) < A trrj,       A/X<¡i,

for all (x, z,^,r)Ë%X§" and 7] > 0, E §". When F is differentiable with respect

to r, ellipticity of F is equivalent to positivity of the matrix

Fr=[F,7]=[oF/ÔV,7]

on T, while the uniform ellipticity condition (1.3) is equivalent to the usual condition

(1-4) A|||2<F^<A|£|,        A/X<n,

for all I E R", (x, z, p) E %, r E §". In (1.4) and throughout this paper we adopt

the standard summation convention that repeated indices indicate summation from

1 to «. We also observe that the uniform ellipticity of F on % implies that F is

Lipschitz continuous with respect to r on % X S". To see this we write, for any
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752 N. S. TRUDINGER

matrix tjES", tj = tj+—tj  where tj+ and tj   are nonnegative. Then using (1.3) we

have

(1.5) \F(x, z, p, r + tj) - F(x, z, p, r)\

< Atr(T)+ +r]~) < {n A | tj |< ¡x,{nX | tj | ,

provided tj* are chosen appropriately.

Quasilinear equations, that is, those for which the function F is linear in the

variable r, have been extensively studied in the literature, the basic theory being

described for example in the monographs [5,8]. Fully nonlinear uniformly elliptic

equations for which the function F is convex or concave with respect to all the

variables z, p and r have been treated recently by several authors, notably Evans and

Friedman [3], P. L. Lions [11] and Evans [1,2] in conjunction with the Bellman

equation of stochastic control theory. The main purpose of the present work is the

derivation of first and second derivative estimates for solutions of equation (1) where

the convexity of concavity of F with respect to z and p is replaced by natural

structure conditions analogous to the natural conditions proposed by Ladyzhenskaya

and Ural'tseva [8] for quasilinear uniformly elliptic equations. These conditions are

formulated explicitly in the ensuing sections, but roughly stated they require that the

ratio F/X grows at most quadratically in | p | for large | p | and behaves under

differentiation similarly to a polynomial in r and p with coefficients depending on x

and z. The interior second derivative estimates here should also be compared with

those of Ivanov [6] who assumes smallness conditions instead of concavity.

As an application of our estimates we treat the Dirichlet problem for the Bellman

equation for a family of quasilinear equations generalizing the previous work of

Lions [11] and Evans [2] for families of linear equations. However, unlike the linear

case the genuine quasilinear case has no apparent relevance to stochastic control

theory. We also present a simplified version of the second derivative Holder

estimates of Evans [1,2] along the Unes proposed by the author [14]. The second

derivative bounds are established in §6 in conjunction with their Holder estimates by

a technique based on interpolation. Similar bounds could alternatively be derived

independently utilizing key features from [3,4,6 and 11], although one would

nevertheless still require a modulus of continuity estimate for first derivatives such as

provided in §5.

2. Preliminaries. As usual we denote by Ck(Q,), (Ck(Q)) the linear space of

functions k times differentiable in ß whose kih order derivatives are continuous

(uniformly continuous) in ß. For a E (0,1], the Holder spaces Ck'a(Q), (Ck-a(Q))

consist of those functions in Ck'a(tl) whose kih order derivatives are locally

uniformly Holder continuous in ß, (ß) with exponent a. We introduce the following

seminorms on Ck(tl):

,        x            r    -,                                               r    r                                   \DJu(x) ~ Dju(y)\
(2.1) [u]j-ü = S\Xp\DJU\  ,      LkJ;,/»;8=     Sup    -■-,

a x,yeQ \x-y\p
x=£y

["]*8=    «"P  d&[u]j:Q;        [u]*,ß;ü=    SUp  dtfß[u]ma;
Q'SQ SI'S a
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iorj = 0,1,... ,k, ß E (0,1 ] where da, = dist(ß', ß). Setting

* k

(2.2) \u\ka.a=   2   [u]j;0+ [u]k,a,ü,      I « \k,a;Q =   2   ["]*Û + [ "]*,«;8
7 = 0 y=o

and defining

C:-"(ß)={MECi:'a(ß)||M|,*a;u<<x>},

we obtain that the spaces C*a(ß), Ck'a(íl) axe Banach spaces under their respective

norms (2.2). A useful property of the weighted seminorms in (2.1) is the following

interpolation inequality which is proved, for example, in [5].

Lemma 2.1. Suppose j + ß < k + a and u E Cki"(iï). Then for any e > 0, there

exists a constant C depending only on e, k, j, a, ß such that

(2-3) ["]//3;íí<£["]*.«;íí + C|m|o;S2.

For the various Holder estimates of this paper we shall require the weak Harnack

inequality from [13] which is based on the estimates of Krylov and Safonov [6] for

linear equations. In our formulation 6E = [a'j] will denote a positive S" valued

function on ß satisfying

(2.4) X\è\2<a%èj<A\£\2

for all ¿ER" where X and A are positive constants. We also denote by BR(y) the

open ball in R" with centre y and radius R and abbreviate BR(y) = BR when the

centre is clearly understood.

Lemma 2.2. Let u E C2(ß) satisfy the differential inequality

(2.5) Lu = a,JDljU < X(p0 \Du\2 + g)

in ß where u0 E R and g E L"(ß). Then if u>0 on a ball B2R C ß, there exist

positive constants k, C depending only on n, A/X and ¡i0sup u such that

(2.6) \,R{u)=[j^SBf)      <c{inîu + R\\g\\L„(BïR)).

As a consequence of Lemma 2.2 we have the following Holder estimate (also

proved in [13]).

Lemma 2.3. LetuE C2(ß) satisfy

(2.7) \Lu\<X{liÇ)\Du\2 + g)

in ß where (i0ER and g E F"(ß). Then for any ball BRCQ, and a E (0,1) we have

(2.8) osc«< Caa[oscu + R\\g\\Ln{BR)]

where C and a are positive constants depending only on n, A/X and [i0M0 where

Mo=l"lo;fi-

For second derivative Holder estimates in §6 we shall also require the following

result from matrix theory due to Motzkin and Wasow [12].
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Lemma 2.4. Let 6B = [a'j] be a symmetric « X « matrix satisfying (2.4). Then there

exist a natural number N, unit vectors yk E R", k = 1,...,N, and positive constants

X*, A*, all depending only on X and A, such that

(2-9) &= tßkyk®yk,      a'J= 2 ßkykiykj,
k=\ k=\

where j3tGRsatisfy X* < ßk < A*, k = l,...,N. Furthermore the yk can be chosen to

include the coordinate vectors e¡, i = 1,... ,n, and the vectors (e¡ ± ef)/ ]/2 , 1 < i <j

< «.

For further material from the theory of quasilinear elliptic equations, the reader

will be referred directly to [5].

3. Holder estimates for solutions. Letting t=ÖX (-K, K) X R" for K E R, we

adopt the following structural conditions in this section:

FI: F is uniformly elliptic on %K for all K E R, with (1.3) holding

for u = ¡i(K);

F2:  | F(x, z, p,0) \/X(x, z, p,0) =£ u0(l + \p\2) for all x, z, p E

GHz, KER where ii0 = nQ(K) E R.

A Holder estimate for solutions of (1.1) now follows readily from Lemma 2.3.

Theorem 3.1. Let u E C2(ß) satisfy F[u] = 0 in ß with Fl and F2 holding. Then

(3.1) ["10%;^ C

where a > 0 depends on n, ¡i(M0), ixQ(M0), M0 =| u |0.a and C depends, in addition,

on diam ß.

Proof. We first assume that F is differentiable with respect to r so that inequality

(1.4) holds. Using the mean value theorem we can then write (1.1) in the form

(3.2) FtJ(x, u, Du, s)Duu + F(x, u, Du,0) = 0

where s = s(x) E S". By Lemma 2.3 we thus have for any ball fifcS and

a E (0, 1).

(3.3) oscw <Caa,

where C and a depend on the quantities specified in the theorem statement. The

estimate (3.1) follows directly from (3.3).

In the general case we mollify F with respect to r by defining for « > 0,

Fh(x, z, p,r)= f     F(x, z, p,r + tj«)p(tj) í/tj
"'M «l

where p > 0, E C0°°(R"2) satisfies fp = 1. Using (1.5) we have

| Fh(x, z, p, r) - F(x, z, p, r) \

f      | F(x, z, p, r + tj«) - F(x, z,p,r)\ p(tj) dt\

< \Jn ¡iXh.
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Accordingly the operator Fh satisfies Fl and F2 with ju0 replaced by ¡x0 + Jyßh.

Applying (3.1) now to Fh and letting h -» 0, we thus obtain (3.1) for general F

4. Gradient estimates. Let us now assume that the function F is differentiable in T

and augment conditions Fl and F2 by

F3: \p\\Fp\,\Fz\, li^A/irO + lpf+Irp for a11 x, z, p E
<&K, rE$",KER where /x, = px(K) E R.

For quasilinear operators, F,, F2 and F3 reduce to the natural growth conditions of

Ladyzhenskaya and Ural'tseva. Also condition F2 is a consequence of Fl and F3.

The following estimate extends the corresponding result for the quasilinear case

[10,13].

Theorem 4.1. Let u E C3(ß) satisfy F[w] = 0 in ß with Fl, F2 and F3 holding.

Then

(4.1) Hf:o<C

where C depends on n, ¡i, ¡i0, ¡ix, M0 and diam ß.

Proof. Our proof corresponds closely to that devised by Ladyzhenskaya and

Ural'tseva for the quasilinear case which utilizes an earlier technique of Bernstein.

We first differentiate (1) with respect to xk to obtain

(4.2) F,jDtJku + FpDiku + FzDku + FXk = 0.

Multiplying (4.2) by Dku and summing over k we then get

(4.3) -FtpikuDjku + hF(jDljV + \FpiDti> + SFv = 0

where

v=\Du\2,       ÔF = Fz + (Dku/v)FXk.

To proceed further we consider a change of dependent variable. Let Q'CQ,

M = supß. u, m = infr>. u and let </> E C2[m, M] satisfy </>, <j>' > 0, </>" < 0. Then if

v E C2(ß') is defined by v — <t>(u)v, we have, by differentiation,

DjV = <f>Z>,tJ + <j>'vDjU,

F.jDijV = WjDijV + 2<t>'F¡jDiuDjv + V'vF^uDjU + ^'vF^jU,

so that by substitution into (4.3),

(4.4) -2Fi}DikuDjku + ^FtjDuv + 2^FtjDtuDjV + <t>'v&

+<t>'vFuDuu + <r>FpiD,v + <t>'vFpDiU + 2SFv = 0,

where

(4.5) S = F¡jDiuDju 5* Xv

corresponds to the Bernstein S function for quasilinear equations. Gradient bounds

follow from (4.4) by judicious choice of the auxiliary function (¡>. For local bounds

we take ß' = ß n BR(y), y E ß, and introduce a cut-off function tj by defining

(4.6) V(x) = {l-\x-y\2/R2)2.
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Then setting >v = Tjt;,H' = rjt;, we have, by differentiation,

D¡W = T)Z),tJ + ÖD,T),

FijDijW = iZjDuS + {2/r,)FijDir,DjW - ((2/tj)F,7Z),t)£,t? - VM)°'

so that, writing x = <i>'/<f> and substituting into (4.4), we obtain in ß',

-2jiFuDikuDJku + 4{FuDuw + B,DiW} + (X' + X2)Sw

(4.7) + (xFtjD,jU + xFpDtu + 2oF)w

+ ((l/^FfjD^Dji, - Fi}Din - 2XFiJDiuDjn - FpDñ)v = 0,

where

Bx = - (2/tj)F0F) t, + 2XFuDjU + Fp¡.

Using the structure conditions Fl and F3, the terms in (4.7) may be estimated as

follows:

(4.8) F¡jD¡kuDjku > X | D2u \2,       FuDtJu « «A | D2u \ ,

FpDtu, OF < \Ml(l + v + | D2u |),    ^jDflDji, - FtJDtñ < ^^,

-F^ÚDp < -¡r-,       -Fpptn <    Pl'     " ( 1 + o + | Z)2h |).
" y«

Setting ÜR = {x E ß' | w(x) > 1/Ä2} and using Cauchy's inequality,

ab < ea2 + 62/e

for appropriate a, b, e > 0, we may deduce from (4.7) the differential inequality

-4>(FuDijW + B,D,w) < x'Svv + /1\üw(x2 + l)

in QR, where^4 is a constant depending only on n, it and ¡tt,. Consequently, if

(4.9) oscw = M- m <ir/2A,

we may choose

(4.10) x(z) = -tan^(z - m)

so that

(4.11) FijDiJw + BiDiw>0

in ßR. It then follows by the classical maximum principle [5] that

(4.12) \Du(y)\< \/R

provided R < dist(>>, 8ß) and (4.9) holds. Combining (4.12) with the Holder esti-

mate (3.1) in Theorem 3.1, we subsequently infer (4.1).

Remarks, (i) It is clear from the proof of Theorem 4.1 that the structure condition

F3 can be replaced by the more general condition

F3: \p\\Fp\,       8F<AMl(l + |/>|2 + |r|).
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Furthermore, by adding an appropriate multiple of (1.1) to (4.7) we may replace F ,

8F in F3* by Fp + %F, 8F + tF for any functions §: T - R", t: T -> R. Further

interior and global gradient bounds for elliptic fully nonlinear equations may also be

derived as above by adaptation of the Bernstein method for the quasilinear case as

described, for example, in [5, Chapter 14].

(ii) A refinement of (4.1) will be useful for global regularity considerations in §7.

By replacing u by u/(M0 + da,), we can, by inspection of the above proof, obtain

the estimate

(4.13) [«],.„, < C(M0/dQ. + 1)

where C depends on the same quantities as in (4.1).

5. Holder estimates for derivatives. Both the Holder estimates for first derivatives

in this section and second derivatives in the next section will be necessary for our

derivation of second derivative bounds. In formulating appropriate structural hy-

potheses we may take account of already established gradient bounds. Consequently

we set

%K= {x E%||z| + \p\<K)

and assume the structural conditions:

Fl: F is uniformly elliptic on %K for all K E R with (1.4) holding

for ¡i = n(K);

F3:\Fp\,\Fz\, \Fx\<Xnx(l + \r\) for all x, z, p E %K, r E S",

K E R, where /x, = ¡ix(K).

The following theorem then extends the corresponding basic result of Lady-

zhenskaya and Ural'tseva for quasilinear elliptic equations.

Theorem 5.1. Let u E C3(ß) satisfy F[u] = 0 in ß with F,, F3 holding. Then

(5.1) [Du]*.a^C

where a > 0 depends on n, n(Mx), ¡ix(Mx), Mx =\u |];ß and C depends, in addition, on

diam ß.

Proof. We basically follow the proof of Ladyzhenskaya and Ural'tseva for the

quasilinear case with the weak Harnack inequality, Lemma 2.2 being used in place of

divergence structure results. Similar ideas will be carried over to the second deriva-

tive estimation in the next section. Let e be a positive constant and set

(5.2) w± = wf= ±D,u + ev

where 1 *£ / < « and v = \ Du \2. Combining (4.2) and (4.3) we see that the functions

w * satisfy the equations

(5.3) -2eFtpikuDjku + FtJDtj»* +FpD,w± +28Fv ± {FzD,u + Fx) = 0,

so that, using the ellipticity of F,

FiJDikuDJku>X\D2u\2,



758 N. S. TRUDINGER

together with F3, we obtain the inequalities

(5.4) -F¡PijW ±<XC(\Dw±\2+l)

where C = C(px, Mx, e). Now suppose B2R C ß and set W~ = sup¿2 w ± . Apply-

ing Lemma 2.2, we obtain

, 1 iA
R"     (W± -w±)(5.5) Í»KJW*-w*) =

< C\W± -supu^ +R2
X Br

where k, C > 0 depend on «, ii, fix, Mx and e. With the constant e chosen sufficiently

small, for example, e *s (\0nMx)'x, the remainder of the proof follows that for the

quasilinear case as described in [5, Chapter 12].

6. Second derivative estimates. This section embodies the main contribution of this

work, which is an interior bound for the second derivatives of (1). Our method

involves a careful estimation of Holder norms in terms of second derivative bounds,

followed by a subtle interpolation argument which permits us to handle cubic terms

in the second derivatives. Our approach to the Holder estimation is a simplified

version of Evans [2] along the lines proposed in [14] for the special case when Fis a

function of r only.

As in the preceding section structural hypotheses are formulated under the

assumption that gradient bounds are already known. We will thus assume in

addition to Fl and F3 that the function F is twice differentiable in T with second

derivatives satisfying the following condition:

\Frx\  ,|^„,l  . \F„\<\ß2>

F4: \Fpp\ ,\Fpz\ ,\Fpx\ ,\FZ2\ ,\FZX\ ,\Fxx\<Xn2(\ + \r\)

for all x, z, p E ®LlK, r E S", K E R, where jj2 = H2(K).

We further assume

Fis a concave function of r, that is,

Fij^ijVki = -^—^rVijVk, < 0    for all x, z,p,rE T.

Clearly any quasilinear elliptic equation with C2 coefficients satisfies Fl, F3, F4,

F5. It will also be apparent from the proof below that certain of the bounds in F4

can be replaced by the concavity of F with respect to additional variables (see

Remark (i) below). Indeed we shall show that the case considered by Evans [2] where

F is concave and uniformly Lipschitz in r, p and z is considerably simpler.

The basic estimate is the following

Theorem 6.1. Let u E C4(ß) satisfy F[u] = 0 in ß with Fl, F3, F4 and F5

holding. Then

(6.1) [Du]la<C

where a > 0 depends on « and ¡i, and C depends in addition on /x,, ¡x2, Mx = | it |,;S2 and

diam ß.
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Proof. We commence by fixing a unit vector y E R" and differentiating (1) twice

in the direction y. We thus obtain

(6.2) FuD,jyu + FpDiyu + FzDyu + ytFx¡ = 0,

FUDiJyyu + Fij,kiDutuDkhu + 2Fu,PPijyuDkyu

+ 2FijzDijyuDyu + 2ykFijxDijyu + FpDiyyu

(6"3) + FP,PPnuDjyu + 2FpiZDiyuDyu + 2yjFp¡tXD¡yu

+ FzDyyu + FZ2{Dyu)2 + 2ylFzxDyu + Y,.y,F^. = 0.

Next we let ß' be a subdomain of ß and set

M2=sup|/>2«|,       ^4(l + T^)

so that 0 < hy < 1. Using the structure conditions F3, F4, F5 we obtain from (6.3)

the inequality

(6.4) ~FuDuhy < CX{\ D'u | + (1 + M2)2},

where C depends on n, ¡ix, ¡x2 and Mx. Let us now choose directions yx,...,yN in

accordance with Lemma 2.4 applied to the matrix a'' = X~lF¡¡, multiply (6.4) for

y = ykby hk — hyk and sum over k. We thus obtain

(6.5) 2 ZjDfaDjht - -\fuDuv < CX{\D*u | + (1 + M2f),
k=\ ¿-

where v = 2k=x(hk)2. Consequently for e E (0,1) and w = wk = hk + ev, k =

\,...,N,we have, by combining (6.4) and (6.5),

N 1

(6.6) e 2 F^h.Djh, - -rF^jW < CX{\ D2u | + (1 + M2f).
k=\

Using the ellipticity of F and the choice of yk in Lemma 2.4, we estimate

j^.^,»xjil».r-»*(T3£)1.

so that from (6.6) we obtain an inequality

(6-7) -F,p,jw ^ Xß,

where

/I = (C/£2)(l + M2),       C = C(«, it,, M2, Mx).

We are now in a position to apply the weak Harnack inequality Lemma 2.2. Let BR,

B2R be concentric balls in ß' and set, for i = 1,2, k = 1,...,N,

Wfcs) = supw,   M¡.s) = suphk,   mks) = inîhk,
Bsr BsR BsR

N N

u(sR)= 2 oschk= 2 (M(ks) - m[s)).
k=\   B'K k=\
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Applying Lemma 2.2 to the function W^ — wk we obtain

(6.8) %R(W? - wk) < C{W? - W? + ÏR2},

where k, C are positive constants depending only on « and ti. Using the inequalities

wk2) ~wk> Mk2) - A* - 2eu(2R),    Wj& _ Wm ^ MV) _ Mm + 2ew(2F),

we can deduce from (6.8) a similar inequality for the functions hk, namely

(6.9) KÁM(2) - K) < C{Mf - M<" + eu(2R) + jiR2}.

Let us now fix some index / and sum the inequalities (6.9) over k ¥= I. We thus

obtain

(6.10) *.,,( 2 (Mf -hk))< W 2 HM? - hk)
V k¥=l ' k*l

< C((l + e)u(2R) - u(R) + /IF2},

where C = C(n, ju) as before. To compensate for not having the corresponding

inequality to (6.7) for the functions -hk, we involve (1) itself, which, by virtue of

Lemma 2.4, expresses a functional relationship between the functions hk. In fact, by

the concavity of F with respect to r, F5, we have for any x, y E BR,

(6.11) F,j(y, u(y), Du(y), D2u(y)){DiJu(y) - DijU(x))

< F{y, u(y), Du(y), D2u(x)) - F(y, u(y), Du(y), D2u(y))

= F(y, u(y), Du(y), D2u(x)) - F(x, u(x), Du(x), D2u(x))

<au,(1 + M2){\x-y\ +\u(x) ~u(y)\ +\Du(x) - Du(y)\)

< 4Au,Ä(l + M2)(l + Mx + M2)

by F3. Furthermore, by Lemma 2.4,

FtJ(y, u(y), Du(y), D2u(y)){DijU(y) - DtJu(x))

= ^2ßk(y)(Dykyu(y)-Dykyu(x))
(6.12) fc=i

TV

= 2X(l+M2)^ßk(hk(y)-hk(x)),
k=\

where 0 < X* < ßk < A*, k = l,...,N, and X*, A* depend only on n and w. The

combination of (6.1) and (6.12) now yields

2 ßMy) - **(*)) < 4^R(\ + mx + m2),
k=\

so that for fixed /,

h,(y) - m<2> <¿ U,ixR(\ + MX + M2) + A* 2 (Mf - h,(y))}

<C\(\+M2)R+ 2{M^-h,(y))}
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where C = C(«, ¡i, p.x, Mx). Consequently, using (6.10) we obtain, for / = 1,... ,N,

(6.13) *,,*(*, - mf>) < C((l + e)a(2R) - a(R) + ßR + ßR2}

where C = C(«, /x) and ß = C(l + M2), C = C(/x„ Af,). By adding (6.10) and

(6.13) for / = k and summing over k, we then obtain

u(2R) < C{(1 + e)w(2Ä) - «(a) + jSF + i7F2},

whence

u(R) < Sw(2i?) + C(ew(2Ä) + ßR + ßR2)

for 5 = 1 — 1/C. Finally, by choosing e sufficiently small we get the oscillation

estimate

(6.14) co(F)«5co(2ä) + C(ßR + ßR2),

where 0 < ô< 1, C, 8 depend only on « and ii, and ß, ß are as indicated above. A

Holder estimate for w, and, hence, for the second derivatives of the solution u now

follows from (6.14) by a standard argument (see [5, Chapter 8]). In any ball BR C ß'

and 0 < a < 1, we obtain

Af

2  oschk < Caa(l + ßR + ßR2),
k=\  B°K

where C and a are positive constants depending only on n and u. Consequently,

(6.15) oscZ)2« < Coa(l + M2)(l +ßR + ßR2.)

From (6.15) we can infer an interior Holder estimate

(6.16) [D2u]*a,a<C

where a = a(n, u) and C = C(«, p, px, p2,\u\2.a,diamß). Indeed for this estima-

tion there was no need to take account of the dependence on M2 in the above

argument. However for the establishment of second derivative bounds this depen-

dence is crucial, as we shall now demonstrate.

Let us take ß' to be a ball B = Bs(y) C ß and suppose that

(6.17) (l+M2)8<l.

The quantities ßR, ßR2 are then bounded independently of M2 in any ball BR C B,

and we obtain from (6.16) that for any 0 < a < 1, 0 < R < 8,

(6.18) oscZ)2«*£ Caa( 1 + sup ID2« I )
b„r \        br i

where C = C(«, ii, ii,, ti2, M,). Consequently,

M?,«;,, <C(fi+[2>u]f;fl),

and, hence, by the interpolation inequality, Lemma 2.1, we obtain

[Du]ts<C(8 + \Du\0.B)

so that, in particular,

(6.19) \D2u(y)\<C{\ +8-x\Du\0.B).
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By replacing u by u — xDu(y) we can assume without loss of generality that

Du(y) — 0. Consequently, by Theorem 5.1,

d)  '

where C and ä are positive constants depending only on «, ¡u, ¡u, and Mx, and

d = min{l, dv], where dy = dist(^, 9ß). Substituting into (6.19) we thus have

(6.20) \D2u(y)\<Cd~5(l +8a-x).

The proof is now completed through an appropriate choice of the ball B. To do this

we set

M* = [Du]X]Q= sup (dx\D2u(x)\)
xea

and choose y< such that

dy\D2u(y)\> Ml/2.

Then if M\* > 2, we choose

S=1/(1+2|Z)2M(>0|)

so that

M2 = sup \D2u\<*2\D2u(y)\ ,
Bs(y)

and, hence, (6.17) is fulfilled. By inserting our choice of 8 in (6.20) we obtain the

desired bound for D2u(y), namely

(6.21) \D2u(y)\*¿Cd-x.

Combining (6.21) with the Holder estimate (6.18), we finally obtain the assertion of

Theorem 6.1.

Remarks, (i) If we designate points in T = ß X R X R" X S" by X = ( Xx,..., X„)

= (x, z, p, r), where p = «+l-f-« + ^«(« + 1) = ^(«2 + 5« + 2), then F4 and

F5 in the hypotheses of Theorem 6.1 may be replaced by the more general condition

F4*: ^jIYiYJ^p2X{(\ + \r\fz2+(\ + \r\)Z22

+ (\ + \r\f/2ZxZ3 + (l + \r\)]/2Z2Z3]

for all TER" where

^1 =l (^1'--• '-Vi+l) I  '      ̂ 2 =Mn + 2'.- •' *2n+l I  »     ^3 = I ̂ 2n + 2 > - • - > *v I  •

To pass from (6.3) to (6.4) we apply F4* with Y = (y, Dy u, DDyu, D2Dyu). In

particular, if F is concave with respect to z, p, r, the second derivatives involving

these variables only may be omitted from F4. If F is concave with respect to all

variables, F4 becomes superfluous and (6.1) is independent of the second derivatives

of F. Note that F4* implies F5. An alternative approach to second derivative bounds

which encompasses nonconcave F will be presented in a further paper.



UNIFORMLY ELLIPTIC EQUATIONS 763

(ii) In the course of the proof of Theorem 6.1 we established a Holder estimate for

the second derivatives of solutions in terms of bounds on their second derivatives,

namely the estimate (6.16). We may formulate this result, essentially due to Evans

[2], as follows.

Theorem 6.2. Let u E C4(ß) be a solution of equation (1.1) in ß where F is concave

in r, and suppose that for constant it, \ix, and ju2,

A</iA,       \Fp\ ,\FZ\ ,\Fx\<nxX,

(6.22) ..    \ p   \    \ p   \    1/71    if   I    \F   \    IF   I    IF   I<luXI rpr I  > I rzr I  ' I rxr I  ' I rpp I  ' I rpz I  ' I rpx I  ' \rzz\  'I rzx I  ' I rxx I ̂  r 2A

for all x E ß, z = «(x), /? = Du(x), r = D2u(x). Then we have the estimate [D2u]*a

< C, wnere a > 0 depends only on « a«t/ it, a«rf C depends, in addition, on it,, it2,

| u \2.ü and diamß.

This result may also be generalized in accordance with the preceding remark. It is

also worth pointing out that in many of the preceding theorems of this paper the sets

%K and %K can be replaced by the set

r„ = {(x, u(x), Du(x), D2u(x)) | x E ß}

where u is the solution under consideration (although for Theorem 3.1 we should

assume (1.4) rather than (1.3)).

7. Global estimates. By means of standard barrier techniques the interior estimates

of the preceding sections may be extended to the boundary of the domain ß. We

first consider a boundary gradient estimate which, for later purposes, we formulate

as follows.

Lemma 7.1. Let u E C2(ß) n C°(ß), g E C2(ß) satisfy F[u] = 0 in ß, u = g on

3ß and suppose that Fl and F2 hold and ß satisfies a uniform exterior sphere

condition. Then

(7.1) sup \u(x)-g(y)\<C\x-y\
xEQ.
yedá

where C depends on n, it, /t0, M0 = | u |0;S, | g |2.a and ß.

Proof. The situation is reduced to the quasilinear case as in the proof of Theorem

3.1. In this case (7.1) follows from well-known barrier arguments (see [8, Chapter 6,

Lemma 2.1] or [5, Theorem 13.1]).

The combination of Lemma 7.1 and Theorem 4.1 yields the following global

gradient bound.

Theorem 7.2. Let u E C3(ß) n C°(ß), g E C(ß) satisfy F[u] = 0 in ß, u = g on

3ß and suppose that Fl, F2, F3 (or F3*) hold and ß satisfies a uniform exterior sphere

condition. Then u E C°''(ß) and

(7.2) | u |,.H = sup | Du |< C
a

where C depends on n, /t, ii0, it,, M0, \ g \2a and ß.
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Proof. We fix a point x0 E ß and set d = \dXa, Bx = Bd(x0), B2 = B2d(x0).

Then using Theorem 4.1, in particular (4.13), we obtain, for any x E Bx,

I u(x) — u(xQ) |< (C/d) I x — x0 I osen
B2

where C = C(«, /x, /t0, u,, Af0) as in (4.1). But by Lemma 7.1,

ose u < Cd,
B2

where C = C(«, /x, /x0, M0, | g |2;B, ß), whence (7.2) follows.

By combining Lemma 7.1 and Theorem 3.1 we would obtain a global Holder

estimate under the hypotheses of Lemma 7.1. However this result is not as general as

that obtained through direct extension of Lemma 2.3 to the boundary, which would

only require that g E C^(ß) for some ß > 0 and 9ß satisfy a uniform exterior cone

condition, or, more generally, that there exist positive constants k,, k2 such that

meas(ß - BR(y))/meas BR(y) » k, for all 0 < R ^ k2 [13].

We turn now to estimates for the second derivatives at the boundary. Setting

R+ = {x = (x', xn) E R" | xn > 0}, we first prove an estimate for flat boundary

portions.

Lemma 7.3. Letü = BR(0) n R"+ be a half ball and let u E C2(ß) n C'(ß) satisfy

F[u] = 0 in ß, u = 0 on 3fi in 9R+ with conditions Fl, F3 holding. Then for

0 < xn < R, k = 1,...,« — 1, we have

(7.3) \Dku(0,xn)\<Cxn

where C depends on n, it, it,, Mx and R.

Proof. We begin, similarly to the proof of Theorem 5.1, by setting v' =

2kz\(Dku)2, w¡ = w' — D¡u + v', 1= l,...,n — 1, thereby obtaining, instead of

(5.3),

n-\ I n-\ \

(7-4)    -2 2 FuDikuDjku + F^w' + 2Fzw' + 2¡FX+  2 DkuFXk    = 0.
k=\ \ k=\ I

Using (1.1) in the form (3.2) we can write

D""U = ~F1-ñ-\\     2    FiJ(x,u,Du,s)Duu +F(x,u,Du,0)\,
r„„\X,U, UU,S)  \ i+j<2n I

so that by Fl, F3 we may estimate

/ i\1/2

(7.5) \Dn„u\<nit\    2    (D,ju)\      + it,(diamß + Mx).

(Note that without loss of generality we can assume F(x0,0,0,0) = 0 for some

x0 E ß.) Using (7.5), F3 and the ellipticity of F,

2 FtJDlkuDJku>\    2    {Duuf,
k=\ (+y<2n
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we obtain from (7.4) the corresponding inequality to (5.3), namely

(7.6) -F,PijW' < XC(\ Dw' |2 + l)

where C = C(n, it, it,, Mx). By the barrier argument of Theorem 13.1 of [5] (with an

exterior sphere fixed at 0), we thus have w'(0, x„) *s Cxn for 0 < xn < R, where

C = C(n, it, ii,, Mx, R) and, hence, after replacing u with -u, we infer (7.3).

If, in Lemma 7.3, the function u was twice differentiable at 0, (7.3) would imply

I A.*"(°) l< C for Ac = 1,...,« - 1. Since DtJu(0) = 0 for i, j = 1,...,« - 1, we

then here by (7.5) an estimate for all the second derivatives at 0, namely

(7.7) \D2u(0)\^C

where C = C(n, it, it,, A/,, R). This result may then be extended to C3 domains by

means of a diffeomorphism which preserves the form of the structural conditions Fl,

F3. Accordingly we obtain the following boundary second derivative estimate.

Theorem 7.4. Let u E C3(ß) D C2(ß), g E C3(ß) satisfy F[u] = 0 with Fl, F3

holding and d& EC3. Then

(7.8) sup|Z>2w|<C

where C depends on n, u, it,, Mx, ß and \ g |3;B.

By combining Lemma 7.3 and Theorem 6.1, we also obtain a global second

derivative bound.

Theorem 7.5. Let u E C4(ß) n C'(ß), g E C3(ß) jar/í/y F[u] = 0inti,u = g on

80, w/í« Fl, F3, F4 (or F4*), F5 holding and 9ß E C3. F«e« « E Cu(ß) and

(7.9) [u]2;B = sup|D2M|<C
a

vf«ere C depends on n, it, ii,, M,, | g |3;B and ß.

Proof. Suppose first that ß is the half ball BR(0) n R"+ with u = 0 on 3ß n 9R"+ ,

as in Lemma 7.3, and let y = (0, y„) where >>„ < R/4. By Theorem 6.1 there exists a

positive constant k < 1, depending only on n, /t, it,, it2, M, and ß, such that

(1 + sup58(j;) | D2u \)8 < 1 for 8 = kj>„ and, hence, condition (6.17) in the proof is

fulfilled in the ball B — Bs(y). Using (7.5) to eliminate the derivative Dnnu from

(6.18), we then obtain, in place of (6.19),

(7.10) \D2u(y)\^C  1+8-' 2 I £*" lo J < C{\ + 9~lyn) « C

by Lemma 7.3 and our choice of ô. Finally, by means of diffeomorphisms which

locally flatten 9ß and preserve the form of Fl, F3, F4 and F5 and by replacement of

u by u — g, we get (7.9) for general ß C C3.

8. Applications. By combining Theorems 4.1, 6.1, 7.2 and 7.5, we obtain the

following interior and global estimates for solutions of fully nonlinear, uniformly

elliptic equations satisfying the natural structure conditions.
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Theorem 8.1. Let u E C4(ß) satisfy F[u] = 0 in ß with F1-F5 holding. Then for

any subdomain ß' G ß, we have

(8.1) l"ka;B<<C,

w/iere a > 0 depends only on n, it, a«i/ C depends, in addition, on u0, /x,, /x2, |w|0;a

a«J dist(ß', 9ß). Furthermore, if u E C°(ß) a«c/ u = g on 9ß, H-«ere g E C2(ß) a«J

9ß satisfies a uniform exterior sphere condition, then u E C°'x, Du E Cx^"(il), and

(8-2) |0«|l%;Q<C,

w«ere C depends on n, it, /x,, it2, | w |0.a, | g |2;B a«J Q,. If u E C'(ß), g E C3(ß) a«û?

9ß E C3, rAen w E CM(ß), Z)2h E C£(ß) o/k/

(8-3) \D2u\*a.M^C,

where C depends on n, /x, /x0, it,, ii2, | w |o;a> I g ha a"^ ^- Finally, conditions F3, F4,

F5 way be replaced by the more general F3*, F4*.

Using the method of continuity, we can establish existence theorems for the

Dirichlet problem for (1.1) from the estimates of Theorem 8.1. As in Evans [2], the

equation can be modified near the boundary to offset the lack of global Holder

estimates for the second derivatives. In particular, for m = 1,2,..., we let Tjm E

C02(ß) satisfy 0 < Tjm ̂ 1 in ß, Tjm(x) = 1 for dist(x, 9ß) > \/m, \ Dr¡ |=£ cm,

| D2r\ |< cm2, for some constant c depending only on «. Assuming that we can take

X = 1 in (1.3) and (1.4), we set

(8.4) F<m>[W] = (1 - tjJAm + T)mF{x, u, Du, D2u).

Now let ß be a C2a domain, g E C2-a(Q), and F E C2-a(r) for some a > 0. In

order to apply the method of continuity to solve the Dirichlet problem

(8.5) F(",)[m] = 0   inß,       u = g   on9ß,

it suffices that:

(i) When F(m) is considered as a map from F = {m E C2,a(ß) | u = on 3ß} into

Ca(ß), its Fréchet derivative F¡¡m), given by

F(m)[ü] = F^m\x, u, Du, D2u)Dijv + Fp¡(x, u, Du, D2u)D,v

+ Fz(x,u,Du, D2u)v,

tor v E E, has bounded inverse for each u E C2a(ß); and

(ii) The set of solutions of the problems

(8.6) F(m)[u] = tF[4>],   M = gon9ß,       0=£?<1,

is apriori bounded in C2a(ß) for some \p E C2"(ß), with ^ = g on 3ß.

By virtue of the Schauder theory for linear equations (see [5, Chapter 8]), (i) is

satisfied if

(8.7) F<0

for all x, z, p, r E T, in which case the solution of the Dirichlet problem (8.5) is

unique (if it exists). By combining (8.1) with the Schauder estimates in neighbour-

hoods of 3ß, we see that (ii) is satisfied provided the solutions of (8.6) are uniformly

bounded in ß. Furthermore, if the solutions of (8.6) are uniformly bounded with
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respect to both t and m, we can then conclude from Theorem 8.7 and Lemma 7.1 the

solvability of the Dirichlet problem, F[u] = 0, « = g in 9ß in the space C0,1(ß) n

C4,a(ß). By further approximation this result can be extended to more general

boundary data. Two possible conditions which would each imply the uniform

boundedness of solutions of (8.6) are the restriction of (8.7),

(8.8) F2^-c0

for all x, z, p, r E T and some positive constant c0, and the restriction of F2,

(8.9) \F(x,z,p,0)\<cxX(l + \p\)

for all x, z, p E ß X R X R" and some constant c, (see [5, Chapter 9]). In these cases

we formulate resultant existence theorems as follows.

Theorem 8.2. Let ß satisfy a uniform exterior sphere condition, g E C2(ß),

FE C2,a(r) for some a > 0 and suppose that the operator F satisfies (for X = 1) Fl,

F2, F3 (or F3*), F4 (or F4*), F5, (8.6) and either (8.7) or (8.8). Then there exists a

unique solution u E C0,1(ß) n C4,a(ß) of the Dirichlet problem F[u] = 0 in ß, u = g

on 9ß.

When we only assume g E C°(9ß) in Theorem 8.2, we would obtain a unique

solution m E C°(ß) n C4'a(ß). Note also that the restriction X = 1 is not that severe

as we really only require that (1.1) have an equivalent form which satisfies the

structure conditions with X = 1.

To complete this paper we consider the application of the preceding results to the

Bellman equation corresponding to a family of quasilinear operators. Let Qk,

k — 1,..., iV, be quasilinear operators of the form

(8.10) gjw] = akj(x, u, Du)Duu + bk(x, u, Du)

with coefficients a'¿, bk E C2(ß X R X R"), k = 1,... ,N. The operator F is defined

by

(8.11) F[«]=infßJ«],

and the equation F[u] = 0 is called the Bellman equation associated with the family

{Qk}. Writing

Qk(x, g, p, r) = al¿(x, z, p)rtj + bk(x, z, p),

we may then write Fin the form (1.1) where the function Fis given by

(8.12) F(x, z, p, r) = inf Qk(x, z, p, r).

In order to apply our previous results we need to approximate F by smoother

functions. Accordingly let G be a concave function in C2(R^) and consider, in place

of (8.12), the function F given by

(8.13) F(x,z,p,r) = G(Qx,...,QN).

By differentiation we obtain

Frti = Gka'¿       Fp = G^afaj + bkp),

F2 = Gk(a&ru + bkz ),       Fx = Gk{ al¿jrt} + bkx).
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Hence, if we assume there exist positive constants 0, 0 such that

(8.14) e<^Gk<®,

and also G(0) = 0, we obtain that F satisfies any of the structure conditions Fl, F2,

F3, Fl, F3, F3* (with it, /i0, /t, replaced by /x0/f?, iio0/0, /x,0/#, respectively)

whenever all the operators Qk satisfy the same conditions uniformly in k. For the

second derivatives of F we have, in the notation of Remark (i) in §6,

32F     _ „   oQk oQ, ,  „    92ô,
G„^-^ + G„

dX,dXj        k'dX¡ aXj        * 3JÇ. 3JÇ '

so that since G is concave, F4* is satisfied, with /t2 replaced by cit20/0, where now

(8.15) u2=   max   sup t^GM^'I +\F>bk \ +\D2ay| +| D2bk |),
l«fc«Af   qi      *k

and c depends on «. In order to approximate the Bellman equation, we take for G

the mollification of (8.12) given by

G(x) = Gh(x) = h-"fjxdykp{^rl) dy,

where p > 0, E C^R^) satisfies /p = 1 and « > 0. It is readily shown that G is

concave and, furthermore, satisfies (8.14) with 0 = 0 = 1. Since Gh-* G uniformly

as « -> 0, we obtain the existence of solutions to the Dirichlet problem for the

Bellman equation as limits of solutions for the equations Gh[u] — 0 as « -» 0. In

fact, as a consequence of Theorems 8.1, 8.2 and the preceding remarks, we have the

following existence theorem.

Theorem 8.3. Let ß satisfy a uniform exterior sphere condition, g E C2(ß),

Qk E C2(T) for some a > 0, k = 1,... ,N, and suppose that the operators Qk satisfy

the natural conditions Fl, F2, F3 (or F3*) with Xk= \, uniformly in k = 1,...,JV.

Suppose, in addition, that a'kJ(x, z, p) = a'kJ(x, p) and either

(8.16) bkz < -c0

or

(8.17) bkz<0,        \bk\^cx(l + \p\)

for all x, z, p E ß X R X R", where c0 and c, are positive constants. Then there exists

a unique solution u E C0,x(£l) (1 C2,^(ü),for some ß > 0, of the Dirichlet problem

(8.18) F[u] = inîQk[u]=0,       u = g   on ß.

If only g E C°(9ß), we obtain a unique solution u E C°(ß) D C2'ß(ü).

Remarks, (i) When the operators Qk are all linear, Theorem 8.3 reduces to the

result of Evans [2] on the classical Dirichlet problem for the Bellman equation. (For

an alternative approach, in the absence of second derivative Holder estimates, see [4]

and [11].) In this case the estimation of derivatives simplifies, as the quantities ß and

ß in the proof of Theorem 6.1 will be independent of M2, and first and second

derivative bounds will subsequently follow immediately from (6.15) by the interpola-

tion Lemma 2.1.
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(ii) By means of standard uniqueness and regularity arguments, Theorem 8.1 can

be extended to hold for solutions u E C2(ß) rather than C4(ß). Theorem 8.1 can

also be similarly extended to embrace the Bellman equation for a family of

quasilinear operators, Qk E C2(T), satisfying the natural conditions Fl, F2, F3 (or

F3*).
(iii) We also note that by the use of Lemma 2.2 in its full generality, the estimates

of this paper may be set in Sobolev spaces Wk'"(Q) instead of the classical spaces

Ck(Q) and the structure conditions extended accordingly.

(iv) Finally, we mention that the results and methods of this work can be extended

to fully nonlinear, uniformly parabolic equations of the form

(8.19) du/dt = F(x,t,u,Du,D2u)

in domains D C R"+I(x, t), where F is now a function on f = D X R X R" X S".

In the parabolic analogue of the structure conditions F4, we need to subject the

derivative Ft to the same conditions as Fxx.
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