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ON SOME CHEAP CONTROL PROBLEMS

FOR DIFFUSION PROCESSES

BY

JOSE LUIS MEN ALDI1 AND MAURICE ROBIN

Abstract. We consider several cases of control problems for diffusion processes

when the payoff functional does not depend explicitly on the control. We prove the

continuity of the optimal cost function and give a characterization of this cost with a

quasi-variational inequality interpreting the problem as limit of an impulse control

problem when the cost of impulse tends to zero. Moreover, we show the existence of

an optimal control for some particular situations.

Introduction. This paper is devoted to the study of the behavior of several kinds of

impulse control problems where the fixed cost either tends to zero, or is zero when

the impulse is zero. Moreover, some properties of the limit problem are examined,

especially existence of an optimal control and characterization of one optimal. We

develop the results announced in [19]. The general theory of impulse control leads to

a quasi-variational inequality (Q.V.I.) in the stationary case of the form

Au + au </,    u<Mu = k+ inf [c(£) + u(x + £)],
í>0

(Au + au - f)(u- Mu) = 0

for the inventory-like control problem; see Bensoussan and Lions [5,6], Menaldi [17]

and Robin [22].

When k -> 0, c = 0, some results have been obtained by Menaldi, Quadrat and

Rofman [18] and Menaldi and Rofman [20]. When k = 0, c(£) -» +oo, as £ -> oo

and c(|)/£ -* oo as £ -» 0, the one-dimensional case was considered by Vickson [23]

for a capacity expansion problem. On the other hand, the limit problem, where

c = 0, and k |0, leads formally to a constraint of the form u'x > 0 in the one-dimen-

sional case, or u'x > 0, i = l,...,w, if x E R" and it has been considered for

different problems (monotone follower problems) by many authors: Barren and

Jensen [1], Bather and Chernoff [2], Borodovskii, Bratus and Chernousko [7], Bratus

[8], Chernousko [11], Gorbunov [12] and Karatzas [13, 14], generally in the one-

dimensional case for special cases (mainly a pure Wiener process), although the

problem was already investigated by Chernousko [10] and Benes,  Shepp and
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Witsenhausen [3]. They show that one can identify an optimal control related to a

reflected Wiener process. This is still the case for the one-dimensional problem in

our situation, even if we do not have a pure Wiener process.

In this paper, we will first present a prehminary example allowing explicit

computation and also give a flavor of the results we want to obtain in general. §2

will be devoted to the general formulation and characterization of the optimal cost

function as the unique solution of some Q.V.I, for the different cases mentioned

above. In §§3 and 4 we will investigate, for special cases, some properties of the

continuation and stopping sets and obtain for general one-dimensional diffusion the

result that one can find an optimal control related to the reflected diffusion on the

continuation set. In §5 we give indications for the case of diffusions with jumps,

which will be studied in greater detail in a subsequent paper. In §6 we give some

remarks on the case of bounded cost.

1. Preliminary example. We will begin with a one-dimensional example which

allows explicit calculations.

1.1. Q.V.I, with fixed cost. Let e > 0 and consider the following Q.V.I.:

Lue= - (l/2)< + ue^x2,       xER,

(L1)     \uc<Meue = e+Mue(x + t),        {Lue-x2)(ue-Meut) = 0.
ç>0

From general results about impulse control of diffusion processes (Bensoussan and

Lions [6], Menaldi [17], Robin [22]), it is not clear that (1.1) has either a maximum or

a unique solution in some space. Moreover, using a recent result of Bensoussan [4],

for unbounded data, the Q.V.I. (1.1) has a minimum solution which is given as the

optimal cost of the following impulse control problem.

(1.2) u£x) = MJ:(v) = iniE(re~'ylv(t) dt + e 2 e~A
v v        \->o „>\ I

where

>U0 = * + *,+ 2èAt>T%
;>i

/(• ): characteristic function,

wr : standard Wiener process with respect to 9" ',

v = ( r¡, £¡ : i — 1,2,... ) : sequence of stopping times,

t, w.r.t. 5"', and random variables £, E Rq , 5"T,-measurable.

Let fi(x) = 1/(1 + x2), and let W2,ao be the space of functions w on R such that

iiw, itw', /xh>" E L°°(R). We are looking for a solution ue of (1.1) in W2,x.

First, we remark that

(1.3) Lu° = x2,       u°EW2^,
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has a unique solution u° = x2 + 1. Therefore, we look for ue of the following form:

for some b,

u£x) = v£x),       x > b,

(1.4)
u (b) = e + minu (b + £) = e + minv,(b + £),

£»o £3»0

ue(x) = ue(b)    forx<b,

with ve satisfying (1.3) on [b, oo[. This condition leads to ve of the form

ve(x) = x2 + x + ße~x^       (x > b)

and ß < 0, since we must have 0 < ue < u° on R. Then uE'(x) = 2x - ßfi exp(~xv/2_),

and it can be seen that v'e(x) = 0 has

two solutions for — \/e < ß < 0,

one solution for ß = — 1/e,

no solution for /J < — 1/e.

We try to find ß(e) in order to ensure that if b(e) and a(e) are the solutions of

v'c(x) = 0 (b < a), then

(1.5) üe(Ä) = e + 0.(fl).

We can check by elementary calculations that when ß increases from — 1/e to 0,

ve(b) - ue(a) increases from 0 to +oo. Therefore one can find a unique ß(e) E

] — \/e, 0[ such that (1.5) is satisfied.

It is then easy to check that ue, defined as in (1.4), satisfies (1.1). Moreover, where

e is small, one can obtain an estimate of the form

a(e) = -1//2 + !,,(«),       b(e) = -\/$ - r,2(e),

(1.6) T/,,r/2^0   and    limî),(e) = 0,
EiO

/3(e) = -e-'(l-i:e2/3 + 0(£)).

1.2. ß.KF w/7/i no fixed cost. As we have seen in (1.6), when e -> 0, /3(e) -> — 1/e

and a(0) = ¿(0) = —(1/ v'ï). Then we(x) converges to

x2+ 1 - (\/e)e~x^,    \ix>-\/{2,

1/2, ifx<-l//2
»(*) =

and u E C2. Since we have monotonicity in e, it must be the maximum solution of

(1.7) Lu^x2,    uEWßx'x(R),       u(x)<u(x + £),   V£>0,

or, equivalently, since u E C2,

(1.8) Lu^x2,   u'>0,    (Lu- x2)u' = 0.

Notice that we want u to be the maximum solution of ( 1.7). This assertion uses the

fact that ue is either the maximum or the unique solution of (1.1). All these remarks

will be clarified in §2.
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Proposition 1.1. With the above notation we have the stochastic interpretation

u(x) — infJx(v),
V

where

Jx(v) = £{jrV'^,0(i)dr},      yx,v(t) = x + Wl + v„

with wt a standard Wiener process w.r.t. S" ' and vt a cadlag2-increasing positive process

adapted to 5" '.

Proof. Let us consider the reflected diffusion in [— 1/ -fl, oo[ with the generator

q>"/2,       x > ~\/fi,

<p'(-l//2)=0.

Then if yx(t) denotes the corresponding process, <p(x) = F/0°° e~'y2(t)dt is the

unique W2'00 solution of

(1.9) -m"/2 + <p = x2, m'(-l//2)=0.

Therefore, we can see that for x > — 1/ ■fl, u(x) = <p(x) and, since yx(t) — x + wt

+ £„ where £, is the increasing process of the reflected diffusion, we have

(1.10) u(x)=Jx(t).

Now, for x < — 1/ -fl, if we take

yx,ß(() =y-i/fï(t),

we see that

Ä.«(0 = x + (-x- 1//2 ) + y.l/#(t)

and

yxj(t)=x + wt + v(t)    if   6(t)=l,+ (-x-l/fi).

Therefore u(x) = Jx(v), proving that, for some increasing cadlag process v,

u(x)=Jx(v),       x E R.

Now, using Itô's formula extended to semimartingales, we have

E{u(yxJt))e-'} = u(x) + 2?{ jfVV/2 - u) <fa)

+f{/VvU>-))<*£)

+EÍ 2 *-[«(ä,.(*)) - «(ä..(* -))]}.

2 Cadlag means continuous from the right and having left-hand limits.
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where £cs is the continuous part of v(t) if v is an arbitrary admissible control and s —

denotes the left limit in s. Using —u"/2 + u =£ x2, and the fact that the two last

terms are nonnegative since u' > 0, we obtain as t -» oo, if v is such that

Eu(yx¡v(t))e-' - 0,

u(x)<E[j\-,ylv(t)dt]=Jx(v).

But since it is enough to take v such that Jx(v) < /TO) = x2 + 1, and because for

these controls Eyxve~' -* 0, the proof is complete.

Corollary 1.1. The function u is the unique solution o/(1.8).

1.3. Problems with resource-constraint. Assume now that we minimize over the

same class of admissible controls as before, except that v, < K, Vt. Considering v, as

the cumulative amount of resource which is used for control up to time t, this is a

constraint on the total resource.

More generally, we introduce two processes,

(1.11) yxo(t) = x + w, + t>„       r\zv(t) = z - vt,

where t]zv(t) represents the remaining resource at t when we begin with z. A formal

dynamic programming argument for the payoff

(1-12) Jx,z(v)=Ey™e-<ylv(t)dt}

gives, for u(x, z), the following inequalities:

Lu = -u"/2 + u^x2,       u'-u'>0,
(1.13) \ ' x

[(Lu - x2)(u'x - u'z) = 0,    îorK>z>0,xER,

and

(1.14) Lu0 = x2,       u(x,0) = u0(x),    forz = 0.

As before we are looking for a solution in W2'x.

The problem is simplified by the following trick. We look for

(1.15) u(x,z) = h(x) + H(x + z),

where h is the unique solution of (1.8) and H(x) satisfies —H"/2 + H = 0 and

H s* 0. For u of the form (1.15), we immediately get (1.13). In order to also have

(1.14), we set u(x,0) = x2 + 1 = h(x) + H(x); thereforeH(x) = (l/e)e~X}/2.

Thus, defining

w(x, z) = x2+l- (l/e)e~x^ + (\/e)e~(x+z^,

we have u(x, z) = w(x, z) for x > —\/{l and z > 0, and for every x when z = 0.

Then for x < — 1/ \¡1,

either z> -x- l/fl and u(x, z) = w(-\/ Jl, z + x - 1/ fl )

or z < —x — 1/ ]fl and u(x, z) = u0(x + z),
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which means that, still for x < — 1/ v/2 if z > —x — 1/ -fl, we have u(x, z) = h(x)

+ H(x + z). We can check that we have enough regularity for u. Then one can

prove

Proposition 1.2. With the above notation we have

u(x, z) = inîJx z(v),
V

where the infimum is taken over all cadlag-increasing positive processes with v, < z,

t > 0 andJxz defined by (1.11) and (1.12).

Proof. Let us consider^ c(t) as in Proposition 1.1 and let t)z(t) — z — vt. Then

Itô's formula for semimartingales gives

Eu(yx(t), i)z{t))e-' = u(x, z) + fi{ jfV'(«"/2 - «) *}

+E{jy*(u'x-u'z)d^

+ f{ 1 [u(yx(s), r,z(s)) - u(yx(s -), „t(s -))]e~°}.

The last term can be written as

e{ 1 [u(yx(s), ,,(,)) - u(yx(s -), nz(s))]e-A

-e{ 2 [u(yx(s -), ,,(,-)) - u(yx(s -), ,.(,))]«-}.

Buty,.„ and tl, „ have the same jump term (i.e. the same jump instants and the same

jump amplitudes), therefore u'x — u'z s* 0 implies that the term is nonnegative. So is

F{/o e~s(u'x — u'z) di-cs), since £cs is increasing and u'x — u'z > 0. Therefore, we obtain,

as t -» oo,

w(x, z) *£ /x r(«)    for any v admissible.

Now if x > —\/y¡l and z > 0 we define

v, = z A |r,

where £, is the increasing process of the diffusion corresponding to

9"(x)/2   forx>-l/v/2,

9'(-l//2);
j4<P

ifx< -l/\/2 andz>0,

6, = |(x) + £

with

|(x) = -x-l/v/2     where z ^-x - 1//2,

£(x) = z where z < —x — l/y2 ;

and if z = 0 then t5r = 0. Here, we check that u(x, z) = Jxz(v).
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Corollary 1.2. We have:

(i) u is the unique solution 0/ ( 1.13), (1.14) in W2'°°.

(ii) When z -» 00, w(x, z)\m(x), the solution o/(1.8).

Of course (ii) is trivial in the analytical expression of u(x, z). It corresponds to the

fact that

u(x, z) = wî{Jx(v) : v E Uz)    and   u(x) = ml{Jx(v) : v E Ux}

where Uz increases when z increases and Uz E U^.

2. General formulation. Let (ß, ?F, P) be a probabilistic space, (w(t), t > 0) a

standard Wiener process in R^ and (9"', t > 0) a filtration satisfying the usual

conditions with respect to w(t) (i.e. 9"' is an increasing right continuous family of

completed a-subalgebras of 5", and w(t) is a martingale with respect to ?T ')•

Suppose V is the set of controls v( ■ ) which are progressively measurable random

processes from R+ into R^, right continuous having left limits and with local

bounded variation almost surely and finite moments.

We consider that the state of our system is described by the following stochastic

Itô equation:

(2.1) y(t) = x + v(t) + f'g(y(s)) ds + f'a(y(s)) dw(s),       t > 0,

where g and a represent the drift and the diffusion, and x is the initial state in R^.

We associate to the model (2.1) the payoff functional

(2.2) Jx(v) = E(jj(y(t))e~"'dt},

where /stands for the rate integral cost, a the discount factor, and t the horizon—not

necessarily finite.

The value function is

(2.3) û(x) = inf{Jx(v): vEVad),

where Fad C V is the set of admissible controls.

Remark 2.1. Clearly, if we set the problem in a finite horizon [0, F], we can add a

final cost to (2.2). This problem can be reduced to one of (2.1), (2.2) with a classical

change of data/, g, a.

By taking different Fad we have the following problems:

Example 1. We choose

(2.4) Vàd = {v E V: v is monotone almost surely}.

Then we are in the class of monotone follower problems. The one-dimensional case

with constant coefficients and particular rate integral cost was treated in Benes,

Shepp and Witsenhausen [3] and Karatzas [13, 14]. Also a deterministic case was

considered in Barren and Jensen [1].

Example 2. We suppose

(2.5) Kad = {v E V: v has variation less than a constant K).
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Then we are in the class of resource constraint problems or finite fuel follower

problems. Also if we use

(2.6) Fad = {v E V: v is absolutely continuous with derivative

bounded by a constant K},

we are in the class of bounded velocity follower problems. Some particular cases,

one-dimensional with constant coefficients and quadratic cost, were studied in

Bather and Chernoff [2] and Benes, Shepp and Witsenhausen [3].

Example 3. We choose

(2.7) Fad = [v E V: v has only jumps in RN+ }.

Then this problem is very close to the one arising in impulse control problems when

the fixed cost vanishes. Some results related to this case for bounded data were

considered in Menaldi, Quadrat and Rofman [18] and Menaldi and Rofman [20].

Our purpose is to characterize the value function û and obtain an admissible

optimal control v.

First, we establish some preliminary properties, next we give a characterization of

the optimal cost (2.3) in terms of the associated semigroup, and finally we consider

the convex case.

2.1. Some basic properties. We suppose

(2.8) g, a Lipschitz continuous in R^,

where g = (g¡ : i = 1,2,...,N) and a = (atj : i, j = 1,2,... ,N). Note that g and a

have at most linear growth.

Let p be a positive constant and define

(2.9)

' <*p =sup{[/>C,(x,y) \x-y\~2 +p(p - 2)C2(x, y)\x - y f4]+ : x, y ERN),

< C,(x, y) = (x - y)(g(x) - g(y)) + { tr[(a(x) - a(y))*(a(x) - a(y))],

C2(x, y) = \ tr{[(x - y)(a(x) - a(y))]*[(x - y)(a(x) - a(y))]},

where [ ]+ , tr( • ) and ( • )* denote the positive part of a real number, the trace and

the transpose of a matrix, respectively. Since g, a are Lipschitz, the constant ap is

finite and nonnegative. Clearly, if g is monotone decreasing and a is constant, then

ap = 0.

Lemma 2.1. Let (2.8) hold. Suppose we are given some positive numbers T, p. Then

we have the estimates

(2.10) E[foT\yx(t)-yx(t)fdt]

<clEÍfT\p(t)-v'(t)\pdt + \p(0)-v'(0)^}\,       p^2,

and

(2.11) E(\yx(T)-yx,(T)}»e-°T + (a-ap)JoT\yx(t)-yx,(t)\Pe-"'dt}

^\x-x'\p,       p>0,
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where yx(t), y'x(t), yx^(t) are associated with v, v', x' by the stochastic equation (2.1),

and the constant C depends only on T, p, N and the Lipschitz constants of g, a.

Proof. From (2.1) we deduce for 0 < t < F,

(2.12) E{\yx(t)-y'x(t)f)

<c(F{/V^)-^)r*)+£{|/o^)-/oV(^)f}),

where we have used (2.8) and the classical martingale estimate

(2.13) e\   sup   \f'h(s)dw(s)   \ < Ce\ (fT\ h(s) \2 dsY   L       p>l.

Hence, integrating (2.12) over (0, X), 0 =£ X =£ F, we obtain (2.10).

On the other hand, applying Itô's formula to the function

(z,t)^{e+\z\2)"/2e-<",       e>0,

and the process z(t) = yx(t) — yx>(t), we obtain

E{{e+\z(T)\2)p/2e-*T}

<(e+\x- x'\2)P/2 + (ap - a) F(e + \z(t) \2)P/''>"«'dt,

which implies (2.11) as e tends to zero.

Remark 2.2. We define, iorp, X>0,

(2.14) or) = sup{p(X + | z |2)""'[zg(z) + i tr(a*(z)a(z))]

+p(p - 2)(A + |z|2)"2(i tr[(za(z))*(za(z))]): z E R"),

and we have the estimate

(2.15) e[(X + \y?(T) \2)P/2e-r + {a - a$)f\x + \y?(t) \2)p/2 e^'dt)

^(X+lxl2)*72,       x£R",

wherey°(0 denotes the process given by the Itô equation (2.1) with v(t) = 0.

Remark 2.3. We also have the estimate

(2.16) FÍ   sup   \yx(t)-yx(t)f)<CE{   sup   \v(t) - v'(t)\"\,

which holds for anyp> \.

Let v(t) be any control in V. We define

(2.17) p7(r) = 2 [KJ) ~~ v(s ~ )]'   i.e. purely jumps,

(2.18) pc(r) = v(t) — vj(t),   i.e. continuous part.

We consider the following subsets of controls:

(2.20) Vc = {v E V: v continuous control},
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(2.21) Vj, = [v E V: v purely jumps control},

(2.22) Vj — {v E V:v impulsive control}.

Clearly we have V¡ E Vj and Vt ¥= V¡.

Lemma 2.2. Let vc, vj be arbitrary controls in Vc, V-, respectively. Then there exist

sequences {v'n : n = 1,2,...}, [v* : n = 1,2,...} in V¡, Vc, respectively, such that for

any T > 0, p > 1 we have:

(2.23) sup   \vc(t)-v¡,(t)\-*0   as n -> oo, a.s.,
o*/<r

(2.24) F\vj(t)-vcn(t)Ydt^Q   as n^ oo, a.s.

Moreover, ^(0) = vc(0) and >£(0) = v\0) for all n.

Proof. Let us define, for any fixed n,

(2-25) 1Í(0 = "'('/)    ifi,</<</+i,

where 0 = t, < t2 < ■ ■ ■ < t¡, t, -* oo as / -> oo, tl+ x — t¡ < \/n. We have

sup   \vc(t)-vj,(t)\<   sup   j     sup    \ve(t)-rc(tj)\\,

which imphes (2.23).

On the other hand, for h= \/n we define

(2.26) <(0 = i/'       r^(j) * + (A - f)+ KO).
" J(t-h)+

We have

(2.27) j»„c(í) -♦ »»y(i — 0)    for every / as n -» oo a.s.

Hence (2.24) follows.

Let Fad be the set of admissible controls. We will always assume that Fad satisfies

Lemma 2.2 with Vc n Fad, Vj n Fad instead of Kc, V}, respectively. This hypothesis

will not be recalled in what follows. Note that for Examples (2.4)-(2.6) this fact is

verified.

We assume that/(x) is bounded from below with polynomial growth. Moreover,

for the sake of simplicity, we suppose/(x) nonnegative, i.e.

(2.28) 0</(x)<C(l + |x|m),       xGR",

for some constants C> 0, m > 0. Clearly, if the horizon t is finite, we deduce from

(2.15) and (2.28) that the value function (2.3) is finite. On the other hand, if t is

infinite, we need to assume for m = p that

(2.29) there exist X > 0 such that a> ap given by (2.14)

in order to have a finite value function. Note that since ap is finite, (2.29) is satisfied

if the discount factor a is large enough. Moreover, assuming g and a to have

sublinear growth, i.e.

(2.30) |g(x)|+|a(x)|<C(l + |x|1_£),       x E R^,
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for some constants C, e > 0, we can check that a* tends to zero as X increases to

infinity. Then (2.29) is verified for any positive a.

Theorem 2.1. Let assumptions (2.8), (2.28), (2.29) and

(2.31) fis lower semicontinuous

hold. Then the infimum of the payoff functional (2.2) is the same over the following set

of controls: (1) Vàd, (2) Väd n Ve, (3) Fad n Vp (4) Fad n Vt. Moreover, Vc can be

replaced by locally Lipschitz controls with deterministic instants of jumps.

Proof. First of all, we remark that, similarly to Lemma 2.1, we can obtain the

estimate, for any 0 < t < F, e > 0,

(2.32) P(\yx(t)-yx(t)\>2e)

<C P(\v(t) - v'(t)\> e) +p(F\v(s) -v'(s)\2ds>p(e)>o)

where the constant C and the positive function p depend only on T, N and the

Lipschitz constants of g, a. The processesyx(t), yx(t) are associated with the controls

v(t), v'(t) by the stochastic equation (2.1) and v(0) = v'(0).

We choose any admissible control v E Fad. Then, using Lemma 2.2, there exists a

sequence of controls (v¡¡ : n = 1,2,...), v$ E F^n Vc such that

1 v^(t) — v(t) \2 dt -» 0   asn^>oo,a.s.
/:

Thus, by virtue of (2.32) and extracting a subsequence if necessary, we also have also

for almost every t > 0,

\y"it) ~.VxvO |~* 0   asn->oo,a.s.

Therefore, by Fatou's Lemma and (2.31), we deduce

liminf /,«)</»,
n

which shows the assertions (l)-(2). With the same arguments we complete the proof

of the theorem.

2.2. A nonlinear semigroup. In order to define the semigroup associated to the

model (2.1)-(2.3), we include in our control the probability space (ß, S", P), the

filtration 9"', the processes w(t), v(t) andy(i) related by (2.1). These sets are called

admissible systems 6E. For considering the case of a finite horizon t, we need to use a

new variable indicating the initial time. Then, for the sake of simplicity, we treat

only the case t = oo, i.e. infinity horizon. Moreover, the set of admissible controls

Fad is given by one of the examples (2.4)-(2.7).

We define

(2.33) S = [v : RN -» Rj , upper semicontinuous, Il vIIß < oo],

(2.34) ||oll, = sup(|ü(x)/5(x) | : x E R"},

(2.35) ß(x) = (X + \x\2yp/2,      p>0,
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where X, p have been chosen in order to satisfy (2.29). We always suppose that (2.28)

is verified for the same m= p.

We call <$, an r/-admissible system iîv(t) is Lipschitz continuous and

(2.36) i]\dv(t)/dt\<l,       t>0a.s.

Clearly, these kinds of controls are dense in V as r/ tends to zero.

(2.37) Jx(&, v, t) = EÍ[^f(yx(s))e-"sds + v(yx(t -))e"a'},

(2.38) [ß„(0»](*) = infW#> ». 0 •' #7j-admissible system}

and

(2.39) ß(/)tj = limß,(0e,
»)i0

being the limit decreasing. Note that if t; is lower semicontinuous, we have

(2.40) Q(t)v = infW$> ». 0 : 6Badmissible system}.

Theorem 2.2. Let (2.8) [g, a Lipschitz], (2.28) [f positive and m-degree polynomial

growth] and (2.29) [a > a* p > m for some X] hold. Suppose also that

(2.41) fis continuous.

Then (Q(t), t > 0) is a nonlinear semigroup on S having the following properties:

(2.42) ifv ES then Q(t)v E S and \\Q(t)v\\ ß < (a - a*)" Ml/lip + II o II ̂
(2.43) ifu, vES,u<v, then Q(t)u < Q(t)v.

(2.44) ifvn, vES,vniv, then Q(t)vn I Q(t)v.

(2.45) ifvES then Q(t)Q(s)v = Q(s)Q(t)v = Q(t + s)v.
Moreover, the value function

(2.46) m(x) = inî{Jx(&,0, oo) : (£ admissible system)

is the maximum solution of the problem:

(2.47) f indu E S suchthat Q(t)u —u,       t>0,

and also the equation of the dynamic programming is satisfied, i.e.

(2.48) m(x) = lim(inî{Jx(&, û, 6) : (Inadmissible))
rjiO

where 8 is any stopping time associated with the in-admissible control system &.

Proof. Clearly, by monotony in tj, we need only verify (2.42)-(2.45) for 2,(0

instead of Q(t).

The estimate in (2.42) follows from Remark 2.2, and assertions (2.43) and (2.44)

are trivial.

In a classical way (cf. Nisio [21] and Bensoussan and Lions [5]) the semigroup

property (2.45) is verified for / and v bounded and continuous. As in Lemma 2.1, we

can obtain the estimate

(2.49) EÍ\yx(t)\«e-a' + f\yx(s)\«e-asds) < C,(l + \x\")
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for x E RN, 0 < t < F, & any r/-admissible system, q > 0 and the constant C,

depending only on q, N, a and tj. Thus we have

(2.50) 110,(0« - o;(í)i/ii,< c„(il/-/'lU+ Ik - t/ig,

where 0^,(0»' denotes the function (2.38) with/', »' instead of/, u, and the constant

C depends only on #, V, a, t/, and || • || is the norm (2.34) with /J(x) = (1 + | x \q).

Therefore, given any / verifying (2.28) and any continuous v belonging to S, we

define

fk=fAk,   vk = vAk,       kER+,

and using (2.50) for /' = fk, v' = vk, q> p, we show that 0,(0 maps continuous

functions into continuous functions and that (2.45) holds for any continuus function

u belonging to S. Finally, approaching any upper semicontinuous function v by a

decreasing sequence of continuous functions, we complete the proof of (2.42)-(2.45).

In order to prove that w satisfies (2.47), we introduce

(2.51) uv(x) = inî{Jx(&,0, oo) : 6ET)-admissiblesystem}.

By density arguments, we have

(2.52) uvlû   asT/lO.

Thanks to (2.49), we can show that

(2.53) lim||ß,(/)o- ujß = 0,       v E S,
r—oo

which implies

(2-54) 0,(0", = ",,       t>0.

Hence, taking the limit as i\ -» 0 in

ß(0«, < ß,(/)«, < ô„<(0«„,     tï'>1»>

and using (2.44), (2.52) and (2.54), we obtain

Q(t)û<û<Qv,(t)û,       t,'>0.

Thus, the value function û verifies (2.47).

Now, if m is any solution of (2.47) we have u = Q(t)u < Qv(t)u, and by virtue of

(2.53) we deduce u < u , tj > 0. Therefore

(2.55) u*siû.

So û is the maximum solution of problem (2.47).

Finally, since the dynamic programming property (2.48) holds for u,, we conclude

by taking the limit.

Remark 2.4. In the case of Examples (2.5) and (2.6), we need not introduce the

rj-admissible control systems (2.36). Moreover, Q(t) have the same properties as

(2,(0> m particular we have (2.53) for Q(t), and then û is the unique solution of

problem (2.47). On the other hand, consider, formally, that Q(t)u = u, V t > 0, can

be written as

Lh</,       3m/3x,. 3=0,
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for the case of Example 1, (2.4). Then a penalized problem could be defined by

This is exactly the equation

ß,(0«, = «,,     ví>o.

We can justify this rigorously.

In order to obtain some regularity results for the value function û, we introduce

the following assumptions:

(2.56)    there exist constants c, r > 0 such that/(x) > c\x\m — r,Vx ERN;

for any e > 0 there exists C = C(e) > 0 such that
(2 57)

|/(x)-/(x')|<e(l + |x|m+|x'|m) + C|x-x'|m,   Vx.x'ER",

where m > 0 is the same constant used in (2.28).

Notice that if we have f(x) =/,(x)[|x| +f2(x)]m +/3(x), with /, / = 1, 2, 3,

bounded and uniformly continuous functions, fx(x) 5= c > 0, then / satisfies (2.28),

(2.56) and (2.57). Moreover, if some / has properties (2.28), (2.56) and (2.57), then

/ + /o also satisfies (2.28), (2.56) and (2.57) for any continuous function /0 belonging

to S (given by (2.33)) for some p > m. Note that (2.57) is stable under the

convergence in the norm II ■ Up defined by (2.34) îorp = m.

We also assume that g, a are sublinear, i.e.

there exist constants C, e > 0, m > e, such that

(2'58) |g(x)rvl + |a(x)rv2<C(l + |x|m-0,    VxER",

where a V b denotes the maximum between a and b,  and the constant a is

sufficiently large in order to have

(2.59) a > ap,    p = m,    defined by (2.9).

Note that under hypothesis (2.58), we can always assume that condition (2.29) is

satisfied.

Theorem 2.3. Let the assumptions of Theorem 2.2 hold. Suppose also that (2.56)

[ fm-coercive], (2.57) [/ uniformly continuous with m-weight], (2.58) [g, a sublinear

growth] and (2.59) [a > ap, p = m] hold. Then the value function û defined by (2.46) is

continuous and satisfies (2.57). Moreover, the dynamic programming is verified in the

usual sense, i.e.

(2.60) û(x) = mf{Jx(&,û,0):â),

where 6 is any stopping time associated with &.

Proof. First we show that there exists a constant C> 0 depending only on N, a,

g, a, m such that

(2.61) EÍfX\yx(t)\me-a'dt} <cll + | x \m + E¡ f°°\ v(t) \me-°" dt\ ),

(2.62) EÍf°°\v(t)\me-'"dt\ <CJl + \x\m + eÏJ™\yx(t)\me-a'dt\\.
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1-e'

(2.64) Elf   \yx(t)\me~a'dt\ <C(l + \x\m),

Indeed, from (2.1) and (2.58) we obtain the estimate

^{bxiO-KOr} <C|x|m + C(tm-] + t(m-X)/2)EÍf'\yx(s)\m~eds)

for m > 2. Hence, integrating over (0, F) with weight e~a', for e' = e/m we deduce

E[^\yx(t)-v(t)\me-«'dt)^C\x\'» + ciyE[j\yx(t)<

which implies (2.61) and (2.62) iî m>2. The case 0 < m < 2 is treated in a similar

way.

Next we prove there exists a constant C> 0 depending only on N, a, m, g, a, f

such that the infimum in (2.46) can be limited to those system controls 6£ verifying

(2.63) E[j'X>\v(t)\me-a'dt\ < C(l + |x|m).

Indeed, if &° denotes the free system, i.e. associated with v(t) = 0, we need only

consider in (2.46) systems & satisfying

Jx(&,0,ao)<Jx(&°,0, oo).

Hence, using (2.56) and (2.15) for p — m, we obtain

R"
'o J

Thus, combining (2.62) and (2.64) we deduce (2.63).

Now, we show that the value function û is continuous and satisfies (2.57). Indeed,

let & be any system control verifying (2.63) and (2.64). Suppose we are given a

positive constant e, then by virtue of (2.57), there exists some constant C = Ce such

that

I/mo) - /U(0) i< «o +1 >v(o r + \yx(t) r )
+ Cc\yAt)-yx(t)\m,      t>0.

Therefore, using Lemma 2.1, (2.11), (2.59), (2.63), (2.64) and (2.61) for x' instead of

x, we obtain

(2.65)

|/,.(<£,0,oo) -Jrx(ÉB,0,oo)|<eC(l + |x|m+ |x'|m) + CE(a - ap)~X \x - x'\m,

for some constant C independent of e, x, x'. Hence, because of inequality

\û(x') -û(x)\<sup{\Jx.(&,0,oo) -Jx(&,0,oo)\:â)

for & satisfying (2.63), we show that û satisfies (2.57).

Finally, since û is continuous, (2.60) follows from (2.48).

With the same technique, we can prove

Corollary 2.1. Under the assumptions of Theorem 2.3, and if

,       .      there exist constants O 0, I ^ y > 0, p = (m — y)   such that
(2.66)

\f(x)-f(x')\<C(l + \x\p+ \x'\p)\x-x'\\   Vx.xER",

the value function û is locally y-Holder continuous and satisfies (2.66).
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Remark 2.5. If m < 1, we can assume

(2.67) /uniformly continuous,

and then in Theorem 2.3 we do not need to suppose a large enough in order to have

(2.59). However, if we want to preserve condition (2.66) with the same exponent y,

then assumption (2.59) becomes useful.

Remark 2.6. If we suppose that the set of admissible controls verifies

|u(0|^û(0'   a.e. t > 0 and a.s. co,

(2.68) J /•»
f   \v(t)\me~atdt\ < oo,

then (2.59) can be dropped and Theorem 2.3 still holds. On the other hand, we

observe that if

(2.69) (x-x')(g(x)-g(x'))<0,   Vx,x'ER",

(2.70) a is constant,

ap = 0 for every p > 0, and (2.59) is satisfied for any a > 0.

2.3. The quasi-variational inequality. We study the Q.V.I, with a positive fixed cost

e > 0 and then let e tend to zero. The main difference with the result in Menaldi and

Rofman [20] is that herein we have / with polynomial growth. In Bensoussan [4], the

optimal cost is given as the minimum solution of a Q.V.I., however in this approach

the value function will be the maximum solution of a Q.V.I., and then under suitable

assumptions the Q.V.I, have a unique solution.

Let Vad be the set of admissible controls as in Example 3, i.e.

(2.71) Fad = {v E V: v positive impulsive control}.

We recall that c is a positive impulsive control if there exists an unbounded

increasing sequence of stopping times {8„}™=x (i.e. 0 < 6n < 8n+x, 8n -» oo) such that

(2-72) K0 = «.   it8„<t<8n+x,

where £„ is a random variable <öe" measurable and nonnegative in R^, i.e., £„ > 0, for

any« = 1,2,_

Let k(£) be a real function in R+ such that

(2.73) k(£) > 0, continuous.

We define the operator Me, for e > 0:

(2.74) Me:S^S,    [Mp](x) = e + inf{u(x + ¿) + k(£) : £ > 0),

and the differential second order operator A :

(2.75) L=4tr(ö*öSHe + a-

The integral or martingale formulation of L used in Menaldi [16] is the following:

If m, v E S we denote [Lu < v in D] when the process

(2.76) x, = /o ATv(y°(s))e~as dt + u(y°(t A T))e""a(/AT) is a strong

submartingale with respect to $ ' for any x E D,
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where D is a Borel set of R^ and t denotes the first exit time from D of the process

y°(t) which is given by (2.1) with v(t) = 0. We remark that we also set [Lu = v in

D] when the process x, is a martingale.

For the sake of simplicity, we restrict ourselves to the space of continuous

functions. We let

(2.77) C = {v E S : v verifying (2.57)}

where S is given by (2.33) with/) = m. Consider the problem:

(2.78) Find uEC such that u < Meu in R", Lu < /in R*.

The payoff function is

(2.79) j;(v) = E¡Cf(yx(t))e-«<dt + f (e + *(0)*~"j.

wherey(t) is defined by (2.1), and the optimal cost is

(2.80) ûe(x) = inî{Jx(v) : v positive impulsive controls}.

We use a weaker assumption than (2.56), namely

(2.81) f(x)>c\x+\m-r,       xER^,

for some constants c > 0, r > 0, the same m>0 appearing in (2.28) and x+

denoting the positive part by components of x, i.e. x+ = (x, A 0,... ,xN A 0).

Theorem 2.4. Let assumptions (2.8) [g, a Lipschitz], (2.28) [f positive and m-degree

polynomial growth], (2.57) [/ uniformly continuous with m-weight], (2.58) [g, a

sublinear growth], (2.59) [a > ap,p = m, see (2.9)], (2.73) [k positive and continuuos]

and (2.81) [/ m-positive coercive] hold. Then problem (2.78) admits a maximum

solution ûe which is given explicitly as the optimal cost (2.80).

Proof. First, we remark that as in Menaldi [16] we can show that the problem

(2.82) uEC,       u<t,       Lu </in R"

admits a maximum solution which is given as the optimal cost of a stopping time

problem. Thus, using the decreasing procedure of variational inequality introduced

by Bensoussan and Lions [5] (cf. Robin [22], Menaldi [17]), we define the sequence

(m" : n = 0,1,...) by induction:

(2.83) u°EC,       Lu°=finRN,

«° = u°, and given û"~x, we define w" as the maximum solution of problem (2.82)

with \¡/ = Meû"~ '. We also have the following interpretation of û":

(2.84) û"(x) = ini{Jx(v) : v have at most n impulses}.

Therefore, the function

(2.85) u* = lim we",
M-»00

satisfies

(2.86) «E S,       u<Meu,       Lu^finRN
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with u = u*. Clearly, u* is the maximum solution of (2.86). Moreover, u* 3= ûe given

by (2.80).

On the other hand, from (2.81) we obtain

E[fCC\y?(t)\me~c"dt) <C(l + \x\m),       i£R".

Since v(t) > 0 and |y |<|y+ | +|y — v \ , we deduce from (2.1) and (2.30), as in the

first part of Theorem 2.3, that

(2.87) EÎfœ\yx(t)\me'a'dt) < C(l + |x|m),

for some constant C> 0 depending only on N, a, m, g, a and /. Thus, in taking the

infimum (2.80) we can restrict ourselves to those impulsive controls verifying (2.87).

Hence, similarly to (2.65), we can prove that the value function we given by (2.80) is

continuous.

In order to complete the proof, we need only show that

(2.88) ««>«?•

Since u* satisfies (2.86), we deduce from the strong Markov property (cf. Robin [22],

Menaldi [17]) that

(2.89) u*t(x)<E\f'f(yx(t))e-°'dt+ f (e + kU,))e~ae
I/o ,= i

+ E{ut(yx(8n))e-^)

for any impulsive control v(t) verifying (2.87). Now, from (2.87) we have

liminfF{|.y(Or^a'} =0
r->oo

and, since

0<«*(x)<C(l + \x\m),

we can take the limit inferior in (2.89) and deduce

«;(*) < FJ/o°7U(OKa'dt +  1 (e + k(U)e-""},

which implies (2.88).

Corollary 2.2. Under the assumptions of Theorem 2.4, the optimal cost ûe defined

by (2.80) is the unique solution of the following Q.V.I.

,   qa\        Eind ûe E C such that ûe < Meue in RN, Lûe < / in RN, and

{2-90)        Lûe=fin[ûe<Meûe].

Moreover, the impulsive control associated to the continuation set [m£ < Meûc] is

optimal.

Proof. We set \p — Mtûe. Since wE is the maximum solution of (2.78), wE is also the

maximum solution of the variational inequality (2.82). Thus, the results on the
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stopping time problem with obstacle \p imply that ûe solves (2.90). Therefore, the

technique of building an optimal impulse control will give the uniqueness of Q.V.I.

(2.90).
For the sake of completion, we construct explicitly the impulsive control associ-

ated with the continuation set. Let u be any solution of (2.90). Thanks to (2.81), we

can find a Borel measurable function £(x) such that

[Mcu](x) = e + *(£(*)) + u(x + É(x))

for every x E R^, £(x) > 0- We define an impulsive control v = {8n, £„}"=1 by

induction as follows:

Öo = 0,

dy0(t) = g(y°(t))dt + a(y0(t))dw(t),       t>0,

y°(0) = x,

8n+x = M{t > 8n : u(y"(t)) = [Meu](y"(t))),       n = 0,l,...,

with 8n+x = oo if the set is empty,

Ín = i(y"-\9n)). «=1,2,...,

with £„ = 0 if 6„ = oo,

dy»(t) = g(y"(t)) dt + a(y"(t)) dw(t),       t > 8„,

yn{8„)=y"-x(8n) + in,   ii6n<cc,

ym(t)=y"-l(t),     o^t<e„.

We have from the strong Markov property that

(2.91) u = EU\y(t))e-°'dt + | (e + fc({<))e"«''J +E{u(y"(en))e-><>»),

where y(t) = y(t, v), y(t) - y"(t), 0 =s t < 8n. Since k, u > 0 and e > 0, we deduce

8n -» oo, and v defined above is an impulsive control. Moreover, for simplicity

assume m > 1, so v verifies (2.87) and (2.63). Hence

(2.92) liminfF{(|y(0 \m + | "(0 \m)e~°") = 0.
r->oo

Noting that

\y"(6n)\^\y(0n)\+\v(en)\    and   0<w(x)<C(l + |x|m),   VxER",

we can take limit inferior (or limit since the limit must exist) in (2.91) as t tends to

infinity. After using (2.92) we obtain the equality

(2.93) u = ElÇf(y(t))e-"dt+  f (e + ¿(UK"*],

which completes the proof.

We can introduce the space

Wl = {v : RN -> R, locally Lipschitz with [v] m < oo},
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where

(2.94) [v]m=l sup{|(l + |x|2p/2,;,(x)|:xER"},
¿=i

v , being the derivative of v with respect to xt, andp — (m — 1)+ .

Consider the problem:

.       .        Find we E S n W¿ such that ûe < MfiE in R", Lûe </ in

^       '        ^'(RN), and LÛE = /in <5'([fie < MuJ).

We have

Corollary 2.3. Let the assumptions of Theorem 2.4 hold. Suppose also that

(2.96) /belongs to W^.

Then the Q. V. I. (2.95) has one and only one solution ûe which is given explicitly as the

optimal cost (2.80).

Proof. First, as in Theorem 2.3, we show that the value function ûc belongs to
Wx.

Next, using convolution techniques we can prove, as in Menaldi [16], that for any

u, v belonging to S which are locally Lipschitz continuous, we have

(2.97) Lu «s v in D if and only if Lu < v in ^'(D).

Hence, we complete the proof.

Remark 2.7. A result similar to Corollary 2.1 holds under the assumptions of

Theorem 2.4, i.e., we have

(2.98) \û(x)-û(x')\<C(\ +\x\p + \x'\p)\x- x'\\       x,x'ERN,

for some constants C> 0, 1 > y > 0, p = (m — y)+ , provided (2.66) holds.

Now let e tend to zero and define

(2.99) û(x) = limû Í»,       x E RN,
EiO

where the limit is decreasing.

Consider the problem:

(2.100) find uEC such that u *£ Mu in RN, Lu < /in R^,

where C is given by (2.77) and M = M0 is defined by (2.74).

Theorem 2.5. Let the assumptions of Theorem 2.4 hold. Then û, defined by (2.99), is

the maximum solution of problem (2.100). Moreover, û is also an optimal cost, i.e.

(2.101) "(x) = ini[jx(v) : vpositive impulsive control),

where Jx(v) is given by (2.79) with e = 0.

Proof. The technique is similar to Menaldi, Quadrat and Rofman [18] and

Menaldi and Rofman [20]. We just outline the proof.

First, since the limit (2.99) is decreasing and M «s Mc, we can show that û, defined

by (2.99), is the maximum solution of problem (2.100) with C replaced by S, i.e., we

do not know if û is continuous.
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Next, as in Theorem 2.4, we can prove that for any solution of (2.100) in S, we

have

(2.102) u<u*,

where u* is the right-hand side of (2.101).

Finally, (2.102) implies û = «*, and, since u* is continuous, the proof is com-

pleted.

Remark 2.8. Since û is continuous, the limit (2.99) is uniform over any compact

set of R*.

In order to have an optimal impulse control when k(0) = 0, we assume

(2.103) k(t)>0,   ¿=¿0   and    lim |É|_1A:(É) = oo.

We consider the problem:

find û E S n W^ such that û *£ Mû in R\ Lu «s/in ^'(RN),

Lû=finûî)'([û<Mû]),

where W¿ is defined by (2.93).

Corollary 2.4. Let the assumptions of Theorem 2.4 hold. Suppose also that (2.96)

[fin W¿] and (2.103) [infinity derivative of k at zero] hold. Then the Q.V.I. (2.104)

has one and only one solution û which is given explicitly as the optimal cost (2.101).

Moreover, the impulsive control associated with the continuation set is optimal.

Proof. We just need to combine the techniques of Corollaries 2.2 and 2.3. The

crucial fact is to show that the sequences {8n, £„}^=1 defined in Corollary 2.2 have

the property

(2.105) 8n -» oo    as n -> oo a.s.

Indeed, we have

(2.106) *({„) = ù{y*-\enj) - û(y"-x(8n) + £„).

Thus, if 0 < m < 1, fi is Lipschitz continuous in the whole R^. From (2.106) we have

k(£n) < C | £„ | for every n, and using hypothesis (2.103) we obtain

(2.107) |¿„|>c>0.

Since k(£) > 0, £ ¥= 0 and continuous, we deduce from (2.107) and

(2.108) El f k(in)e-a9\ < û(x) < oo

the assertion (2.105). On the other hand, we suppose m > 1. Because of (2.108), {£„}

have to be bounded a.s. and

(2.109) k(Qe-a6" ^0   as n -* oo a.s.

Now, from (2.106) and since û belongs to W^, we have

(2-110)                           k(U<C{l + \y(8n)r-x)\U-
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Then, if 8n is bounded, (2.109) implies k(£„) -» 0, and by (2.103) we must have

£„ -> 0. But, using (2.110) we obtain \y(8„) \m~x -> oo, which again implies (2.105).

Therefore, (2.105) holds and the proof is completed.

Remark 2.9. We can generalize Corollary 2.4 to the case of / locally Holder

continuous with an w-weight.

Remark 2.10. Notice that Corollary 2.4 includes a particular result of a one-

dimensional case studied in Vickson [23].

Remark 2.11. Note that under the assumptions of Theorem 2.4 and (2.96), the

optimal cost û given by (2.101) is always (even if k(£) = 0) the maximum solution

Q.V.I. :

(2.111) find u E S n W^ such that « < Mm in R", Lu </in ^'(R"),

where W„ is defined by (2.93).

Remark 2.12. Observe that the characterizations (2.78) and (2.100) hold for any/

in S and a > 0 not necessarily verifying (2.59) provided we replace the space C by

the space S in the formulation of the Q.V.I.

2.4. The convex case. We assume

(2.112) /convex and g, a constants,

and

(2.113) Fad convex closed in Lm,       m>\,

where Lm denotes the Banach space of all measurable functions (class of functions)

from R Q X ß into R^, with norm

(2.114) \\v\\Lm=ÍE^j°°\v(t)\me-aldt)

Note that Example 1, i.e. (2.4), verifies (2.113). Throughout this subsection we fix the

probability space ß in order to have a fixed space Lm.

Theorem 2.6. Let assumptions (2.28) [/positive and m-degree polynomial growth],

(2.56) [/m-coercive], (2.112) and (2.113) hold. Then there exists an optimal admissible

control v, i.e.

(2.115) û(x) =JX(P),

where û is defined by (2.3).

Proof. Since g and a are constant, we have y(0 = y°(0 + KO- Hence, the map

v -» Jx(v) is convex and continuous in Lm. Therefore, using the fact that we can

restrict the infimum over a bounded set in Lm as (2.63), we prove (2.115).

Remark 2.13. If the set of admissible controls Vad is a bounded set of Lm, we can

assume that g, a are linear instead of constants and Theorem 2.6 holds.

Remark 2.14. We can replace assumptions (2.112) and (2.113) by

(2.116) Fad is compact in Lm,

and Theorem 2.6 still holds.

Remark 2.15. Under the assumptions of Theorem 2.6, the value function û is

convex.

i/m
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Remark 2.16. Almost every result in this section can be extended to the case of an

unbounded domain OCR" with a coefficient c(x) instead of the constant a.

3. Characterization of an optimal policy—one-dimensional case. We consider the

Q.V.I. (2.100) with n = 1, i.e.

Lu= -W(x)u"-g(x)u' + au<f(x),       x E R,

' u(x)<u(x + t),       £>0.

We will assume that ( / ^ 0)

f(x) -> +00 when|x|^ oo,       /EC'(R),

(3.2) /(x)/(l +x2) <#   and   a2(x)>yo>0,       K, y0 constants,

there exists r > 0 such that/'(x) > y0 > 0,       x > r.

Theorem 3.1. Under the assumptions of Theorem 2.4 and (3.2), there exists a

maximum solution u of (3.1) in W2'x. Moreover, the function u is twice continuously

differentiable and there exists x E R such that on [x, oo],

Lu=f,       x>x, u'(x) = 0,

and on ]-oo, x],

m(x) = u(x),       x < x.

Proof, (i) We first begin with the penalized problem

(3.3) ùi. + (l/«)(u;r=/,       ueEW2^.

If we let vve = — u'e, (3.3) can be written

\a2w't + gwe + (\/e)w; = Fe

where FE = / — aue is bounded in L" uniformly w.r.t. e. Since a2(x) > y0 > 0, we

can write

(3.4) m/ + ße(x)we = Mt(x)

with

ß(x) = lki±iA M(x) = F'-{l/t)w'

PA   } a2/2      ' A   } a2/2        '

Then we have

y"00

(x) = /   e-lkß<(x+s)dsMc(x + s) ds.
'0

,2Since | g(x) |< kx for some constant, a /2 < k2, and since

Mjyx) ^ 2F6(x)/a2 « k3(\ + x2),

we have

w£x)<Fe-y-%{l + (x-tf)dt
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with ye = (\/k2)(l/e — kx), which is strictly positive for any e small enough.

Therefore, we get

we(x) ^ ke(\ + x2)   and    (l/e)w+ (x) ^ k(l + x2),

and we can conclude that

(l/e)(u'e)   is bounded in Lx uniformly w.r.t. e.

Thus classical arguments added to the proof of convergence of ue to u show that

u E W2'x, proving the first statement of the theorem. Then we are able to say that u

is the maximum solution of

(3.5) uEW2-x,   Lu<f,   u'>0,    (Lu-f)u' = 0,   a.e.inR.

(ii) Now let us prove that there exists r E R such that u'(r) > 0. Let an arbitrary

r E R be given. Define

w(x) = 0, if x < r,

w(x) = c(x — r),    if x > r, withe > 0.

We can always choose r and c such that, thanks to (3.2), for x s= r,

Lw = — yc + ac(x — r) *£/.

Therefore, one can check that w satisfies (3.1) so we must have w < u. But, since u is

increasing («' s= 0), u > w shows that we can find some pointy > r where u'(y) > 0.

(iii) Now let x > 0 be a point where u'(x) > 0. Let us prove that u'(x) > 0, x s= x.

Assume this is not the case. We can take w(x) = u(x), x < x, and w a solution in

W2-K of

Lw~f   forx>x,       w(x) = w(x) 3= 0,       w'(x) - u'(x) > 0.

Since, for x > 0 large enough, /' > y > 0 we have w' > 0 for x > x, which would

imply w > u if for some x > x, u'(x) = 0. Therefore, if u'(x) > 0, u'(x) > 0, x > x.

(iv) Notice that there exists x such that u'(x) = 0. If not, we would have u'(x) > 0

for every x E R, which implies u — u°, the unique solution in W2-x of Lu° = f. But,

clearly, since/(x) -> +oo where |x|— oo, we have u°(x) -> +oo when |x|-> oo

which cannot allow (u°)'(x) > 0 for every x.

(v) Then let x = max(x : u'(x) = 0}. From (ii) and (iv), x is well defined and

finite. Let us prove that if x «s 3c, we have u'(x) = 0. Suppose this is not the case.

Then there exists a pointy < x such that u'(y) > 0. Define y = min{z > y : u'(z) =

0}. Hence on [y, y] u is smooth, u' > 0 and Lu = /. As x approaches y from the left

we deduce au(y) </(y) since

»"(?-) = um M'('>-B>~><0.
xîy x- y

Thus, the function

\u(x),     forxS=y,
w^x> = 1   <-\      (

[u(y),    torx<y
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is a solution of (3.5) satisfying w(y) > u(y), which contradicts the maximum

character of u.

(vi) It remains to prove that u"(x) is continuous. We need only show that

(3.6) u"(x+) = hm     v   ' _ _     ' = 0.
x ix X       X

Indeed, as x approaches x we deduce, from the right,

- (cj2/2)m"(x+) + au(x) =f(x),

and from the left,

au(x) </(x),

since u"(x — ) = 0, u'(x) = 0. Hence we have u"(x + ) < 0. On the other hand,

since u' achieves the minimum at x, we obtain u"(x + ) > 0, which implies (3.6).

We now give the analogue of Proposition 1.1. Let (ß, 5", P) be a probability space,

(5" ', t 3= 0) a nondecreasing right continuous family of completed sub-a-fields of S",

and wr a standard Brownian motion in R with respect to 5" '.

We denote by yx v(t) the diffusion process defined by

(3.7) yxJt) =x+ f'g(yXtV) ds + f'a(yxJ dws + v„

where v, E V = set of cadlag, increasing, positive processes adapted to 9" '.

For vEV, let
JfOO

e-a'f(yxJt))dt,
o

we already know from §2 that

w(x) = inf Jx(v).

For some point x E R, letyx(0 be the reflected diffusion associated with (3.7) on

[x, oo):

yx(t) - x+['g(yx) ds + f'a(yx) dws + £„
•'o ■'o

where £, is the increasing process of the reflected diffusion. Then we state

Theorem 3.2. Under the assumptions of Theorem 3.1 we have

u(x) = inf{/,(») : v E V) = Jx(v)

where

vt = max(x — x, 0) + £,,   with x — max(x : u'(x) = 0},

and |, the increasing process corresponding to the reflected diffusion starting at

max(x, x).

Proof. The proof is identical to the proof of Proposition 1.1 in §1. Indeed, it is

enough to see that one can define uniquely the reflected diffusion on [x, oo) with

x = max(x : u'(x) = 0} as defined in Theorem 3.1. Then, since Lu — f on [x, oo),

and u'(x) = 0, we immediately have

u(x) = Jx(v)    iorx>x.

The result for x < x follows from the fact that u(x) — u(x).
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Corollary 3.2. The function u is the unique solution of (3.5).

We can now consider the limited resource case: For a given K > 0, we set

(39) Lu(x,z)<f(x),   a.e.xER,zE(0,K],

ü'x-üz>0,       (Lü-f)(ü'x-ü'z) = 0,

(3.10) ü(x,0) = u°(x),       Lu°=f.

Theorem 3.3. Under the assumptions of Theorem 3.1 the system (3.9), (3.10) has a

solution W2-x.

Proof. As in Proposition 1.2, we define

(3.11) w(x, z) = u(x) + H(x + z)

for x > x, where u and x are defined in Theorem 3.2 and H(x) satisfies

(3.12) LH = 0   on[x,oo)       and       HEW2'00.

We have on [ x, oo), for z > 0,

Lü<f,       ü'x-ü'z = u'x>0,       (Lü~f)(ü'x-ü'z) = 0.

H is then uniquely defined by the condition

u(x,0) = u°(x) = u(x) + H(x)

which gives

(3.13) H(x) = u°(x)-u(x).

Hence (3.11) holds for x > x, z E [0, K\.

Now for x < x:

(i) if z 3= x — x,

m(x, z) = k(x, z — (x — x)) = u(x) + H(x + z),

which means that (3.11) is still valid for x < x, z 3= x — x, since u(x) = u(x) for

that case,

(ii) if z < x — x,

¿7(x, z) = ¿7(x + z,0).

Then, by construction, ü satisfies (3.9), (3.10) and has the desired regularity which

comes from the regularity of u and H.

We also have the stochastic interpretation of ¿7. Let v be as previously defined and,

for vEV,

yx,vU) = x+ [ g{yXiV) ds + f'a(yxv) dws + vt,

£z,t/0 = z — v,. We now restrict v, to Vz= {v E V, v, < z). Then let yx be the

reflected diffusion on [x, oo) (x defined in Theorem 3.2) and \x(t) the corresponding

increasing process.
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Theorem 3.4. We have

(3.14) u(x,z) = inf{Jx(v):vEVz),   u(x, z) = Jx(vxz),

where Jx(v) is given by (3.8),

(3.15) vxz(t) = [(x - x) V 0 + fev,(0] A z

and A, V denote minimum and maximum, respectively.

Proof. Itô's formula for semimartingales:

(3.16) E{u(yx,v(t),tZtV(t))e-"<}

= u(x, z) + E\j'e-as(-Lu) ds\ + e\j'e-as(u'x - u'z) dvc(s)\

+e{ 2 [y(y^),U^))-"(Ao(^-),U^-))]^as]-

The last term is written

e{ 1 [u(yxv(s -) + Av(s), «„(* -) - Ao(J)) - u(yxv(s -), U' -))}e~as\,

and since u(x + f, z — £) > u(x, z), £ E ]0,z], this term is positive (when z > 0).

Using (3.9), F(/0' e~as(u'x — u'z) dvc(s)) is positive (since v is increasing) and we see

that

u(x, z) <Jx(v)   whenz>0.

Now when z = 0, Lu = /and V0 = {0}, therefore u(x, 0) = Jx(0). As we have seen in

Theorem 3.3 on [ x, oo) we have, for z > 0,

Lu=f,       (u'x-u'z)(x,z) = 0.

Since the increasing process associated with yx(t), namely £x(t), is increasing only

whenyi/) = x, and since (u'x — u'z) = 0, we can see that (3.16) is reduced to

«(x, z) = F{/V«'/(yx(0) *} + E{e-"u(yx(r),0))

where t = inf(i > 0, ¿z(i) = 0).

Taking

tU0 = £c(')Az

since

yx,v(t) = x+ f'gds+ f'adws + vxz(t)

means that for t > r,yx A[t) is the nonreflected diffusion, we have

E{u(yx(r),0)e—}=EÍ[e-^Ce-aj(yx¡e(s))dsy

Therefore

u(x,z)=Jx(vxz).

A similar argument completes the proof when x < x.
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Corollary 3.4. The function u is the unique solution of (3.9), (3.10).

Remark 3.2. From the stochastic interpretation it is clear that when z -> oo,

u(x, z)lu(x), the maximum solution of (3.1).

4. Some multidimensional problems. Let us consider the «-dimensional case for

(3-1),

Lu<f,   u(x)<u(x + 0,       ¿ER"+= {zER",z,3=0,/ = l,«},

that we will take under the form

n

(4.1) Lu<f,      u't>0,      (Lm-/)II«Í = 0.
<-=i

4.1. Separable case. This is the simple case where

(4.2) aa*(x) = diag(a2(x,),.. .,a„2(x„)},

n

g(x) = {gx(xx),...,g„(xn)),       f(x) = 2 /(x,).
/=1

In that case, we can look for a solution of the form u(x) = 2"=, w¡(x¡) where

(4.3) L,w,<f„   ^R,       w;>0,       (F,h>,.-/>/ = 0,

and L¡ associated to a,(x,), g,(x,).

If w¡ satisfies (4.3) for every i, we will have (4.1) since u'(x) — w/(x,). Therefore,

one can immediately apply the results of §3. Of course this case is trivial, but one

can notice that the corresponding problem with a fixed cost e > 0 is not decomposa-

ble, i.e., where we have Lut <f,ue<e + inf ut(x + £).

4.3. Convex case. Assume that g, a, f satisfy the conditions underlying that u is

convex; see §2, (2.112). Then consider (4.1) with u E W^x. We state the following

result in the case n = 2, but the result is general.

Theorem 4.1. Under the assumptions (2.28), (2.56), (2.112) and (3.2) and if,

moreover, u'x, u'y are continuous then there exist two nonincreasing functions y -» <p(y)

and x -> t//(x) such that

(44) Vy,     u'x(x,y) = 0   Vx<<p(y),

1 ' ' u'x(x,y)>0   Vx><p(y),

Vx,     u'y(x, y) = 0    Vy<i^(x),

(4'5) M;(x,y)>0    Vy >*(*)•

Proof, (i) We first have that Vy, 3 x such that Vx 3= x, u'x(x, y) > 0. In fact the

proof is strictly identical to the one-dimensional case using the function

,       ,       f 0 for x «£ x,
w(x, y) =      /       _x     ,       .  _

[c(x — x)    forx>x.

By symmetry, we get that V x, 3 y such that V y 3= y, u'y(x, y) > 0.

(ii) Vx, 3 y such that 3 y <y, u'v(x, y) = 0. If not, 3 x s.t. Vy 3 y *£y and
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u'(x, y) > 0. Since u is convex and increasing, this implies

(4.6) u'y(x, y) > 0, y E R.

Thus, first assume that u'x(x, y) > 0, y E [ — oo, y], withy arbitrary. Then u satisfies

the equation Lu = / on some region [x — tj, x + tj] X [ —oo, y], and from the

assumptions in /we should have u(x, y) -» +00 when y -» — 00, which contradicts

the fact that w is increasing.

Now assume that u'x(x, y) = 0. We then have u'x(x, y) — 0, x < x. We will show

that u'x(x, y) = 0, y<y. Indeed assume that u'x(c) > 0, where c(x, y), y<y.

Denoting a — (x, y), b = (x, y), d = (x, y), x < x, we have

(4.7) K(6) = ii(fl)>t<(c)>i<(<0

and one can assume u(x, y) < u(x, y) on the line (d, b). Also, we denote by a' the

first point above c such that u'x(a') > 0 and we obtain that situation. Therefore

(4.8) u(x,y)<u(x, y)<u(a) = u(b)

on the line (d, b).

But since u(b) = u(a) and u is increasing, we must have u'y(b) < u'y(a). But in

view of (4.7) and (4.8) this is not possible. Hence u'x(x, y) = 0, y <y. But there, we

have for x = x,

on ( — 00, y), and since the right-hand side is greater than/, we still have u(x, y) ->

+ 00 as y -» — 00, contradicting that « is increasing.

Finally, this proves (4.6). Of course, by symmetry, we have y, x such that x < x,

u'x(x, y) = 0.

(iii) Then (i) and (ii) imply that we can take

(¡p(y) = max{x: u'x(x, y) = 0},   t//(x) = max(y: u'y(x, y) = 0}.

(iv) Proving (ii), we have seen that if for some a ux(a) = 0 and u'v(a) > 0, we

cannot have u'x(c) > 0 for xc = xa, yc <ya at least when u\, > 0 on the line (c, a).

Now assume that ux(a) — 0, u'(a) = 0. There it is clear that since u is convex and

increasing, ux = uy = 0, for every (x, y) such that x < xa, y <ya. Therefore we

have that <p(y) is nondecreasing. By symmetry, ^(x) is nondecreasing.

5. Diffusion with jumps. Let (ß, 5", F) be a probability space, w, a standard Wiener

process in R", (Zt)t>0 a Poisson process with values in R" — {0} with Levy's

measure m, and corresponding random measures/» and q (see Lepeltier and Marchai

[15] and Bensoussan and Lions [6]).

Let b, a be Lipschitz continuous and bounded in R", b take values in R", a in

£(R",R"), and aa* = a is nonnegative but eventually singular. Also let y(x, z) be

defined in R" X (R" — {0}) with value in R" such that for some constants K, K',

f      \z\2m(dz)+(      \z\m(dz)<K,    and
J\z\<] J\z\>\

I      I y(x, z) — y(y, z) \2m(dz) =£ K' \ x — y |2.
J\z\<,\
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Let

b(x) = b(x) + I y(x, z)m(dz) — I y(x,z)m(dz).
■'|i|«Sl,|Y(;i,z)|>1 •'|z|>1,|y|«1

Thenyx(0 is defined as the (unique) solution of

(5.1) yx(t) =x+ fb(yx(s)) ds + f'a(yx) dw,

+ ('(     y(yx(s-),z)q(dsdu) + f'f     y(yx(s),z)p(dsdu).

Existence and uniqueness of the solution of (5.1) can be found in Lepeltier and

Marchai [15] and Bensoussan and Lions [6]. However, if

(5.2) S(x,A) = f        xA{y(x'z))m(dz),       ^ a Borel subset of R" - {0},
•/R"-{0}

then the infinitesimal generator of the Markov process defined by (5.2) is given by

(5.3) Lu(x)=-\   2  flv(jc)_^ + 2Ä(^

+ f [u(x + z) -u(x) -z-Vu(x)l(\z\<: l)]S(x,dz).
■/R¿-{0)

Most of the results of §2 can be extended to that kind of process, and this will be

done in detail in another paper of the authors.

Here we only give a simple one-dimensional example allowing explicit computation.

Let us consider

(5.4) Lu = X(u(x- l)-u(x)),       A>0,xER.

This means that the uncontrolled process is x — Nn where N, is a Poisson process

with parameter X, i.e. an inventory control problem with Poisson demand.

Then we look for the maximum solution of

(5.5)

-X(m(x - 1) - u(x)) + au(x) <x2,    t/(x)<w(x + £),       £ ^ 0, x E R.

Taking X — a = 1 for the sake of simplicity, we look for x E R and u(x) solution

of (5.5) such that

(5 6) jw(x) = w(x),       x<x,

[(u(x) — u(x)) + u(x) = x2,       x<x<x+l,

and then, successively on each interval [x + «,x + n-l- l]we solve

(u(x) - u(x - 1)) + u(x) = x2.

Hence, some analysis gives x = 0 and

'u(x) = \x2,       0<x<l,

- M(x) = ^x2 + i(x- l)2,       Kx<2,

and so on...,
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we get a regular solution of (5.5), and one can show, using Itô's formula for

semimartingales as in §1, that u(x) < Jx(v) for any adapted process v with bounded

variation. Moreover, using the work of Chaleyat-Maurel, El Karoui and Marchai [9]

on reflected diffusion with jump, we can say that there exists an increasing process

v(t) corresponding to the generator

(5.8) Lw(x) = -X(w(x- 1) - w(x)),   x^x,       wx(x) = 0,

and thus,

x 3= x,       u(x) = Jx(v).

Therefore, taking a control £ equal to P on x 3= x, and £ equal to one immediate jump

to x where x < x, we are in the same situation as in §1 and the control £ is optimal.

6. The case of bounded cost. Let us assume that

/is bounded and continuous.

Then by general results or impulse control of Markov Feller processes (cf. Robin

[22], Menaldi [17]) we know that

ue(x) = inf F;) re~a'f(x,) dt + 2 e"aT'e]
* Wo ,>! /

is the maximum solution of the set of inequahties

w < e-a'*(t)w + fe-as®(s)fds,

(6-1) .   °
w < M w = e + inf w(x + £),       w €= C.

£»o

It is clear that ue(x) is decreasing when e |0 and

0 < ut, < ue < || /11/«,       e'<e.

Therefore, we easily show that m(x) = hmE^0 ue(x) as the maximum element of the

set of functions w such that

w *si e-°"®(t)w + f'e~as^(s)fds,    w(x) < w(x + ¿),       | 3= 0,
•'o

w E F = space of bounded measurable functions.

Moreover « is u.s.c. Specializing this situation to diffusion processes with the

assumptions of §2 (Lipschitz continuous coefficients), we get that ue is equicontinu-

ous and, therefore, u is continuous and ue\u uniformly on every compact subset of

R".

In the one-dimensional case, one can still obtain a characterization of the continua-

tion set as in Theorem 3.1 under the assumption that

(6.2) /£C](R),

and

,     s rx > 0 such that for any finite r2 > rx, f'(x)^y(rx,r2)>0

^ ' ' for every x such that rx < | x | < r2.

Note that (6.3) allows us to show that if u'(x) > 0 at some point x>sx, then

u'(x) > 0 on any interval [x, r2] by the same argument as in Theorem 3.1(iii).
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