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UNIFORMLY EXHAUSTIVE SUBMEASURES

AND NEARLY ADDITIVE SET FUNCTIONS

BY

N. J. KALTON1 AND JAMES W. ROBERTS2

Abstract. Every uniformly exhaustive submeasure is equivalent to a measure. From

this, we deduce that every vector measure with compact range in an F-space has a

control measure. We also show that c0 (or any E^-space) is a Xspace, i.e. cannot be

realized as the quotient of a nonlocally convex f-space by a one-dimensional

subspace.

1. Introduction. The purpose of this paper is to study and provide partial solutions

for two questions which arise naturally in the study of F-spaces (complete metrizable

topological vector spaces). Both of these questions have attractive formulations

independent of F-space theory.

It is well known that the control measure problem for countably additive vector

measures is equivalent to a classical problem of Maharam [11] on the existence of a

control measure for a continuous submeasure. We now describe our results on this

problem, giving first a different but equivalent formulation of the Maharam problem

in terms of exhaustive submeasures.

Let 6E be an algebra of sets. Throughout this paper a measure X on & is, unless

otherwise stated, positive and finitely additive. A submeasure <í>: 6E -> R is a map

satisfying

(i)<b(0) = O,

(ii)<b(A)^<p(B),A EB

(iii) <j>(A Ufi)< <t>(A) + <t>(B), A, BE a.

§ is exhaustive if

(iv)lim„^oo«i.(^„) = 0

for every disjoint sequence (An : n E N) in &.

Two submeasures <i> and \p are equivalent if <b(An) -» 0 if and only if 4>(An) -» 0.

Maharam's problem asks if every exhaustive submeasure is equivalent to a measure.

A submeasure <i> is pathological if whenever X is a measure with 0 *£ X < 4> then

X = 0. If there is an exhaustive submeasure not equivalent to a measure then there is

a nontrivial exhaustive pathological submeasure. Examples of pathological submea-

sures have been constructed in [2,14 and 21]; unfortunately these are not exhaustive.
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In [21] Talagrand defines a submeasure <¡> to be uniformly exhaustive if given e > 0

there exists «EN such that for any disjoint sets A x, A 2, ...,An,

min <í>(^4,) < e.

Clearly if <p is equivalent to a measure it is also uniformly exhaustive. Our main

result, which answers a question of Talagrand, is that <¡> is equivalent to a measure if

and only if it is uniformly exhaustive. This implies, for example, that every vector

measure with relatively compact range has a control measure.

The second question was raised in [7]. In [7] it was asked whether there is a

nonlocally convex F-space X containing an uncomplemented line L such that

X/L =s c0. This can be reduced to a problem on set functions [8]. We answer this by

showing that there is a universal constant C < 45 so that whenever 6£ is an algebra of

sets and /: â -» R is a map satisfying \f(A U B) — f(A) — /(5)|=£ 1 whenever

A n B = 0, then there is an additive set-function fi: 6£-> Rwith|/(^) — /x(j4)|< C,

A E&. This implies that if X/L = c0 then X is locally convex and so L is

complemented (and X = c0). Similar conclusions hold for any ß^-space.

The main technique employed is the idea of a concentrator. We describe this in

§2. As certain types of graphs these have been studied in several recent papers (see

[4] and associated references). In fact we need only very elementary facts about

concentrators, and our requirements are satisfied by Proposition 2.1, which was

shown to us by E. Szemeredi. Although this is sufficient for our qualitative results,

the constant in Theorem 4.1 can be improved by using a more complicated result of

Pippenger [13, Proposition 2.2].

Finally we recall for future reference that an F-norm on a real vector space is a

map x \-> || x || satisfying

(i) llxll >0,x^0,

(ii)limf_olUxll = 0, x E X,

(iii) ||ax|| < llxll, \a\< l,x E X,

(iv)||x+y||< Hxll + l|y||,x, y EX.
A quasinorm xh> ||x|| satisfies

(i)'llxll >0, x^O,
(ii)' II ax || =| a | ||x||, a E R, x E X,

(iii)'||x+y||<C(||x|| + \\y\\),x,yEX

for some constant C.

A quasinorm is p-subadditive (0 < p < 1) if || x ||p is an F-norm. A locally bounded

F-space can be topological by a p-subadditive quasinorm for some/?, and is called a

quasi-Banach space.

2. Concentrators. If m E N then [m] will denote the set {l,2,...,m} and 2[mX is

the collection of all subsets of [m]. If m, p E N and R: [m] -> 2[jPl is a map, then for

E E 2[m] we define

/<[£]= URO).
j<=E

For any set ^4 let | >4 | denote the number of elements in A.
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If m, p, q, r E N where m> p> q, then we say that a map R: [m] -» 2lpX is an

(m, p, q, r)-concentrator if

®27=,|Ä(/)|<im,
(ii) | /?[£] |>| E | whenever £ E 2{m] with | £ |< q.

R may be alternatively considered as a bipartite graph or a subset of the product

space [m] X [/?]. In the case/7 = q concentrators have been studied in a number of

articles (see [4,12,13]). The following result is apparently well known and its proof

was shown to the authors by E. Szemerédi.

Proposition 2.1. Suppose m, p, q, r EN with 3 *s r «s a </? *£ m, and 2e2mqr~2

*£pr~x. Then there is an (m, p, q, r)-concentrator.

Proof. Let Q be the set of all maps R: [m] -» 2lp] so that | R(j) \ = r for; E [m].

Then

|0|= (,')".

Let P be the probability measure on ß given by

F(A)=|A|/|0|.

Suppose F E | p | with | F | = n where r < n < q. Then

p(R(j)EF) = (;)•(;)
-1

sS

If £ C [m] with | £ | = n then

/>(*[£] C£)=  0W)cf)^.
jGE P

Now let A be the set of R so that | R(E) | < | £ | for some £ E 2[r] with | £ | < q.

Then

p(a)<   2   />(*[£] cf)< £ C)(;T)^.

l*l = |i|

We next use the estimate n ! > n"e"" to obtain

7
Now pick any R g A and Ä is an (m, /?, a, r)-concentrator.

Proposition 2.1 will supply all we need in this paper for qualitative results.

However for certain quantitive results we observe that a more delicate argument of a

similar nature has been used by Pippenger [13] to show:

Proposition 2.2. For every m E N there is a (6m, 4m, 3m, ^-concentrator.

Fix r E N and 0 < o, e < 1. We shall say that H(r, S, e) holds if there are

sequences of integers {mk), [pk), {qk) so that mk -^ ao,pk/mk < S and qk/mk > e,
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and for each k there is an (mk, pk, qk, /^-concentrator. For fixed r E N and £ > 0

let

8(r,e) =inf{S:i/(r,S,e)holds}.

Proposition 2.3. (i) 8(r, e) < (2e2)1/(r_ '>E(<-2)/(r- V(r> 3).

(ii) 8(6, j-) < f.

These are immediate from the preceding propositions.

3. Applications to submeasures. Let Q be an abstract set and let éE be any algebra

of subsets of £2. For A E âwe denote by \A the characteristic function of A, so that

\A: ti-*R.

Lemma 3.1. Let 4>: A -» R be a submeasure with the property that for some a, ß > 0

whenever «EN, and Ax, A2,...,An E & are disjoint then 2"=1<í>(yí,) < an + ß.

Suppose Bx,...,Bm Eâandm-X2JLX\B > (I - e)\Q. Then for r EN with r> 3,

1    m

- 2 4>(B,)><l>(a)-ar-fiO(r,e).
¡=i

Proof. Suppose first Bx,...,Bm E & with
1   m

-2iB,>(i-«)ia
i=i

and there is an (m, p, q, /^-concentrator R: [m] -> 2lp] where q/m > e.

Let S be the collection of £ E 2[m] with | £ |< q. For every £ -* S there is

one-one map /£: £ -* [/?] with fE(j) E R(j) for / E £; this follows from Hall's

Marriage Lemma [5].

For £ E S define

cE= D (Q\A)n C\Bk.
keE keE

By hypothesis on Bx,...,Bm, U£egC£ = fi.

For ; E [m] and/ E [p] let

¿0.= U(Q:iE£,/£(/) = /).

.d,- ■ ¥= 0 implies that/ E jR(í') and hence the number of nonempty sets {A^} is at

most rm.

For fixed j E[p], the sets {A^; i E [m]) are disjoint. Indeed if AtJ and Akj

intersect then for some £ E S, CE E Ai} and CE C y4fcy. so that i,k E E and

/e(0 = /e(^) =7- Thus /' = A:. If «y denotes the number of nonempty sets {A^; i E

[m]), we have
m

2*(A,j)<anj + ß
f=i

and hence

P      m P

1   2 4>{¿u) <a2»j + ßp< amr + ßp.
7=1,-1 j=\



uniformly exhaustive submeasures 807

On the other hand for / E [m],

p

2*U-;)>*( U AtJ) = *( U cE) = *(o\b,)>*(q)-*(*,■)■
j=\ yje[p]      i y i<EE      '

Thus
m

m<f>(ñ) - 2 </>(£,.) < amr + ßp
i=i

so that

i    m

¿2*(*,)>(*(Q)-ar)-0¿.
/= i

Now suppose instead that there is an (n, p,q, /^-concentrator where m < n and

q>en. We can apply the above argument to the collection of sets [Bx,...,Bm)

repeated í = [n/m] times and n — ms copies of Œ. We obtain

ms    1   ^    , „.   ,  n — ms   ,„,        ,_,. „ p
-S *(*,■) +-<»(8)>*(Ö)-ar-)8^.
n    m .  , n v   ' «

i= i

Thus if i/(r, ô, e) holds we obtain

1
2 *(*,-) >*(Q)-ar-j8fi

and so

1
2 *(!?,.) >4>(Q)-ar-jB0(r,iO.
i= i

Let Q C 6E be a collection of sets. We define the covering index /( 6) of 6 to be the

supremum of all t > 0 so that there exists Cx,...,Cn E ß with

;= 1

If <f> is a submeasure let

ß(<#>;o)= {C:*(C)<«}.

The following proposition collects the facts on the covering index that we shall

require:

Proposition 3.2. (i) (Kelley [10]). If G E & is any subset there is a measure it:

éE - R with ii(C) < J(G) (C E ß) andp(Q) = 1.

(ii) (Christensen [1]). If <¡> is a nontrivial pathological submeasure, J[G((b; 8)] = 1

for every S > 0.

Theorem 3.3. Let § be a uniformly exhaustive pathological submeasure. Then

<f> = 0.

Proof. Suppose <¡>(ñ) > 0. Then there exists ÍVeNso that if Ax,... ,AN+X are

disjoint

min    4>(AI)<^(Ü).
l«;;«;jv+l



808 N. J. KALTON AND J. W. ROBERTS

Thus for any disjoint collection [Ax,... ,A„) we have

n

2 <b(A,)^Lsn<b(Q) + N<l>(ti)
1=1

Let 6 = î<f>(Œ) and suppose Bx,..., Bm E Q($; 8) and
1    m

i=i

Then by Lemma 3.1 with r = 3,

ff(3,ij)A$(a)>i*(0).

By Proposition 2.3, there exists e > 0 so that A0(3, e) < y. Thus

/(e(*;«))<l-ie.

By Proposition 3.2, this is a contradiction, so that we must have <¡> = 0.

Theorem 3.4. Lei <f>: 6E -» R ¿>e a submeasure. Then a necessary and sufficient

condition that <j> is equivalent to a measure is that <b be uniformly exhaustive.

Proof. Of course if $ is equivalent to a measure, <j> must be uniformly exhaustive.

The converse is a standard deduction from Theorem 3.3 (cf. [1 and 20]) which we

give for the sake of completeness. The argument is based on one used by Talagrand

[21].
Let en -> 0 be such that for every disjoint collection Ax,...,An E 6E we have

mini«,«n<í,(^,) < En- Choose (¡x,,: i E I) a maximal collection of nontrivial mea-

sures so that 0 < u, < <¡>, and if /' ¥=j,

p, A tt (0) =  inf (p,(A) + Pj(Q\A)) = 0.
A<E&

For any ju,,... ,n¡ and tj > 0 we can find Ax,.. .,An E <$. disjoint so that u,(Aj) >

H,(il) - t\,j = 1,2,...,«. Hence

minu,..(Q) =£en + tj.
j^n     '

Since i) > 0 is arbitrary,

nuncio) <e„.
j<n     '

It follows that the collection (jtt, : i El) is either finite or countably infinite.

Hence there are (c, : i E I) so that c¡ > 0 and 2c, = 1. Let jit = 2/e/c(.u,-. Then ¡j. is a

measure on 6E which is equivalent to <f>.

In fact <t>(An) -* 0 implies n¡(An) -» 0 for every i E I and hence ¡i(An) -> 0.

Conversely suppose u(^4„) < 2"" and define

xP(B) = lim\im<t>\B D    U   ^   •
m      "        \ k=m+\        I

\f/ is a uniformly exhaustive submeasure on 6E. Suppose i> is a measure on & so that

0 « v < \b.
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Since $ is exhaustive, for any m E N,

Thus

and hence

Now, for i E I,

IP n

lim   hm <f>    U Ak\ U Ak\ = 0.
n-oop-oo     \n+] m+1

limt//(fi\ U Ak\ =0
m+l

lim v\Q\ Ü Ak\ =0.
"^°°   \      m+i     /

y A/tf.(Ö) < if  0\ U A A +c;x -2-
\ m+\        Im+l

so that v A fii. — 0 for /' E I. By the maximality of /, we conclude v = 0 and hence ip

is pathological. Thus ^/ = 0 so that \imm^cc^>(Am) = 0.

4. Approximately additive set functions. Let éE be an algebra of subsets of a set £2

and let /: éE -» R be any function. We shall say that / is A-approximately additive if

f(0) = 0 and given A, B E & disjoint we have \f(A U B) - f(A) -f(B)\< A. The
following theorem solves a problem posed by the first author (explicitly in [8] and

implicitly in [7]).

Theorem 4.1. There is a universal constant K < 45 with the property that if f:

éE -» R is A-approximately additive there is an additive function u: 6B -» R vv/iA

|/M)-H(iO|<*A.

Proof. It obviously suffices to consider the case A = 1. We also note that it

suffices to consider the case of a finite algebra &. Indeed suppose the theorem is

proved for every finite algebra and that & is an infinite algebra. Then for every finite

subalgebra f of 6E there is an additive map /%: *íF-> R with \f(A) — li^(A) |< A",

A E§. Extend each /% to # by setting n9(A) - 0 for A E éE\f. Order the

subalgebras ÍF by inclusion. Then the set {/%} is contained in the compact subset

[g : | g(A) \*^\f(A) | +.TY} of R& and so has a convergent subnet. The limit ¡u of this

subnet is the required additive map ¡x: & -» R with |/(^4) — w(/l) | < Ä", A E éE.

Thus we suppose éE is finite and, in fact, éE = 2ß. For any function g: éE -» R with

g( 0 ) = 0 we let

K(g)=   max (g(i4)-f(B)).

If /: 2fl -> R is 1-approximately additive, select an additive ju: 2n -» R so that

V( f — u) is minimized. Let g — f—f., and suppose

maxg(^4) = a,        ming(^) = -6
Ae& ASS,



810 N.J. KALTON AND J. W. ROBERTS

where a > b (if b > a consider instead -g in the ensuing argument). Then

\f(A)-p.(A)\<a,       AE&.

Note that g is 1-approximately additive.

Select S C Q so that g(S) = a. If B E S then g(B) ^ g(S) - g(S\B) - 1 > -1.

Now define <i>: 2s -» R by

(¡>(A)= 1 + supg(5),       ^ ¥= 0,
BCA

= 0,       ,4 = 0.

Then <#> is a submeasure. If Ax,... ,An E S are disjoint then there exist B¡ C At

(1 =s /' =£/j)sothat

i=i i=i

=s n + 2 g(B\ U • • ■ U5„) + « - 1 < 2« + (a - 1).
i=i

Note also that <¡>(S) = a + 1.

We now estimate J(ß) where (2= 6(4>;4^). Suppose X: 2s -» R is a measure

satisfying \(S) = 1 and X(/l) < { whenever A E 6. We consider the map h: 2a -» R

given by

A(/l) = g(4) -X(¿ n S),       AEti.

Then by the original choice of /x we have V(h) > a + b. However we shall show that

for ,4 E&,

-b-\<h(A) <a-{,

and thus obtain a contradiction.

Suppose h(A) 3* a — \, then g(A) >■ a — {. Now

g(A\S) ^ I + g(A U S) - g(S) ^ I

so that

g(A ns)> g(A) - g(yl\S) - 1 > o - f •

If 5 CS\,4,

g(5) *£ g((¿ n 5) U 5) - gU n 5) + 1 < I

so that 4>(S\A) < |. Hence X(S\A) < { and X(¿ D S) > A. Thus A(y4) < a - \,

contrary to assumption.

Now suppose h(A) < -b - \. Then g(A) < -b + { and if B E A n 5,

-Hi>gM)^(5) + g(Ai)-l.

Hence g(B) < f and <t>(A flS)< 2f Thus, X(A nS)<j and hence

h(A)>g(A)-{>-b-{,

contrary to assumption.

Now V(h) < a + b, contrary to assumption to li. We conclude that for every X:

2s -> R with X(S) = 1 then there exists ^ E S with \(^) > |. By Proposition 3.2

this implies J(Q) > {.
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Now we claim that since G is finite there exist C,,..., Cm E G so that

1 1   *

i= i

In fact J(G)~X is the solution of the linear programming problem:

Minimize:   2 xc
Ceß

Constraints:   2 xcx-c(o:) ** 1>   we^
cee

xc>0.

Any basic feasible solution (xc : C E G) of this problem has xc rational for every

C E G. (See, for example, [20, p. 14].) Thus J(Q) is rational and

2 J(e)xc\c>-\ia
cee L

Now by choosing m as a greatest common denominator of (J(G)xc: C E G) and

repeating sets as required we can find Cx,...,Cm E G with

15.        1
2 1C|>~10.m "   c-     2
i = i

Now by Lemma 3.1 for any r E N,

f>~ 2*(Ç)>(« + l)-2i-(«-l)*(r,è).
i= i

If r is chosen so that 8(r, {) < 1,

a<(7 + 4r-2i(r,i))/2(l-«(r,i)).

Proposition 2.3(i) (depending only on Proposition 2.1) shows there exists r E N so

that 8(r, {) < 1. However 2.3(h) gives a better estimate (depending on 2.2), i.e.

8(6, $)<f. Hence

7 + 24-4/3^89

2/3 2

Remarks. The problem of determining the best constant K is unsolved. B. Pawlik

has communicated to the authors an example to show that K > § is necessary.

5. The control measure problem. Let X be an £-space, and let éE be a o-algebra of

sets. Let /x: 6E -> A' be any countably additive vector measure. A control measure À

for « is a countably additive scalar measure X: & -> R such that X(An) -» 0 implies

Ilju(y4n)|| -> 0. It is well known that the Maharam problem is equivalent to the

problem of the existence of a control measure for a countably additive vector

measure. In this section we show how the results of §3 give us some positive results.

Theorem 5.1. Suppose ¡x: éE -» X is a countably additive vector measure with

relatively compact range. Then ft. has a control measure.
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Proof. We define for A E 6E,

llwll(^)= sup ||»(5)||.
B<ZA

Then || » || is a submeasure on éE. We claim that II » II is uniformly exhaustive.

Given e > 0 pick an integer r so that ||r-'ju(/l)|| ^ \e for A E 6E; this is possible

since »(éE) is relatively compact and hence bounded. Pick JVgNso that u(éE) can

be covered by N sets AT,,... ,K„ of diameter at most e/2r. LetAx,... ,ArN be disjoint

sets in éE, and suppose \\n(A¡)\\ > e, i = \,2,...,rN. Then there exists/<# and

i, < i2 < • ■ ■ < ir so that n(Ah) EKjiorl=l,2,...,r. Thus

llu(^)-wU)ll<e/2r

and hence

Thus

and so

/=i
A u u-'/iU-,)

r"V|  IM,| -|»U.)

I»(A)I

e/2.

e/2

contrary to assumption.

We conclude that

mm   || m | [B,)

for any collection of disjoint sets Bx,.. ,,BrN.

Now let X be a measure equivalent to ||»||. Then if An I 0, ||w||(y4n)J, 0, i.e. X is

countably additive, and clearly X controls ».

Corollary 5.2. //, in addition to the assumptions of the theorem, » is nonatomic,

then u(éE) is a compact convex set which is locally convex.

Proof. The fact that »(6E) is convex is shown in [9] for quasi-Banach spaces, but

the argument goes through unchanged. Now since » has a control measure, the set

co »(éE) is quasiconvex in the sense of [6,Theorem 4.1], i.e. it has enough continuous

affine functionals to separate points. Hence being compact it is locally convex.

Remarks. Corollary 5.2 has a geometrical interpretation. There are compact

convex sets which are not locally convex [16,17] and do not satisfy the Krein-Mil-

man Theorem. However the closure of the range of a vector measure (sometimes

called a zonoid) can never be such a set.

Now suppose X is a quasi-Banach space. We shall suppose X is equipped with a

quasinorm || • II which is /»-subadditive where 0 < p < 1. We say that lx is (crudely)

finitely representable in X if there exists c > 0 so that for every «EN there is a

linear embedding T: l"x -* Xso that cllxll < ||Tx|| < llxll, x E /£,.
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Theorem 5.3. Let X be a quasi-Banach space and suppose lx is not finitely

representable in X. Then every countably additive vector measure »: éE -» x has a

control measure.

Proof. Suppose »: éE -» X has no control measure. First we observe (see [19]) that

co»(éE) is bounded so that if c,,..., c„ E R andAx,...,An E éE are disjoint,

2 Cip(A,)
i=i

*S M max I c,

If <p(A) — supBC/4||»(i?)||/' then <¡> is a submeasure which cannot be uniformly

exhaustive. Hence for some 8 > 0 and any n E N we can find disjoint (An , : 1 < /' *£

n) in ÉE so that ll»(^„,,)ll » e. Define Tn: lnx -> A by

T„(x) = M"1 2 *,mK,,).
i=i

Then HTJI < 1 and ||Tn(eA)|| > A/~'ô for each basis vector e¿. (1 < A: < «). Now by

a theorem of Drewnowski [3], lx is finitely representable in X, contrary to assump-

tion.

6. Twisted sums. In [7] an £-space X was defined to be a Xspace if whenever Y is

an £-space with a one-dimensional subspace (a line) L E Y so that Y/L s X, then L

is complemented in Y, so that Y s X © R. In [7] it is shown that the Banach space /,

is not a espace (see also [15,18]) while lp (1 < p < oo) is a espace. The problem

raised in [7] is to determine whether c0 is a espace; in this section we show that

Theorem 4.1 shows that c0 is a espace.

More generally we recall that a Banach space X is an ß^-space if there is a

constant c > 1 such that for every subspace F of X with dim £ < oo there is a

further subspace of G of X with G D £ and dim G = m < oo and a linear isomor-

phism T.G^l™ so that ||71 II • IIT"11| < c.

If A is a Banach space then a functional/: A -> R is called quasilinear if for some

constant A = A(/) and any x,, x2 E X,

(i)|/(x, +x2)-/(x1)-/(x2)|<A(||x,|| + ||x2||),x„x2E A,

(ii)/(/x) = tf(x), tER,xEX.

We recall Proposition 3.3 of [7].

Proposition 6.1. Let X be a Banach space. Then X is a %-space if and only if for

every quasilinear map f: X -^ R there is a linear (not necessarily continuous) functional

h: X -» R with \f(x) — h(x) |< Lllxll, x £ X, for some constant L.

We observe that if /is quasilinear and x,,... ,x„ E A then

\i'=1       / 1=1 \A:=1 /

This is proved by a simple induction (cf. Lemma 3.2 of [7]).

Let ß be a finite set and let IJSl) denote the space of all real functions on ß with

the usual sup-norm.
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Proposition 6.2. Let f: /^(ß) -» R be a quasilinear map. Then there is a linear

functional h: /Jß) -» R vw7« |/(x) - h(x) |< 100A||x|| where A = A(/).

Proof. The set function A\-+f(\A) for A C ß is A-approximately additive and so

there is an additive set-function » with |/(^4) — ¡x(A) | < 45A, A E2a (Theorem 4.1).

Let h be the natural linear extension of » to /^(ß). Then g = f — his quasihnear and

|g(l/4)|=£45A,,4E2S2.

If x E /Jß) then x = 2w6£2x(w)eu where eu = l{u}. Thus

g(x) -   2 *(")#(O <|ß|2A||x|

and so

|g(x)|<(|ß|2 + 45|ß|)A||x||.

Now suppose 0 < x < la. Then for suitable A,,... ,Am E 2n,

x-  2 —Aa,
k=\ L

<2"

and

Thus

Hence

2
k=\

jk    Ak 2
k=\

*0J A2
k=\

2k
2A.

I  ^  2* '/), 47A.

|g(x)|<47A + 2-'"(|ß|2-r-45|ß|)A + A(l +2~m).

Letting m -» oo, | g(x) |«£ 48A.

Now for any x E /^(ß) with x — u — v, where w, u > 0, and ||u||, ||u|| < ||x||,

then

|g(x)|<|g(u)|+|g(t>)|+A(||u|| + Hüll)

< (48A + 48A + 2A)||x|| < 100A||x||

as required.

Theorem 6.3. Let X be a Banach space with is an t^-space. Then X is a espace.

Proof. Suppose that /: X -» R is a quasihnear map with A = A( / ). There is a

constant c > 1 so that whenever F C X is a finite-dimensional subspace, there is a

finite-dimensional subspace G with G D F and a linear isomorphism £: G — /™ with

lir-'IKc.
Let £ be any finite-dimensional subspace of X and choose G D £ as above. Then

/o r-1 is quasilinear on/™ with A(/ ° r_1)< IIT-'IIA.

Hence there is a linear map h: I™ -» R with

II/(r-'w)-«(«)!< lOOiir-'ilAHwii,     «ec
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Define dF: F -> R by dF(x) = h(Tx). Then

|/(x)-o'£(x)|<100||r-1||A||rx|| < lOOcAllxll,       xE£.

Ordering the finite-dimensional subspaces of X by inclusion we obtain a net of

functions dF: X -» R where a"*(x) = aVix) (x E £) and o"*(x) = 0 for x £ F. For

any x E X,

\dF(x)\< lOOcAllxll + |/(x)|

and dF has a subnet converging pointwise to a linear functional d: X -» R. Clearly

|/(x)-d(x)|< lOOcAllxll,       xEA.

Corollary 6.4. 77ie Banach space e0 w a %-s/?ace.

Theorem 6.5. Lei X be a quotient of t^-space. Then X is a %-space.

Proof. Let Y be an Ê^-space, Q: Y ̂ > X a quotient mapping, and /: X -» R a

quasihnear map. Then/° Ö is quasihnear on Y so that there exists a linear map h:

Y -» R with |/o g(y) - /i(y) |< L||y||, y E 7, for some constant L < oo. If y E

Q'x(0), | «(y) |< L||y ||, and so by the Hahn-Banach theorem there is a continuous

linear functionaly* E Y* with ||y*|| ^ L so thaty*(y) = h(y) fory E ô_1(0).

Now h — y* = d ° Q for some linear functional d on A.

If x E X and x = Qy then

|/(x) - rf(je) | = |/(ßv) - d(Qy) |<|/(ßy) - A(y) | +|y*(y) |< 2L||y||.

Hence

|/(x)-¿(x)|<2L||x||,       xEX,

and A is a %space.

Remark. We recall ([7, Theorem 4.10]) that if A is a espace and Y is any £-space

with a locally convex subspace N such that Y/N = X, then Y is itself locally convex.

We conjecture that a Banach space A is a espace if and only if lœ is not finite

representable in A* (or equivalently A does not contain uniformly complemented

/" 's). In this context we remark that the assumptions of Theorem 4.7 of [7] already

imply this conclusion.

References

1. J. P. R. Christensen, Some results with relation to the control measure problem, Vector Space

Measures and Applications. II, Lecture Notes in Math., vol. 645, Springer-Verlag, Berlin and New York,

1978, pp. 27-34.

2. J. P. R. Christensen and W. Herer, On the existence of pathological submeasures and the construction

of exotic topological groups, Math. Ann. 213 (1975), 203-210.

3. L. Drewnowski, Un théorème sur les opérateurs de lx(T), C. R. Acad. Sci.Paris Sér.A 281 (1976),

967-969.

4. O. Gabber and Z. Galil, Explicit constructions of linear size superconcentrators, J. Comput. System

Sei. 22 (3) (1981), 407-420.

5. P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935), 26-30.

6. N. J. Kalton, Linear operators whose domain is locally convex, Proc. Edinburgh Math. Soc. 20 ( 1976),

293-299.

7. _, 77?e three space problem for locally bounded F-spaces, Compositio Math. 37 (1978), 243-276.

8. _, Problem 5 (p. 284), Measure Theory and Its Applications (Proc. Conf., Northern Illinois

Univ., 1980, G. A. Goldin and R. F. Wheeler, editors), DeKalb, Illinois, 1981.



816 N. J. KALTON AND J.W. ROBERTS

9. _, Isomorphisms between spaces of vector-valued continuous functions, Proc. Edinburgh Math.

Soc. (to appear).

10. J. L. Kelley, Measures on Boolean algebras, Pacific J. Math. 9 (1959), 1165-1177.

11. D. Maharam, An algebraic characterization of measure algebras, Ann. of Math. (2) 48 (1947),

154-167.

12. M. S. Pinsker, On the complexity of a concentrator, 318/1-318/4, 7th Internat. Telegraphic Conf.,

Stockholm, June 1973.

13. N. Pippenger, Superconcentrators, SIAM J. Comput. 6 (1977), 298-304.

14. V. A. Popov, Additive and subadditive functions on Boolean algebras, Siberian Math. J. 17 (1976),

331-339. (Russian)

15. M. Ribe, Examples for the non-locally convex three-space problem, Proc. Amer. Math. Soc. 73 (1979),

351-355.
16. J. W. Roberts, Pathological compact convex sets in the spaces Lp, 0 <p < 1, The Altgeld Book,

University of Illinois, 1976.

17._, A compact convex set with no extreme points, Studia Math. 60 (1977), 255-266.

18. _, A non-locally convex F-space with the Hahn-Banach approximation property, Banach Spaces

of Analytic Functions, Lecture Notes in Math., vol. 604, Springer-Verlag, Berlin and New York, 1977, pp.

76-82.

19. S. Rolewicz and C. Ryll-Nardzewski, On unconditional convergence in linear metric spaces, Colloq.

Math. 17(1967), 327-331.
20. M. Simonard, Linear programming, Prentice-Hall, Englewood Cliffs, N. J., 1967.

21. M. Talagrand, A simple example of a pathological submeasure, Math. Ann. 252 (1980), 97-102.

Department of Mathematics, University of Missouri, Columbia, Missouri 65211

Department of Mathematics, University of South Carolina, Columbia, South Carolina

29208


