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AN APPLICATION OF ASYMPTOTIC TECHNIQUES

TO CERTAIN PROBLEMS OF SPECTRAL AND

SCATTERING THEORY OF STARK-LIKE HAMILTONIANS

BY

MATANIA BEN-ARTZI

Abstract. Let L0 = -A + V(xx), L = L0+ Vp(x) be selfadjoint in L2(R"). Here

V, V are real functions, V(xx ) depends only on the first coordinate. Existence of the

wave-operators W±{L, L0) = s-lim,^£ooexp(ifL)exp(-;rL0) is proved, using the

stationary phase method. For this, an asymptotic technique is applied to the study of

-d2/dt2 + V(t) in L2(R). Its absolute continuity is proved as well as a suitable

eigenfunction expansion. V is a "Stark-like" potential. In particular, the cases

V(x\) — (-sên *i) | *! |a, 0 < a < 2, are included. Vp may be taken as the sum of an

//-function and a function satisfying growth conditions in the + x, direction.

Vp{x) = | x I"' is included.

I. Introduction. It is the purpose of this paper to present an application of a new

asymptotic technique to the study of certain problems which are related to the Stark

Hamiltonian -A — xx.

Consider first a one-dimensional Schrödinger operator H0 = -d2/dt2 + V(t) in

L2(R), where V(t) is a real function. H0 is symmetric when defined on C™(R). An

extensive study of its selfadjoint extensions is given in [7]. Rejto and Sinha [14] used

the JWKB method to prove the absolute continuity of H0, subject to certain

assumptions on the relative decay of V, V" with respect to V. Our model is closely

related to [14]. We allow the leading term in V to behave as±|x|2asx^ + oo.

Roughly speaking, we assume that this term is smooth and that the relative rate of

decay of its derivatives at infinity improves with successive differentiation. The

detailed assumptions on V are listed in §11.

In §111 we state three asymptotic lemmas which constitute the main technical tool

in our study. They are concerned with questions of existence and regularity of

asymptotic (oscillatory or exponentially decaying) solutions of the equation H0y = zy

where z is in a neighborhood of the spectrum. Precise asymptotic expansions are

obtained, which in a certain sense are generalizations of the Jost solutions [13,

§XI.8]. The proofs of the lemmas are sketched in the Appendix.

In §IV we study the operator L0 = -A + V(xx) in L2(R"), where V(xx) is as

above. In fact, we note that by standard function-analytic theorems we only have to

deal with H0 in L2(R). Utilizing the asymptotic lemmas we prove the essential
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selfadjointness of L0. Also assuming that

lim   V(t)--ao, hm inf V(t) = T> -oo,
f->+00 f-»-00

we prove the absolute continuity of H0 over (-00, T). We go beyond that and

establish an eigenfunction expansion theorem for the part of H0 in (-00, T). Thus,

for example, we show that the opertors -d2/dt2 — (sgn OUT' 0 < a < 2, are all

absolutely continuous (and, in fact, unitarily equivalent) over (-00, 00). A Coulomb-

like perturbation can be added to each of them without changing this result.

In §V we add a multidimensional perturbation V(x) and study the existence of

the associated (partial) wave operators for L0, L = L0 + V, defined by,

W±   =   s-lim exp(itL)exp(-itL0)E0(-tx>,T),
<->±oo

where {£0(X)} is the spectral family of L0. We combine here Cook's method and

stationary phase estimates [10] for the eigenfunction expansions. Note that in the

Stark case, V(xx) = -x,, the generalized eigenfunctions are Airy functions.

§VI is a specialization of the theorems of the previous sections to the family of

operators having the form

Ta = -A-(sgnx,)|x, |",       0<a<2.

As stated earlier, they are all absolutely continuous and unitarily equivalent.

However, due to differences in some features of their eigenfunction expansions, the

assumptions imposed on a multidimensional perturbation J^,(x) in order to ensure

the existence of the wave-operators depend on a. For the Stark Hamiltonian, a = 1,

in L2(R3) we obtain the following

Theorem. Let Tx = -A — x,+ ^(x,), where Vs(xx) E L2(R) and decays as

\xx\~3/2~e as |x,|-> 00. Let Vp(x) be a real potential such that for some N,

(1 + I x \YNVp(x) E L2(R3) and such that Vp = Vx + V2 where

(a) Vx(x) E L2(R3),

(b) I V2(xx, x') |< C(l + I x' \)r(\ + xxYs, x, > 0, where x = (x,, x'), r > 0 and

*>i(r+l).

Let T be any selfadjoint extension of (Tx + Vp)/C™(R"). Then the wave-opera-

tors W±(T,TX) exist.

This result was first obtained by Avron and Herbst [1]. The existence of the

wave-operators for the Stark case was also proved by Veselic and Weidmann [17].

The problem of completeness of the wave operators (i.e., that Range W± = subspace

of absolute continuity with respect to L) is of course more delicate. Since in this case

the absolutely continuous parts of L, L0 are unitarily equivalent one can expect

some further "smallness" assumptions on the perturbation potential V with respect

to V. This has been carried out only for the Stark case by Herbst [9], Simon [16] and

Yajima [18]. Their methods, although considerably different from each other, all

make use of some explicit properties of the Stark potential, such as the expansion by

Airy functions and an exphcit unitary transformation eliminating -d2/dx2. In a
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separate paper [3] we use our asymptotic methods in order to derive a limiting

absorption principle and estabhsh the completeness of the wave-operators for a

more general "Stark-like" Hamiltonian.

II. Assumptions and notations. Let k be a positive integer, 8 > 0. We denote by

B(k,8; +oo) the set of functions/(x) defined in a neighborhood of +oo (which

may depend on/) and such that

(2.1) /(x)EC2*(x0,oo),

(1 + \f(x) ir'(^)V(*) = 0(x-Js)   asx - +00, 1 <j<2k.

We shall always assume that 2k8 > 1. The set B(k, 8; -oo) is defined similarly.

Let

(2.2) L0 = -A+F(x,),       L = -A+V(xx) + Vp(x),       x = (xx, x') E R",

be Schrödinger operators in R", where the potential V(xx) depends on x, only. Our

assumptions on V(xx) are listed below in detail, whereas the exact assumptions on

I^,(x), the "perturbation" potential, will be given later (see §V).

(V) V(t)EL2jR)       (Ä =(-oo,oo)),

and can be decomposed as

V(t) = VL(t) + Vs(t),

(to which we shall refer as the "long-range" and "short-range" parts) where

(2.3) (YU)VL(t) EB(k,8;±oo)   for suitable*:, 5 with2Â:S > 1.

(VL2)   lim   I^(í) = -oo <hminiVL(t) = T    (we allowT = +oo).

(\ni\ Z"00 dt /-' dt

(VL3U i + i^or"00,   Li + \vL(t)r = co-

(VS) Vs(t) is short-range with respect to VL(t), i.e., for some e > 0

I Vs{t) | X (1 + | VL(t) |)",/2 = 0(111-'-«)   as 111- oo.

We do not make any attempt to get the best possible estimates for Vs(t), since it

will be used primarily to allow for finite singularities.

Observe that our assumptions allow for potentials of the type

VL(t) = -(s&Lt)-\t\a,       0<a<2,

and, in particular, the Stark potential (a = 1) is included.

We shall study the behavior of the operators L, L0 over the interval

A = (-oo,r).

For an interval / = [a,j8]cA and a small 17 > 0 we use the notation

fi(/) = {z|a=£Rez</3,0<Imz«T/}.
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III. Some asymptotic lemmas. Our main tool consists of the following asymptotic

lemmas, which characterize the behavior of one-dimensional solutions of the equa-

tion:

(3-1) [-~ + V(t)\y(t) = zy(t),       z E ß(j), / Ç A.

We shall find it convenient to denote by 8~ (t, z) a (generic) function continuous

on [i0, oo) X ti(I) ((-oo, t0] X ß(/)) for t0 sufficiently large, and such that

(3.2) \8Ht,z)\<C^œ\Vs(è)\(\+\VL(è)\V2)'ldè

+\l±x(i+\vmrk+V2(^m-2kSdè\),

for a suitable constant C (depending on /, 8).

Lemma 3.1. Equations (3.1) has a solutiony+ (t, z), which is continuous on R X ß(V)

and satisfies, for z E S2( I )

(3.3) y+(t,z) = (z-VL(t))-l/\\+a(t,z))-i/2

• |exp(/^(l + a(s, z))(z - VL(s))i/2 ds} • (l + 8+ (t, z))\.

^(t,z) = i(z-VL(t))]/\\+a(t,z)y/2
dt

exp(,ji'(l + a(s, z))(z - VL(s))V2 ds}- (1 + 8+ (t, z))

y+(ttzy[-\vL(t)('-vL(t))-ï-^(i + ay1^},

as t -» +00, where a(t, z) has the following properties;

(a) a(t, z) depends on VL only (i.e., not on Vs) and is continuous on [t0, oo) X ß(7).

(b)Ima(/, z) = 0//lmz = 0.

(c) | a(t, z) | +1 da/dt \ = 0(\ z - VL(t) |"'/"2S) as t -> + oo, uniformly in z E ß(7).

(d) For every fixed t, a(t,X) is infinitely differentiable with respect to the real

variable X E I and for every positive integer m

\(d/dX)ma(t,X)\= 0(\X- VL(t)\-(m+])r2S),

as t -» +00, uniformly in X E I.

Remark. Note that since Re z > limt^ + xVL(t) we can rearrange V — VL + Vs so

that for t s* t0 we have Rez > VL(t) and all roots of z — VL(t) are well defined,

when the principal branch of the logarithm is taken.
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Lemma 3.2. Equation (3.1) has a solution y~(t, z) which is continuous on R X Q(I)

and satisfies, for z E ß(J)

(3.4)

y-(t,z) = (VL(t)-z)-V\l+b(t,z))-l/2

exp(-f-'°(VL(s) - z)'/2(l + b(s, z)) ds)-(\+ 8-(t, z))} .

^(t,z) = (vL(t)-zy/4(i + b(t,z)y/2

■ [exp(-fy'\VL(s) - z),/2(l + b(s, z)) ds)-(\+ 8-(t, z)))

+ y-(t,z).   [\vL(t){VL(t)-zy+\(\+br^],

as t -* -oo, where b(t, z) depends on VL only and has the following properties:

(a) b(t, z) is continuous on (-oo, -t0] X ß(7).

(h)lmb(t, z) = 0iflmz = 0.

(c) | b(t, z)\+\ db/dt | = 0(| VL(t) - z\~x\t \'2S) as t -» -oo, uniformly in z E

ß(7).

Here we can assume Rez < VL(t) and for the roots we take again the principal

branch of the logarithm. In particular, Re(VL(s) — z)1/2 > 0.

Our next lemma is concerned with the question of the differentiabihty of the

solutions y ±(t, z) with respect to z. Due to the different behavior at ±oo (i.e.,

oscillatory vs. exponentially decaying), the differentiabihty of y+(t, z) is more

restricted than that of y~(t,z). Define the function

(3.5) w(t) = /'(l +1 VL(£)\yV2dt,       t0<t<oo.
'o

We have

Lemma 3.3. (a) For a positive integer m suppose that

(3.6) qtt) = ™U)m- {l^)l(l+|^U)|1/2)_1

+ (l+|K,U)ir+1/2(l +|€|)-"a} ELx(t0, oo),

then for every fixed t E[t0, oo) the functions y+ (t, z), dy+ (t, z)/dt are m-times

continuously differentiable with respect to the real variable z El.

Furthermore, in this case the asymptotic expansion (3.3) can be differentiated

m-times successively, with

1)V(,,X) cfw(ty-"<i(()dt
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/or 0 </ <m,t0< t < oo andX E I. Otherwise stated,

(3.7)   y+ (/, X) = (X - VL(t)yV\\ + a(t, a))"172

• jexp(ijf'(A- VL(s)y/2(l +a(s,X))ds]j +r+(t,X)\

where the "perturbation" r+ (t, X) is m-times differentiable with respect to X E I and

(3.8) [j^)J r+ (t,X)\<cCw(i)J~mq(t)dt,

for 0 <j < m, t0 < t < oo, X E I.

(b) Suppose that for every u > 0

(3.9) limsup|KL(0|«?'"<:i,

then there exists a neighborhood U of I in the complex plane such that for every fixed

-oo < t < —10 the function y ~(t, z) can be extended as an analytic function of z E U.

Furthermore, there exists a ß > 0, depending only on U, such that for every positive

integer m

(3.10) (!)><->
C e-™

for -oo < t < —10, z E U C\ ñ(7), where Cm is a constant depending only on m, U.

Lemma 3.1 is proved in [2, II]. The proof of Lemma 3.2 is quite similar. Both

proofs are outlined in the Appendix, where the proof of Lemma 3.3 is given too.

IV. Spectral structure of L0. Let L0 be the operator in L2(R") given by (2.2).

Clearly, L0 is well defined and symmetric on C™(R"). As a matter of fact, we have

Lemma 4.1. L0 restricted to C™(R") is essentially selfadjoint, i.e., its closure is a

self adjoint operator in L2(R").

Proof. Note that

(4.1) L0 = L0A®I + I®L'0,

L0A = -d2/dx2+V(xx),       L'0 = -MnR"x7x.

By a standard theorem on tensor products [12, §VIII.10] it suffices to show that

L0 ! is essentially selfadjoint on C™(R). By the Weyl-Kodaira Theorem [7, §XIII.2]

it is enough to show that it has no boundary values at ± oo. But from assumption

(VL3) and Lemma 3.1 it follows that y+ (/, X), for X E A, is not square integrable

near + oo. Also, the same assumption and the remark following the proof of Lemma

3.2 in the Appendix imply that there exists a non-square-integrable solution of

equation (3.1) near -oo. The lemma is proved in view of Theorem XIII.6.11 in [7].

Q.E.D.
Note that since no pointwise boundedness of Vs has been assumed, we could not

use a simpler argument based on the lower boundedness of V (near -oo).

The unique selfadjoint extensions will still be denoted by L0, Lox, L'0.
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We now proceed to study the structure of the spectrum of L0 in A = (-00, T).

Observe that by (4.1) L0 is spectrally absolutely continuous for n > 1 (the convolu-

tion of an absolutely continuous measure and a measure is again absolutely

continuous). Therefore we concentrate on Lox.

Lemma 4.2. A is contained in ae(Lox), the essential spectrum of Lox.

Proof. Let T0 be the restriction of Lox to [0, 00), together with a boundary

condition at 0 such that T0 is selfadjoint in L2(0, 00). By Theorem XIII.7.4 in [7]

ae(T0) E ae(Lox). On the other hand, using the proof of Theorem 3.1 in [2, II] we

have A Ç ae(T0).   Q.E.D.

Theorem 4.1. The spectrum of L0] over A is absolutely continuous.

Proof.  Let I E A be a closed interval. For nonreal z E ñ(7) let R(z) =

(L0, — zl)~x and let K(t, s; z) be its kernel, namely;

/oo K(t,s;z)f(s)ds.
-00

Let E(°) be the spectral projection corresponding to L0,. By a well-known

formula [7, p. 1202]

(4.2)        (E[X0,X]u,u) = lim +- f Im f     K(t,s;p +it) dtdsdp..
e-0        fA0        JRXR

Thus, as in the proof of Theorem 1 of [2, I] it is enough to show that K(t, s; z) can

be extended continuously to R X R X ñ(7).

Applying our asymptotic lemmas 3.1, 3.2 and the remarks in [2, I] we have for K

the following explicit formula

(4.3) K(t,s;z)

' y+(t,z)y-(s,z)

wz{y+, y)

y-(t,z)y+(s,z)

Wz(y+ , y-)

s,

t<s,

where Wz(y+ , y~) is the Wronskian (which depends on z only).

To establish the stated continuity of K, all we have to show is that for real z El,

Wz(y+ , y ~) ¥= 0 (note the continuity with respect to z of y * as stated in §3).

Suppose to the contrary that for some real z0 E I, Wz (y+ , y~) = 0. Then there

exists a constant X such that

g(t)=Xy+(t,z0)=y-(t,z0),        tER.

Let us compute WZo(g, g). As y~(t, z0) is a real function WZo(g, g) = Wz{y~, y~)

= 0. On the other hand, using the asymptotic estimates (3.3) we obtain

WZo(Xy+ (t, z0), Xy+ (t, z0)) = -2/1 X |2 * 0.   Q.E.D.

We next proceed to a more detailed study of the spectrum in A, leading to an

eigenfunction expansion theorem.
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Lemma 4.3. Let T0 be any selfadjoint restriction of LQX to (-00,0]. Then

oe(T0) HA= 0.

In fact, the only possible limit point of a(T0) n A is T.

Proof. Let i0 > 0. Denote by Tx and T2 the restrictions of T0 to (-00, -t0) and

(-r0,0), respectively. By Theorem XIII.7.4 of [7] we have oe(T0) = ae(Tx) U oe(T2) =

oe(Tx), because T2 has a compact resolvent. Choose t0 sufficiently large and notice

that by Lemma 3.2 the solution y~(t, X) does not vanish in (-00, -/0), for X E A.

Thus, by a well-known fact about the zeros of eigensolutions of a selfadjoint

operator (Theorem XIII.7.40 of [7]) we see that Tx is bounded below, with a bound

which is greater than or equal to T.   Q.E.D.

Theorem 4.2. Let E(° )be the spectral resolution of Lox in L2(R).

There exists a function <p(x, X), continuous on R X A, such that for every fixed

X E A, y(x, X) E Hfj^R) and

(4.4) L019(x, X) = X<p(x, X)

(here Lox is regarded as a differential operator). For a compactly supported f(x) E

L2(R) set

/OO -
f(x)<p(x, X)dx,       XEA.

-00

Then:

(a) ?F can be extended as a unitary map of E(A)L2(R) onto L2(A; dX) which

"diagonalizes" Lox (as an operator in L2(R)), i.e.,

(4.6) (fL(0,1)/)(X) = X(iF/)(X).

(b) Ifg(X) G L2( A; dX) is compactly supported then

(4.7) (<$*g)(X)=(g(X)<p(x,X)dX.
JA

(c) There exists a continuous and nowhere vanishing function on A, d(X), such that

(4.8) <p(x,X) = d(X)y-(x,X).

Furthermore, if condition (3.9) holds and if for a positive integer m condition (3.6) is

satisfied then d(X) is m-times differentiable.

Proof. We recall the basic facts about the spectral representation of a second-order

selfadjoint ordinary differential operator A, with spectral resolution EA(°): For

every interval J E R there exist two measures u,, ju2 on J, /¿2 absolutely continuous

with respect to ¡u,, and a unitary map i/of EA(J)L2(R) onto L2(J; ¡ix) ® L2(J; u2)

which diagonalizes A. U can be represented in terms of kernels, namely,

(Uf)k(X)=ff(x)Wk(x,X)dx,       k=l,2,

for compactly supported/, where Wk(x, X) satisîies AWk(x, X) = XWk(x, X), k = 1,

2. W2 is linearly independent of Wx for ¡u2-a.e. X E J. (For more details, see [4, §4]

and references there.)
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We now apply this general theory to our operator L0,. Applying Lemma 4.3 and

the same proof as of Lemma 4.6 in [4] we conclude that /¿2(A) = 0 and hence that

L0 , has multiplicity 1 over A. Suppressing the indices in the above representation we

now have

/oo -f(x)W(x,X)dx,
-oo

and

(U*g)(x)=(g(X)W(x,X)dli(X),
JA

where, for every X E A, W(x, X) is square-integrable near -oo. Thus, W(x, X) is a

scalar multiple of y~(x, X). By Theorem 4.1 u(X) is absolutely continuous with

respect to the Lebesgue measure dX. Let a(X) = d\x/dX be the Radon-Nikodym

derivative of ju and set

<p(x, X) = a(X)l/2W(x,X).

It now follows immediately that the map defined by (4.5) satisfies (4.6)-(4.7). Also

note that since L0, is a real operator it follows that <p(x, X) is real.

We now prove (c).

Let w be a continuous compactly supported function. Formula (4.2) implies

(4.9) -^-(£(X)h, u) = -Im (     K(t, s; X)u(s)u(t) dsdt.
d\ it      Jrxr

On the other hand, by the representation (4.5)-(4.6):

(4.10) 4--(E(X)u,u) = (     u(s):ujt) cp(s, X) <p(t, X) dsdt.
dX jrxr

From (4.9)-(4.10) we conclude

2
7r|<p(f, X)|   = lm K(t, t; X).

Obviously, a multiplication of <p(t, X) by a "sign function" v(X) = ±1 does not

change the representation (4.5)-(4.6). Hence we can redefine <p so that

(4.11) TTX/2<p(t,X) =[lm K(t,t;X)Y/2.

By the discussion following formula (4.3) it follows clearly that K(t,t;X) is

continuous in X, so that (4.11) implies that <p(i, X) is continuous in X. Furthermore,

since bothy ± (t, X) s 0 for every X E A, it follows from (4.3) that

(4.12) Imí(í,(;X)2 0   foreveryXEA,

and so also <p(t, X) s 0 and the representation (4.8) is justified.

Finally, if condition (3.6) is satisfied for a certain m (and (3.9) holds), then by

Lemma 3.3 bothy±(i, X) and their first derivatives are w-times differentiable with

respect to X. This is therefore true for K(t, t;X) for every fixed t E R, and by

(4.11)—(4.12) it follows that <p(t, X) is also w-times differentiable with respect to X

(note that by standard theorems about ordinary differential equations it suffices to

prove the statement for one fixed value of t).   Q.E.D.
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Corollary 4.1. The operators -A + V(xx), where Vsatisfies the assumptions o/§2,

are all unitarily equivalent over A — (-00, T). In particular, they are all purely

absolutely continuous there.

Proof. It is obviously sufficient to prove the statement for the corresponding

operators L0I in the decomposition (4.1). In the process of the proof of the

preceding theorem it was shown that L0, is of multiplicity 1 over A. Also, it follows

easily from formulas (4.9) and (4.12) that dEx and the Lebesgue measure dX are

absolutely continuous with respect to each other. This is enough to ensure the

asserted unitary equivalence.

Corollary 4.2. Le? Vs(t) - 0(\t\~x~e+a/2)as\t\^ 00 for some e >0 and set

(4.13) Ta = -A-(sgnxx)-\xx\a+Vs(xx),       0<a<2,

then the spectrum of Ta in L2(R") is (-00, 00) and is purely absolutely continuous.

Furthermore, Ta is unitarily equivalent to the Stark Hamiltonian -A — xx, which in

turn is unitarily equivalent to -A' — xx, where A' is the Laplacian with respect to the

(n — 1) variables x' orthogonal to xx.

Proof. Everything follows from the preceding corollary, except perhaps for the

last statement. But the unitary equivalence of -A — x, and -A' — x, follows from an

explicit representation given in [1], or else from the unitary equivalence of

-(d2/dx2) — x in L2(RX) and the multiplication by X in L2(RX), which is a simple

consequence of Theorem 4.2 above.

In particular, the corollary allows for Coulomb-like perturbations of the Stark

(a = 1) potential. Thus, it provides an extension of the results of [14].

V. Existence of wave operators. Let L, L0 be the operators defined by (2.2), where

V(x) is a real potential and L is any selfadjoint realization in L2(R") of -A +

V(xx) + Vp(x)/C™(R"). As is well known, the wave-operators associated with L,

L0, are defined as the strong limits

W± = i-lim e"V'L°,
t^±oo

if they exist. We shall work with a local modification of this definition, namely, we

shall prove, under certain conditions on Vp(x), the existence of the strong limits

(5.1) W±(l)=s-lim e"V"L°£(7).
r->±oo

Here I E A — (-00, T) (see definition (2.3)) is a compact interval and E(° ) is the

spectral family associated with L0, which has a unique selfadjoint realization by

Lemma 4.1.

Obviously if A = R and the limits (5.1) exist for all I, it follows that the limits W±

also exist.

Henceforth we shall always assume that condition (3.9) is fulfilled.

For the transformation (4.5), we denote/(X) = (f/)(X).

Let \j/(x) E L2(Rn), \¡/(x) — \¡/x(xx)\¡/2(x'), x = (x,, x'). Using the decomposition

(4.1) we have

(5.2) e-"L°t// = e-*Lw*, -e+"A>2.
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Let t£2 denote the Fourier transform of \p2 (with respect to the (n — 1) variables

x').

Then

where 5 is the Schwartz space of rapidly decaying functions.

Also, if 4>X(X) is bounded compactly supported in A, then by (4.6)

(5.3) (e-"^^)(X) = e-'%(X),

and by (4.8) and Lemma 3.2(b) e~"L°'\}>x(xx) decays exponentially as x, -> -oo.

In what follows we shall find it convenient to denote

*{(*,) = exp(-/rL0)1)^,(*i),   i^(x') = exp( + itA')x^2(x').

By unitarity, it is enough to establish the existence of the limits (5.1) for a

fundamental set in E(A)L2(R"),

(5.4) Q = {*Mx) = ix(xM2(x'), ¿,(X)d(X) E C0°°(A), &({') E Q^r1)}

where d(X) is given by (4.8).

By the above remarks

Supp^(X) Ç/,       t//E Q =>£(/)«/< E Spang.

Thus, the well-known Cook's method (see [13]) is applicable in our case in the

following sense.

Let L be any selfadjoint realization of -A + V(xx) + I^,(x) such that Q E D(L)

and

L+=(-A+V(xl))ii,+ V,-t,       4>EQ,

then the wave-operator W+ (I) (W_(I)) exists if, for every \p E Q, there is a t0 such

that

||K,exp(-i/L0)*|| E Lx((t0, oo); dt) (L'((-oo, tQ); dt)).

As a simple application we have

Lemma 5.1. Let n > 3 and Vp(x) E L2(R"). Then W± (I) exist for every I E A.

Proof. By a standard estimate for the free Hamiltonian (see [11])

(5-5) \V(x')\<C\t\-("-lV2.

Thus \\Vpexp(-itL0)^\\ < C||^,||r(n-1)/2.   Q.E.D.

In the above proof, no use has been made of the special features of the

eigenfunction expansion associated with L01, especially the exponential decay at

-oo. In fact, using the notation x(A) for the characteristic function of A E R", we

have

Lemma 5.2. Assume that for some N > 0,

(5.6) (l + \x\yNVp(x)EL2(R»),
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and let xx be fixed and ^ E Q. Then for every M there exists a constant CM (which

depends on\¡i, V ) and t0 such that

(5.7) |x(x, < x°)Vp(x)exp(-itL0)t\\ < CM\t\'M',       \t\ ̂  t0.

Proof. Using Theorem 4.2 we have

t\(xx)= ( e-'%(X)d(X)y-(xx,X)dX.
JA

Since i|/|(X)a'(X) E C0°°( A) we can integrate by parts and taking the estimates (3.10)

into account we see that for every positive integer r there exists a constant cr such

that

(5.8) |^,)|<cr(l+M + kir,       x,«x?.

By a standard stationary phase argument (see [13]) there exists an R > 0 such that

for every positive integer s there exists a constant cs and

(5.9) \H(xf)\<cXl+\x'\ + \t\ys,       \x'\>R\t\,

and

\ti(x')\<c2   for all x'.

Combining (5.8)—(5.9) with assumption (5.6) we obtain (5.7).    Q.E.D.

Since the behavior of the eigenfunctions <p(x(-, X) is oscillatory for large positive

x,, the conditions imposed there on Vp will naturally be stronger than (5.6).

To simplify notation, we shall work the case n = 3. As is seen from Lemma 5.1

and its proof the cases n > 3 are always simpler.

We shall also need the following modification of the eigenfunction expansion

(4.7). _
We note that by Lemma 3.1, the functions y+(t, X), y+(t,X), X E A, are

independent solutions of equation (3.1). Hence,

(5.10) y-(t,X) = 0x(X)y+(t,X) + 62(X)y+(t,X),       X E A.

If y+ (/, X) is w-times differentiable with respect to X, then so are 6X(X), 62(X).

We can now represent

(5.11) #(*,) = f e-'^x(X)d(X)(ex(X)y+ (x„ X) + 82(X)y+ (x„ X)) dX.
JA

In order to allow for a good asymptotic evaluation of ^[(x,) we assume that the

following condition holds true:

(A) Condition (3.6) is satisfied with m = 2.

Using the notation

(5.12) „(/,X) = (l+a(/,X))(X-FL(0)'/2

for the exponent in (3.3), Lemma 3.3(a) implies that under condition (A)

(5.13) y+(í,X) = 7,(í,X)
-1/2 exp  if 7](s, X) ds\ + r+ (s, X)
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where r+ (s, X) is twice differentiable with respect to X and
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(5.14) \r+(t,X)\ + £r+(t,X) + (áF'+«.*>= <Hl).

for t0 < t < oo, X E /.

Another growth condition on VL which will be used below is the following:

(B) For every e > 0 let gt(t) = supXi>f,(l + | VL(xx) |)-'/4.

Then there exists a sufficiently large t0 such that t~xg£t) E Lx((t0, oo); dt).

Lemma 5.3. Let VL satisfy conditions (A) and (B) and let Vp E L2(R3). Then, for xx,

t0 sufficiently large we have

(5.15)    \\x{xx> x°x)Vpexp(-itLQ)E(l)t\\ E Lx((-cc,-t0) U (tQ,co);dt)

for xp EQ, Supp ¿,(X) Ç I Ç A.

Proof. We prove only for i0 < t < oo, the interval -oo < / < -t0 being exactly

the same.

Using condition (A) and the representations (5.11), (5.13) we have, if Supp ^(X)

ç/:

(5.16)

#(*,) = f e-'%(X)d(X)6x(X)71(xx,Xyl/2exp(ifys,X)ds)j dX

+ fe-"xjx(X)d(X)62(X)r1(xx,XyV2explifyv(s,X)ds\dX

+ /e-"A^1(x)d(x)7,(x1, xyV2{ex(x)r+ (xx,X) + 62(X) r+ (xx, X) ) dX

= JX +J2 + J3.

Integrating in J3 by parts twice and using (5.14) we get

hence

(5.17)

Cr¿,

\VpJ3t>(x')\\<C\\Vp\\t-

To estimate^, we note that by Lemma 3.1(d) and definitions (3.5), (5.12), there

exist constants cx,c2 such that

(5.18)     cxw(xx)
d   cx

d\Ly^x) <c2w(x|),       xx < x, < oo, X E I

Integrating N times by parts we obtain

\J2\^cN(w(xx) + t)-%(x,xyi/2,

hence

(5.19) WpJ2tt(x')\\ < CN\\Vp\\(l + t)-N.
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In order to estimate/, we note that by (3.5) | w(xx) |< x,. Therefore, by (5.18) the

phase function -itX + ijx$i\(s, X) ds has no stationary point X E Supp i£, if x, < et,

where e > 0 is sufficiently small. Hence

(5.20) |x(x, < et)Jx \< CN(w(xx) + O'V^,)172,

and using (5.12) and the definition of ge(t) we have

(5.21) \x(xx>et)Jx\<Cge(t).

Estimating now t//2(x') by (5.5) (with n = 3) we conclude

(5.22) \WpMi(x')\\ < C||K,||[(1 + tyN + rxge(t)].

Putting together inequahties (5.17), (5.19), (5.23) and noting condition (B) the

lemma follows.   Q.E.D.

In Lemma 5.3 we have imposed a "global" restriction on the perturbation V . Our

next lemma shows how one can replace this requirement by a growth condition as

x, -» + oo. In fact, a suitable decay on x, -» + oo can compensate for an unbounded

behavior in the x' directions. To gain clarity, we make no attempt at obtaining the

best possible results along this line.

We shall now assume that, for some 8 > 0

oo

(5.23) VL(xx)E H B(k, 8; +oo)
k=\

(see definition (2.1)) and that ^(x,) decays exponentially as x, -» + oo.

Thus, condition (3.1) is fulfilled with any integer m. In fact, since | w(t) |< t by

(3.5), we have for every two positive integers m, N a positive integer km N such that

for g(£) defined by (3.6) with k = km N

(5-24) i«(Oi<cwr*.

Lemma 5.4. Assume that VL satisfies condition (5.23). Suppose also that

(5.25) |^(xI,x')|<C(l+xir(l + |x'|)r,       *,>*?,

(5.26) (1 + x,r(l + | VL(xx) |)~'/4w(*,)ri e L2((x?, oo); dxx),

where xx is sufficiently large, s > 0, r > 0 and rx > r + 1/2.

Then for t0 sufficiently large andxp E Q, supp \px E I E A

(5.27) \\X{xx^ x°)Vpexp(-itL0)E(I)^\\ E Lx((-oo,-t0) U (t0,oo); dt).

Proof. Again we prove for t s* tQ. For t|/{(x,) we use the representation (5.16).

Observe that by inequality (5.9) and (5.25)

(5.28) \x(\x'\>Rt)VpiM\< CM(l+xxys(\ + | FL(x,))"1/4(l + \x'\+t)~M,

for every positive integer M. By (5.26) the right-hand side of (5.28) is square-integra-

ble and its norm is di-summable. Thus, it suffices to prove (5.27) for | x' |< Rt,

where by (5.25)

(5.29) |F/)(x,,x')|^C(l + i)r(l+xir.
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By (5.24) and (3.8) we can assume that r+ (xx, X) and its first m derivatives with

respect to X are bounded by C(l + x,)"1. Taking m large enough and integrating in

J3 by parts w-times we obtain

\j^ct""(i + \vL(xx)\yl/4,

so that by (5.29), with m > r + 2

|Fpy3|<cr2(i+xir(i + |KL(x1)|)-,/4,

which implies, by (5.26)

(5.30) ||x(x, > x°, | x'\<Rt)VpJ3^\\ < Cr2.

The estimate for J2 is also simple. In fact, all we have to do is replace the above

estimate for | J3 | by the inequality for | J2 | just preceding (5.19).

The estimate for Jx is more subtle. We first show that

(5.31) (\l + VL(xx)\)l/4\^(xx)\<cr^2,       t>tQ.

This is proved by a stationary phase argument as follows: Consider the phase

function

y(X) = -itX + ifX\(s,X)ds   (see (5.12)).

By (5.18) and | w(xx) |<| x, | , y has no stationary point for x, =£ et, e > 0 suffi-

ciently small. Also, by Lemma 3.1(d)

We now have all that is needed to obtain (5.31) (see [13, Theorem XI.15]).

Combining (5.29) and (5.31) (for | x' | < Rt)

(5.32) | v,m\<c- (i + x,r(i +1 vL\yl/\\ + ty-x/1.

Integrating in /, AMimes by parts we get

(5.33) | vpm\\<c-±(i + xxysw(xx)N(\ +1 vL\yw\\ + ty~1/2.

From (5.32)-(5.33) we obtain, with 0 < e < 1,

i vPm |< c(i + r^^Ai + x,r(i +1 vL\yi/\

Take t > (r + 1/2)/W but such that Ne ^ rx. Then, with some ß > 0 we have

i v,jm \< c(i + ty]-ßw(xxni + x,r(i +1 vL iri/4.

By (5.26) we conclude finally

Ilx(| x'\^Rt, x, ^ Xi)Vp exp(-itL0)E(I)4,\\ ^ Crx-ß.   Q.E.D.

We are now in a position to state the following theorem.
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Theorem 5.1. Let Q be the set defined by (5.4) and let L be any selfadjoint

realization in L2(R3) of -A + V(xx) + Vp(x) such that Q E D(L).

Let I E Abe a compact interval (where A = (-oo, T) is defined by (2.3)). Then the

limits W± (I) (see (5.1)) exist in either one of the following cases:

(a) (1) For w(y) = //(l + | VL(s) \yx/2 ds, y > y0,

w(y)2{| Vs(y) |(1 + | VL(y) I)"172 + (1 + | VL(y) |)-*+1/2(l + y)'2*8}

EL\y0,oo).

(2) For  every   t > 0,   // ge(y) = supJ>v(l + | VL(s) \)'x^   then  y"'ge(y) E

Lx(y0, oo).

(3) Vp(x) E L2(Ri).

(b) (\)VLE r)^xB(k,8;+cjo)forsome8>0.

(2) (1 +y)'s(\ + | VL(y) \yx/4w(y)r< E L2(yQ, oo) where s > 0, rx > r + 1/2,

r 3* 0, ana",

(3) K,(*„ x') < C(l + x,)"'(l + I *' \)r, x, >y0.

(4) For some integer N: (1 + | x l)-"^*) E L2(Ä3).

Proof. This is just a summary of the above lemmas, using Cook's method. For

negative x, we use Lemma 5.2 in both cases. Case (a) now follows from Lemma 5.3

whereas case (b) is discussed in Lemma 5.4.

Observe that if the conditions of both cases are satisfied by VL, we can allow

V = Va+ Vb, where the two terms satisfy respectively the conditions imposed on V

in cases (a), (b).

Note that in case L is defined in L2(R"), n > 3, the assumptions on the potentials

can be relaxed in view of Lemma 5.1.

Remark. We have discussed in this section only multidimensional perturbations

of L0. However, if V depends on x, only we can apply our eigenfunction expansion

(Theorem 4.2) in order to give an explicit representation of the wave-operators. In

fact, this can be done using the method of Green-Lanford ([8], and see also the

modifications in [5, 6]). In this case, the method yields not only existence, but also

completeness of the wave-operators (see §5 in [4]). Basically, the estimates needed

are similar to the ones used above and similar conditions are required, but we shall

not pursue the details.

Also, our methods can be applied to the case that VL is spherically symmetric. In

this case the proof of the existence of wave operators for nonspherically symmetric

perturbations proceeds along the same lines as in [5]. Note that our general

conditions (§2) on VL are then satisfied if VL(r) = r'ßsin(r"), ß > 0, a < 1, so that

we can somewhat extend the range of values in [5].

VI. Stark-like potentials. The previous results were stated in rather general terms.

In this section we specialize to Stark-like operators, i.e.

(6.1) ra = -A-(sgnx,)|x, \a+Vs(xx),       0 < a =£ 2.

The Stark effect is given by a = 1.
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Under the conditions imposed on Vs in §11 it follows that Ta | C0°°(jR") is

essentially selfadjoint. We retain the notation Ta for its unique selfadjoint extension

inL2(R").

Corollary 4.2 has already given the absolute continuity of Ta over (-00,00),

assuming a suitable decay condition on F5. As a matter of fact, Ta is unitarily

equivalent to a multiplication operator in L2(R") via the following eigenfunction

expansion theorem.

Theorem 6.1. Lei Vs(t) = 0(\t\~x~e+a/2) as\t\^ 00 for some t > 0.

There exists a function \p(x, k), defined and continuous on R"x X R"k, and such that

(a) for every fixed k £ R", ^(x, k) E H^R^) and

(6.2) TJ = {kx + \k'\2)4>,       k = (kx,k'),

(b)forf(x) E C™(R") define the transformation

(6.3) ($f)(k)=ff(x)J(x~Jc)dx.

Then 'Scan be extended as a unitary map of L2(R"X) onto L2(R"k). Its adjoint is then

given by

($*g)(x) = \.i.m.fg(k)4,(x,k)dk.

(c) Let E(-) be the spectral measure associated with Ta. If I C (-00, 00)

(6.4) 9(E(l)f) = X(*. + I k' |2 E l)CSf)(k).

In particular, for f E ^(TJ

(6.5) HTJ)(k) = {kx + I k'\2)CSf)(k).

(d) Suppose that for some positive integer m and some e > 0

,        N ,, r0(rl-e-m + («/2)(m+in       ai / ^   + oo, 0 < « < 2,

(6-6) W=    no     ,Y-,-0 ,      -u[0((log/)    t E) as t -» +00, a = 2,

//ie« t|/(x, A:) i$ m-times continuously differentiable in k. In particular, if Vs(t) decay

exponentially as t -> +00 iAen

^(x, k) E C-(ÄJ).

Proof. The theorem is in fact a straightforward adaptation of Theorem 4.2. The

functions \p(x, k) can be defined as

\(/(x, k) = <p(x,, kx)exp(-ik', x')

where <p satisfies (4.4).

Parts (a)-(c) then follow immediately. As for part (d) of our theorem, observe that

in our case the function w given by (3.5) can be taken as

(6.7) w(o=i:'"a/2' 0<r2'
W      (logi, a = 2.
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Also, the k in (3.6) can be taken arbitrarily large (with 6=1). Thus condition

(6.6) is a restatement of (3.6) and the statement follows from Theorem 4.2(c).

Q.E.D.
In the next theorem we discuss the existence of wave operators for the pair Ta,

T=Ta+ Vp(x) in L2(R3). We set

Q={fEL2(Rl)/%fEC™{R\)),

Q is dense in L2(R3) and for every t, exp(-itTa)Q E Q. It will be clear from our

conditions that Vf is well defined for every f E Q. The operator T is then

understood to be any selfadjoint extension of (Ta + Vp)/Q.

Theorem 6.2. Assume that ^(x,) satisfies condition (6.6) with m — 2. Suppose also

that for some N, (1 + |x|)-;vI^(x) EL2(7î3) and that Vp can be decomposed as

Vp = Vx + V2 where

(a) Vx(x) E L2(R3).

(b) | V2(xx,x')\^C(\ + |x'|)r(l +x,r   forxx>0,

where r>Q,s>(r+ 1)(1 - a/2) ifO < a < 2.

Then the wave-operators W±(T, Ta) exist.

Proof. In our case the potential VL satisfies the assumptions of both cases (a) and

(b) in Theorem 5.1. The condition on s in (b) follows from condition (b)(2) in

Theorem 5.1 by taking (6.7) into account.

The special case a = 1 is the Stark potential and Theorem 6.2 yields the theorem

mentioned in the introduction in this case.

Corollary 6.1. Under the assumptions of the previous theorem the absolutely

continuous part of the spectrum of T contains the whole line (-oo, oo).

Appendix. In this appendix we give the proofs of the asymptotic lemmas stated in

§111. Lemma 3.1 is taken from [2], where its proof is given in complete detail.

Therefore, we shall just give the technical steps involved in the construction of the

asymptotic expansion. This will also enable us to sketch briefly the proof of Lemma

3.2, which is similar to that of Lemma 3.1. Finally, Lemma 3.3 is proved by using

some of the simplifications obtained in the process of proving the previous lemmas.

Proof of Lemma 3.1. Our equation is

(A.l) (-^ + V(t)^y(t) = zy(t),       z E 0(7), / C A.

By rearranging V = VL + Vs if necessary we may assume that t varies in [ t0, oo)

where Rez > VL(t), z E S2(7). Thus (z - VL(t))a, a > 0, is well defined, using the

principal branch of the logarithm.

We change now both the independent variable / and the dependent variable y as

follows:

(A.2) ll(t,z)=('(z-VL(s))l/ids,

(A.3) y,(i,) = (^-KL(0)'/4y(/).
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Note that in (A.3) the variables £, and / are related via (A.2). This, with £,

replaced by (-k will apply also to the equations below. Also note that (A.2) defines a

curve Tx(z), parametrized by t0 < / < oo, in the complex plane. Differentiation and

integration with respect to £, in what follows will be understood as performed along

T,. Using these conventions we now set

Bx(Hx)=-\vL(t){z-VL(t))-3/2,

*(«,) =-£^-*.(Éi)+¿(*i(«i))2

XV'¿(t){z - VL(t)y2 + ^V'L(t)\z - VL(t))
16

qx(£x) = Vs(t)(z - VL(t))~ ,

so that equation (A.l) takes the form

(A.4)
^-)*+ (*(€,)+ «,(€i))

.k,(é,) =*($,)•

We now define successively a sequence of transformations for / = 2,... ,k as

follows:

f«/
èJ(t,z)=ft-\i-pJ_l(V)y/2dV,(A.5)

where É?_, = ¿y-iCo. *)•

(A-6)      *^W(^->fe-4 (] -pj-idj-JY"*-

Pjttj) = -\irjBJ{Zj) + \lBj{tJj\\

J>(«/) = (l-^-i(«y-.))I/V.(«7-.)-

Note that ^(r, z) defines a curve I}(z) in the complex plane. The integration in

(A.5) is carried out along Tj_ ,(z).

Equation (A.4) is now transformed into

2

(A.7) ^-j   + (pMj) + IM) yj(tj)=yj(tj)-

It is proved in [2, II] that/>,(£,) consists of a sum of terms having the form

(A.8) fit, z) = c(i + «(/, z)){z - vL(t)y{v^(t)Y ■ ■ ■ {n'-Kt))'-,

where c is a real constant,

(A.9) m >j + 2 ;'/.      2 hit > 2/,
/=i        /=i
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and 1 + a(t, z) is a product of factors of the form (1 —/>/(£,))~r, 1 </</— 1,

r > 0. Hence (A.8), (A.9) and assumption (VL1) imply that

(A.io) \pj(Sj)\= o(\z- vL(t)|-;r82""'¿),

uniformly in z E fi(7), t0 ^ t < oo. In particular, for/ = k

(A.ii) !/»*(«*)!= o(|z-FL(0|-*r2W),

!«*(£*)
#A

^g(t)<c\vs(t)\-(i + \vL(t)\yl/2,

where g(i) E L'(/0, oo). Note that by (A.2), (A.5)

(A.12) «* = (i-FI(í))1/ínO -A(«/))l/2*.

/=i

Finally, one can show that the curve Tk is monotone increasing, namely

(A.13) lm(èk(tuz)-èk(t2,z))>0,       tx>t2.

Equation (A.7) withy = k is now written as a 2 X 2 first order system

,    (o      i   \ ¡yk(tk)\

b{ik)=Pk(ik) + qk(Sk),

or, in a diagonalized form

(A.14) C'=((¿     °)+a(Í*))i> = (2>+ *(**))©,

where

(A.15) l^(^)I^C(|^(^)|+|a,(^)|).

Let 5 be the Banach space of vector functions f(t, z), continuous on [t0, oo) X

£2(7) and normed by

(A.16) ll/(i,z)||=    sup   |exp(-^(i,z))/(r,z)|,
z£Q(I)
/0'Si<oo

and let T be the transformation defined by

(A.17)    (Tf)(t, z) = Çexp[{ik(t, z) - tk(s, z))D]R(t;k)f(s, z)^ds.

It follows easily from the estimates (A.15), (A.l 1) and inequality (A.13) that I + T

is invertible if t0 is sufficiently large. Furthermore, if v solves

(A.18) o = «p(i€Jk(r,z))(J)-7b,

then it is a solution to (A.14) and tracing it back via w and the functions y-(|-) we

obtain a solution of (A.l). It is an easy matter to check that this solution satisfies all

the assertions of Lemma 3.1. In particular, note that by (A.17) and the estimates

(A.15), (All), if /£ B, exp(-i^k(t, z))Tf satisfies uniformly an estimate of the type
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(3.2). Thus, by (A. 18), the exponential term in the expansion (3.3) is justified if we

put (see (A. 12))

(A.19) l+a(t,z) = kl[(\-p,Ul)y/2.

a(t, z) depends only on VL, since only VL was involved in the construction of

Pidi). (b) and (c) of the lemma follow immediately from (A. 10), (A. 11). (d) follows

from the observation that a(t, X) involves X only through negative powers of

(X — VL(t)). Finally, note that definition (A.19) of a(t, z) fits the modification

factor involved in going from v back to y (see (A.6), (A.3)).

Proof of Lemma 3.2. The proof utilizes the same method as the previous proof.

We point out briefly some differences. First, by transforming t -» -t we may assume

that we solve again over [ t0, oo). Instead of (A.2), (A.3), we define

Ut, z) = f'(VL(s) - z)V2ds,   yxUx) = (VL(t) - z) + 1/4y(0-
'o

Instead of equation (A.4) we obtain now

, 2

(^-) +(*(íi) + «i(€i))
*(£,) =*(£,),

where/),, a, are the same as before except that z — VL is replaced by VL — z.

We now follow exactly the same process of reduction, where again in (A. 12)

(z — VL) is replaced by (VL — z) and in (A.13) we take the real part instead of the

imaginary part. We thus obtain equation (A.14) with thematrix D = (XQ_°X). The norm

(A. 16) is now defined using the weight function exp( + Hk(t, z)) and a similar change

in (A. 18). The assertions of the lemma are now easily verified.

Remark 1. Observe that if we modify the norm (A. 16) by taking the weight

function exp(-^k(t, z)) (i.e., exponentially decaying), the resulting solution blows up

exponentially (in fact, like exp(^k(t)). Thus, the method can be applied to the

unbounded solutions as well.

Remark 2. For the case that VL is a polynomial our decaying solutions coincide

with the "subdominant solutions" of [15, Chapter 2]. Note that assumption (VL3)

has not been used in the derivation of the asymptotic expansion, which therefore

applies to a polynomial of any order. In particular, for V(t) — t2 we obtain the

correct rate of decay of eigenfunctions of the harmonic oscillator (i.e., exp(- \t2)).

Proof of Lemma 3.3. To prove part (a), we modify the definition on the Banach

space B from the proof of Lemma 3.1: Let B now be the space of vector functions

f(t, z), defined and continuous on [t0, oo) X 7 (z real) and so that / is w-times

continuously differentiable in z. The norm in B (instead of (A. 16)) is

(A.20) \f(t,z) sup 2
j=o

»er(f)J/«,*)

where w is given by (3.5). By Lemma 3.1(d) and (A.12) we have

\dik\
dz

Cw(t).
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Hence, if/ E B and 0 < y < m

d \j
dz, (exp(i¿k(t,z))f(t,z)) Cw(t)j\\f\

This inequality implies that under condition (3.6) the transformation T defined by

(A.17) is bounded in B and if i0 is sufficiently large ||T|| < {. Thus 7 + T is

invertible and equation (A. 18) possesses a unique solution v E B. Obviously, v

coincides pointwise with they+ (t, z) solution. Furthermore, equation (A. 18) can be

differentiated m-times with respect to z and taking the above inequalities into

consideration the expansion (3.7)—(3.8) follows easily.

Remark 3. If hmt^ + xVL(t) = 0 the function w(t) can be replaced by t. Our

method is then identical with the one employed by Devinatz [5] in the study of

oscillating potentials.

We now prove part (b) of the lemma by inspecting the proof of Lemma 3.2. We

note that inequality (A.13), which is crucial in the proof of Lemma 3.1 (i.e., the

estimate of 11711 in (A.17)), holds true if and only if Im z > 0, namely z E ß(7). On

the other hand, the inequality

Re(iik(íI,z)-€t(í2,z))>0,       tx>t2,

which replaces (A.13) in the proof of Lemma 3.2, holds true as long as Re z < VL(t).

Thus, we can repeat the proof of Lemma 3.2 with ñ(7) extended to ñ(7) U fi(7)

(where ~ denotes complex conjugation). Also we modify B by the additional

requirement that/(r, z) is analytic in z in a compact set containing 7. Again, 7 as

defined by (A.17) is bounded in B and the equation replacing (A. 18) can be solved

uniquely, yielding y ~(t, z) as an analytic function in z in a neighborhood of 7. Since

7 E A is compact we may assume that there exists a y > 0 such that Re(£k(t, z))> y

for z in that neighborhood. The expansion (3.4) along with the assumption (3.9)

imply now the exponential decay of y'(t, z). Inequality (3.10) follows of course by

applying Cauchy's theorem to the analytic function y "(i, z).
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