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GROUP ACTIONS ON ASPHERICAL 4,(N )-MANIFOLDS'
BY
HSU-TUNG KU AND MEI-CHIN KU

ABSTRACT. By an aspherical 4,(N)-manifold, we mean a compact connected mani-
fold M together with a map f from M into an aspherical complex N such that f*:
H*(N; Q) - H¥(M; Q) is nontrivial. In this paper we shall show that if ' acts
effectively and smoothly on a smooth aspherical 4,(N)-manifold, k > 1, N a closed
oriented Riemannian k-manifold, with strictly negative curvature, and the K-degree
K(f) # 0, then the fixed point set F is not empty, and at least one component of
F= U, F is an aspherical 4,(N)-manifold. Moreover, Sign(f) = Z;Sign(f| F)).
We also study the degree of symmetry and semisimple degree of symmetry of
aspherical 4,( N )-manifolds.

1. Introduction. Suppose M"™ is a compact connected topological or differentiable
m-manifold. Following [15], M is called an A4,-manifold, where k is a nonnegative
integer, if there exists w, € H'(M, Q), 1 <i<k, such that w, U --- Uw, #0.
Without loss of generality, in fact, we can assume that w;,’s belong to the free part of
H'(M, Z). Let M be a compact connected differentiable manifold. The degree of
symmetry N(M) (resp. semisimple degree of symmetry N°*(M)) of M is defined as the
supremum of the dimensions of all compact (resp. compact semisimple) Lie groups
which can act smoothly and effectively on M. If M is a compact connected
topological manifold, the degree of symmetry N (M) and semisimple degree of
symmetry N;(M) can be similarly defined by assuming the actions to be topological.

A space is called aspherical if its universal covering space is contractible. Burghelea
(cf. [21]) has proposed to compute or estimate N(M) for a connected closed
differentiable m-manifold M if there exists a degree one map f: M™ —» N™, where N
is a closed aspherical manifold. Considerable information has been obtained in
relation to this problem. If N = T™, the m-torus,, then M is called hypertoral [20).
This was studied by Schultz [20,21] and Gromov and Lawson [6]. One result of
Conner and Raymond in [4] corresponds to the case M = N and f is the identity
map. If M is hyperaspherical, i.e., degree of f is nonzero, then Donnelly and Schultz
[S] have shown that N° (M) = 0. Schoen and Yau [19] have investigated the case
when N is a closed Riemannian manifold of nonpositive curvature which is aspheri-
cal because its universal covering is diffeomorphic to a Euclidean space. In [5],
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Donnelly and Schultz have proved the following topological modified version of the
Schoen-Yau result:

1.1 THEOREM [5]. Let M™ be a closed oriented m-manifold. Suppose there exists a
map f from M™ to a closed oriented Riemannian manifold N of strictly negative
curvature such that f.: H(M; Q) » H,(N; Q) is nontrivial for some k > 0. Then

NS y=(m—k+1)g, ifk>1,

Nr(M) < {NT(S'"") +1 ifk=1,

where () o denotes dim SO(s).

A theorem similar to the Schoen and Yau result [19] was also obtained by
Browder and Hsiang [23]. Their paper also proved a “higher 4-genus” theorem
which is analogous to our Proposition 3.10.

Let M™ be a compact connected topological or differentiable m-manifold. We
shall say that M is an A,(N )-manifold (resp. aspherical A, (N )-manifold) if N is a
closed connected oriented manifold (resp. an aspherical complex), £ a nonnegative
integer, and there exists a continuous map f: M — N such that f*: H(N; Q) -
H*(M; Q) is nontrivial. It follows from the definition that any connected closed
manifold is an A4,(N )-manifold (resp. aspherical Ay(N )-manifold) for any manifold
(resp. aspherical complex) N. The following results show that both the 4,(N )-mani-
fold and the aspherical 4,(N )-manifold may be viewed as generalized 4,-manifolds.

1.2 THEOREM. Let M be a compact connected manifold. Then M is an A,(T*)-mani-
fold if and only if M is an A,-manifold.

PrROOF. Obviously, an 4,(T*)-manifold is an 4,-manifold. To prove sufficiency,
let M be an A,-manifold, and w, € H'(M; Z), 1 <i < k, be such that w, U - - - Uw,
# 0. Since H'((M; Z) = [M; K(Z,1)] = [M; S'], for each w,, there corresponds a
map f: M — S'=S! with f*(S'} =w; where {S!} denotes the fundamental
cohomology class of S!. Set f = 1%, f: M - [IX, S! = T* Then f*{T*} =TIX, w,
# 0. That is, M is an 4,(T*)-manifold.

In this paper we shall investigate the transformation groups on aspherical 4,(N )-
manifolds. We shall introduce the notion of the Euler characteristic x(f) and the
K-degree K( f) of a smooth map f: M — N. If x(f) # 0 or K(f) # 0, then M is an
A,(N)-manifold. Moreover, we shall show that if S' acts effectively and smoothly
on a smooth A4,(N)-manifold M, k > 1, with fixed point set F, and N a closed
oriented Riemannian manifold with strictly negative curvature, then Sign(f) =
3, Sign( f| F;), where F = U F.. Moreover, if K(f) # 0 for some K, then F is not
empty and at least one component of F is also an aspherical 4,(N )-manifold. We
will also generalize some results in [15] from A4,-manifolds to aspherical 4, (N)-
manifolds. In particular, we shall obtain several generalizations of Theorem 1.1. For
instance, if M is an aspherical 4,(N )-manifold, x € H*(M; Q), and y = f*(y) €
H*(M; Q) such that xy # 0 and m = m — k = 19, then

Ne(M)<k+{(m—a+1)go+ (a+1)g
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or
Ny(M) <k+ dimSU(m/2 + 1).
If, in addition we assume that N is a closed oriented Riemannian manifold with

strictly negative curvature, kK > 1, and x, y and m are as above, then we have the
following generalization of Theorem 1.1:

or

Ny (M) =dim SU(m/2 + 1), M~ CP"™/?XxX Wk,
These bounds on N (M) are of course much sharper than {(m +1) 4, especially if a
can be chosen near [(m +1)/2]. In §4, we shall define a numerical invariant
N(M; H) which is very useful to estimate the degree of symmetry of complex
manifolds. We shall apply this invariant to show that if M is a complex aspherical

A,(N)-manifold and m = 2n + k, then N(M) <k + (n+ 1)g,, where (s)g, =
dim SU(s).

2. Existence of induced maps. The following result is a topological analogue of the
fundamental theorem of homomorphisms for groups.

2.1 THEOREM. Let M, N and W be CW complexes, f: M - N and g: M - W be
continuous. Suppose g,; is onto for 1 <i < $(N) = d, where g,;: m(M) - w(W) and
¢(N) = max{j: m(N) # 0} < oo. Then there exists a map h: W — N such that hg is
homotopic to f if and only if Kerg,; C Ker f,, for 1 <i<d.

PrOOF. Suppose Kerg,, CKerf,; for l <i<d. Let {a,: M > M}, {b;: W
W,} and {c,: N —» N,} be the Postnikov systems of the complexes M, W and N,
respectively. By definition we have homotopy commutative diagrams

dp+1
M - Mn+]
a,N !

M,

n

and fibrations K(7,, (M), n + 1) > M, , — M,, etc. There exist maps {f,;: M, -
N,} and {g,: M, - W,} such that

n

ot 8n+1
M, ., - N, M, - W,
) ) and ! l
A &
M, 5 N, M, - W,
commute, and
f
M LN M 5w
a, le, and a,l Ub,
I 8n
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are homotopy commutative. We shall inductively construct the maps &,: W, - N, so
that h,g, =~ f,. Assume that h, has been constructed. Consider the following
diagram where the vertical maps are fibrations:

.i;l+l

K(m, (M), n+ 1) >K (7, (N),n+ 1)
gn+l };"+|
K('”n+l(W)’ n+ 1)
fn+l \(
Mn+| ~ >}vn+l
En+1 '; +l ]
\ _ n/ -
> 14/;14-1 - Y
M, - —> N,
8n /
W

By hypotheses and the fundamental theorem of homomorphism for groups, there
exists a homomorphism 4, : 7, (W) — 7, ((N) such that k., 18,1 = frn+1-
Since

[K(m,n+ 1), K(n’, n+ 1)] = Hom(7, 7'),

there exists a map £, , such that 4, ,&,,, = f,.,. The maps k., and h, induce a
map h,,.;: W,., > N,,, such thatf, ., ~h, g, ., Since d=$(N), c,is a weak
homotopy equivalence, hence it is a homotopy equivalence. Let ¢: N, > N be a
homotopy inverse of c¢,. Then the map h = ¢h b, satisfies hg =~ f.

If N is a K(m(N),1)-complex, ie. aspherical complex, then ¢(N) = 1. The
special case when N is an aspherical complex was proved in [S].

2.2 PROPOSITION. Assume that M is an aspherical A, (N )-manifold and =, (M)
abelian. Let T* act effectively on M with nonempty fixed point set F(T°, M). Then
there exists a map h. M/T* -> N such that f~hn and s<m — k, where
M — M /T? is the natural projection.

PROOF. It is known that 7,: m(M) — m,(M/T*) is surjective [2]. Thus = (M /T*)
is abelian because 7,( M) is abelian. Since F(T*, M) is not empty, 7*: H'(M/T*; Q)
— H'(M; Q) is surjective [2]. Equivalently, 7,: H(M; Q) » H(M/T*; Q) is injec-
tive. But 7, is also surjective [2], hence 7, an isomorphism. Hence it is not difficult
to see that Ker 7, is a finite group. Since m () is torsion free, Ker 7, C Ker f,;.
Since M /T* has the homotopy type of a finite complex [5], it follows from Theorem
2.1 that there exists a map h: M/T° — N such that hm = f. As M is an aspherical
A, (N )-manifold, h*: H*(N; Q) - H¥(M/T?; Q) is nontrivial. Thus we have k <
dim M/T° = m — s, or s < m — k as desired.

2.3 PROPOSITION. Suppose that M is an aspherical A, (N )-manifold and G a compact
semisimple Lie group acting almost effectively on M with G(x) as a principal orbit.
Then there exists a map h.: M/G — N such that f ~ hw and dimG(x) <m — k.
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PROOF. Let i: G — M be the orbit map defined by i(x) = x(m), m € M. Accord-
ing to [5], we have an isomorphism

m(M/G) = (m(M)/inm(G))/P,

where P is a finite normal subgroup of #(M)/i,,m(G). Since m,(N) is torsion free,
we have Ker 7, C Ker f,,. Again k < dim M/G = m — dim G(x), and the proof is
complete.

From the proof of [5, Theorem 3.5] we can see that the following holds.

2.4 PROPOSITION. Let M be an A,(N )-manifold, k > 1, and N a closed oriented
Riemannian manifold of strictly negative curvature. Suppose G is a compact connected
Lie group acting almost effectively on M with G/H as a principal orbit. Then there
exists a map h: M/G — N such that f ~ hm and dimG/H <m — k.

3. Euler characteristic, K-degree of a map, and fixed point set. Let M™ and N* be
closed connected oriented manifolds, and f: M — N be a smooth map. Let x € N be
a regular value of f, and W = f~!(x). Define the Euler characteristic x(f) of the
map f by x(f) = x(W)mod 2, where x(W) denotes the Euler characteristic of W,
and set x(f)=0if W=¢. If m=4r+ k, and K = {K,} is a multiplicative
sequence defined by Hirzebruch in [7], define the K-degree K(f) of f to be the
following number:

K(f):{éKr(W),[WDEQ, i:Zji

Since the oriented cobordism class of W is independent of the choice of the regular
value x, K( f) is well defined. If r = 0, then K, = 1 and K( f) is simply the degree
of f. Define the signature of f by Sign(f) = L(f), the L-genus of W. The special
case K = A is defined in [6]. To prove that x( f) is well defined, let W’ = f~'(»), y
is another regular value of f. Then there is a compact oriented manifold V with
boundary oV = WU W’. But H(V,W; Q) =H,_(V,W’; Q) where v = dimV.
Hence, if v is odd, x(V, W) = —x(V, W’), and so x(W) = x(W’') mod 2.

We shall denote the normal bundle of W in M by », p: v - M the projection and
1n: M — T(») the natural collapsing map, where T(») is the Thom space of ».

3.1 THEOREM. Let f: M™ — N* be a smooth map. Then

@K(f)=(K(M)U f*(N},[M]) if m = 4r + k,

®) x(f) = {(pn)*e(W) U f*{N},[M]) mod 2, where [ M] denotes the fundamen-
tal class of M, and e(W') the Euler class of the tangent bundle TW. In particular, if
K(f)#0,0rx(f)+#0, then M is an A, (N )-manifold.

PROOF. Let »* denote the normal bundle of x in N and U € H¥(T(»)) and
U’ € H*(T(v")) be the Thom classes. The map f induces a bundle map b: » - »’ and
hence a map T(b) such that T(b)*U’ = U (cf. [3, II 2.8]). The natural collapsing map
n': N - T(»’) has degree 1, hence n’*U’ = {N}. Since T(b)n = 7'f, it follows that

[N} = U = 0 T(b)*U" = n*U.
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By using the Poincaré duality we can easily show that j [W] = [M] N n*U, where j:
W — M is the inclusion. Since the normal bundle » is trivial, hence j*K (M) =
K (W). It follows that

K(f) = (KW),[W])= (j*K(M),[W])= (K(M), j,[W])
= (K(M),[M] N U )= (K,(M) UnU,[M])
= (K/(M)Uf{N},[M]).
This completes the proof of (a).

Let p: T(v) - W be projection. Since n has degree 1, 9 [M]N U=[W] It
follows that

(e(W),[W])=(e(W),n,IM] N U)= ((pn)*e(W) U f*(N},[M]).

Hence x(f) = ((pn)*e(W) U f*{N},[M]) mod?2.
The main result of this section is the following:

3.2 THEOREM. Suppose M™ and N* are closed oriented connected manifolds, where
N is a Riemannian manifold with strictly negative curvature and k > 1. Let f: M - N
be a smooth map such that K( ) # 0 for some multiplicative sequence K. Then for any
smooth action of S' on M, the fixed point set F is not empty, and at least one
component of F is an aspherical A,(N )-manifold. Moreover, we can orient each
component F; of F so that Sign( f) = Z,Sign( f| F)).

From now on we shall always assume that N is an aspherical complex and call an
aspherical A,(N )-manifold simply an A,(N )-manifold. In view of Theorem 3.1,
Theorem 3.2 is a special case of the following:

3.3 THEOREM. Let G = S' act effectively and smoothly on a smooth A,(N )-mani-
fold, k> 1, and N a closed oriented Riemannian manifold with strictly negative
curvature.

(a) Suppose K(M) is a polynomial in the Pontrjagin classes of M with rational
coefficients such that (z U K(M),[M])# 0 where z = f*(z) € H*(M; Q). Then the
fixed point set F of G is not empty, and at least one component of F is also an
A, (N )-manifold.

(b) We can orient each component of F = U j.Fj so that

Sign(f) = 2 Sign(f| E).

J

This theorem is an immediate consequence of the followng two theorems.

3.4 THEOREM. Suppose G = S' acts effectively and smoothly on a smooth A,(N)-
manifold M, and there exists a map h: M /G — N such that f = h.

(a) If (zU K(M),[M])+* 0 where z and K are as in Theorem 3.3 and the fixed
point set F of G is not empty. Then at least one component of F is also an
A, (N )-manifold.

(b) We can orient each component F; of F so that

Sign(f) = 3 Sign(f),  f=f|F.
J



