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ON FIRST COUNTABLE, COUNTABLY COMPACT SPACES. I:
(w,,w*)-GAPS

BY

PETER J. NYIKOS' AND JERRY E. VAUGHAN

Abstract. This paper is concerned with the (u:, «*)-gaps of F. Hausdorff and the

topological spaces defined from them by Eric van Douwen. We construct special

gaps in order that the associated gap spaces will have interesting topological

properties. For example, the gap spaces we construct show that in certain models of

set theory, there exist countably compact, first countable, separable, nonnormal

7"2-spaces.

1. Introduction. For short, we say that a countably compact, first countable,

separable, nonnormal F2-space is an R-space. It is known that there exist (in ZFC)

countably compact, first countable, nonnormal F2-spaces [N, VJ, but these examples

are not separable (hence not Ä-spaces) in a strong way: They are w-bounded (i.e.,

every countable subset has compact closure). It is also known that under certain

set-theoretic assumptions (e.g., the continuum hypothesis (CH), and Martin's Axiom

plus the negation of the continuum hypothesis (MA + -, CH)) there exist /?-spaces.

One of the weakest such assumptions now known to us is the cardinal equahty

"b = c", which is defined below (see Corollary 1.6).

The (w,, wf)-gaps of F. Hausdorff come up naturally in the search for Ä-spaces

because the topological space defined by van Douwen [vDJ from an (co,, w*)-gap is

very close to being an Ä-space. In fact, for any gap, the associated gap space has all

the properties of an Ä-space except possibly one: countable compactness. These

spaces are, however, countably paracompact (for the definitions of gaps and gap

spaces see §2). Further, these spaces exist within ZFC by virtue of

1.1. Theorem (Hausdorff [H]). There exists an («,, u^)-gap.

In this paper we study several special kinds of (to,, w* )-gaps (called tight gaps and

big gaps, see §§3, 4) and the topological properties of the associated gap spaces and

related spaces. Our results show that in many models of set theory i?-spaces can be

constructed from (w,, w|)-gaps. For example, if c = 8, or c = S2, we can construct

such Ä-spaces (Corollary 1.7). Our results, however, do not completely answer the

question, "does there exist an Ä-space?"
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Let c denote the cardinality of the continuum. We now define the cardinals b and

p which are closely related to certain («,, «f)-gaps (these and other well-known

cardinals in set theory are discussed in [vD2 and V2] and in [He] under different

terminology). Let co denote the set of natural numbers, | A'l the cardinal number of a

set X, and [«]" the set of all infinite subsets of w. A family '¿F C [<o]" is said to have

the strong finite intersection property (s.f.i.p.) provided for every finite ?P C ÍF,

| fW|= u. A family <# is unbounded below provided there does not exist a set

A G [«]" such that \A - F\< u for all Fef.We define p = minflf | : $ G [u]a,

ÍFhas s.f.i.p., and ÍFis unbounded below}. The cardinal b is defined as follows. Let

"w denote the set of all functions from to into <o. For f, g Gao¡ we say /< * g

provided there exists N G u such that for all n > N', f(n) < g(n). A set H Cw« is

called unbounded above provided there does not exist g Eww such that/< * g for all

f G H. We define b — min(| H\ : H C"ío and H is unbounded above}.

We use the following classical inequality proved by F. Rothberger [R], w, < p < b

s£c.

Clearly under CH, «,=/> = b = c. It is also known that there exist models of set

theory in which these cardinals are different (see the discussion in [vD2, He and V2]).

We defer making further definitions until §2, and now state our main results.

Since (w,, (of)-gap spaces are countably paracompact, it is natural to ask if any of

them are countably compact. Our first result answers that.

1.2. Theorem. The following are equivalent.

(i) There exists a countably compact (ux, u*x)-gap space,

(ii) There exists a tight (ux, w*)-gap,

(hi)p = ux.

Under MA +—, CH, p — c > w, [B]. Thus MA +—, CH implies that there do not

exist any countably compact (<o,, tof)-gap spaces.

1.3. Theorem (ZFC). There exists an («,, u*)-gap which is not tight, hence there

exists an (ux, u*)-gap space which is not countably compact.

There is another way that gap spaces can be used to get Ä-spaces. Note that if an

(«,, wf)-gap space X can be densely embedded into a countably compact, first

countable F2-space Y, then y is an Ä-space (see §5).

1.4. Theorem. If b = c, then every first countable, locally compact, T2-space of

cardinality < c can be embedded into a countably compact, first countable T2-space.

Since every («,, wf)-gap space is a first countable, locally compact, zero-

dimensional F2-space and has cardinality u,, we have

1.5. Corollary. If b = c and c > w,, then every (w,, u*)-gap space can be

embedded into a countably compact, first countable, T2-space.

Combining 1.2 and 1.4 with Rothberger's inequality (p < b) we have

1.6. Corollary. If b = c, then there exists an R-space.
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W. Weiss has independently proved this result as an improvement of the similar

result (using MA +-.CH) of M. Dahroug. Their proofs do not use (co,, ux)-gaps.

We also have

1.7. Corollary. If c — wxor c = co2, then there exists an R-space.

The next result shows that the embedding of gap spaces as given in 1.5. cannot be

carried out in ZFC for every (co,, cof)-gap.

1.8. Theorem, (i) There exists a big(ux, u*)-gap if and only ifb — co,.

(ii) // there exists a big (ux,u*)-gap, then the associated gap space cannot be

embedded into any countably compact, first countable T2-space.

Open questions. (1) Does there exist (in ZFC) an (co,, cof)-gap such that the

associated gap space can be embedded into a countably compact, first countable

F2-space? If the answer to (1) is yes then the main problem is solved:

(2) Does there exist an /?-space?

In §2, we give the basic definitions of gaps and gap spaces, and consider tight gaps

and big gaps in §§3 and 4 respectively. We prove Theorem 1.4 in §5.

2. Definitions. All spaces considered in this paper are completely regular F2-spaces.

The topological terms are standard (e.g., see [E or W]) but we review them for

completeness. A space X is called countably compact if every sequence in X has a

cluster point (or equivalently if every infinite subset has an accumulation point). A

space X is first countable if every point has a countable local base; separable if X has

a countable dense set; locally compact if every point has a compact neighborhood;

and zero-dimensional if every point has a local base of clopen sets.

The set-theoretic concepts: Recall that [co]"" denotes the set of all infinite subsets

of co. For A, B G [co]" we write A G * B provided \A — B\< u, and A < B provided

A G*B and\B - A\= u.AsetY = {(Aa, Ba); a< co,} C [co]w X [co]u is called an

(co,, o¡x )-gap provided:

(2.0) B0 < co;

(2.1) for all a < «„ Aa <Aa+x< Ba+X < Ba;

(2.2) there does not exist H G [to]" such that Aa < H < Ba for all a < co,.

Condition (2.0) is included only for reasons of symmetry: we want both A0 and

w — B0 to be infinite and have limit points in the gap space.

Let T be an (co,, tof)-gap. We now define the topological space (of van Douwen)

associated with Y. (In [vDt], van Douwen was interested in countable paracompact-

ness, but in this paper we are concerned with countable compactness. Thus, we have

to change slightly van Douwen's definition of a gap space in order to insure that A0

and co — B0 have limit points.) The underlying set of the space consists of co and two

disjoint copies of co,; say X(Y) = L0 U Lx U co where Li - {/} X co, (i G 2). The

points in co are to be isolated in the topology.

For a < co| we define a local base at (a,0) and (a, I) as follows. First, for a = 0

we put for every F G [co]<u, K«0,0>; F) = «0,0)} U A0 - F, and W((0,1>; F)

= {(0,1)} U (co — B0) — F. This insures that the infinite sets A0 and (co — B0)
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have limit points. For 0 < a < co, define for each ß < a and F E [co]<"

V{(a,0y,ß,F)={(i,0y.ß<i<a} U(Aa-Aß)-F,

W((a, iytß,F) = {(i,l):ß<i<a}U(Bß-Ba)-F.

The topology on X(Y) is taken to be the topology generated by these local bases.

It is easy to check that the space X(Y) is first countable, separable, locally compact,

zero-dimensional, and T2. Further, the disjoint closed sets L0 and L, cannot be

separated by disjoint open sets (or else (2.2) is violated); so X(Y) is not normal. All

these details can be found in [vD,]. We note that since L0 and L, are countably

compact, they will be closed in any first countable F2-space Y in which X(Y) can be

embedded; so such a space Y will also fail to be normal.

3. Tight (co,, u*)-gaps.

3.1. Definition. Let Y - {(Aa, Ba): a < co,} be an (co,, cof)-gap, and E G [co]".

If E C * Ba — Aa for all a < co, we say that E is beside the gap Y. A gap Y is called

tight provided there does not exist E G [co]" such that E is beside the gap Y.

3.2. Lemma. An (co,, o>*)-gap Y is tight if and only if the space X(Y) is countably

compact.

Proof. Since both L0 and L, are countably compact subsets of X(Y) the only

countable subsets of X(Y) which do not obviously have limit points are sets E G co

such that \EDAJ<u and |F-£J<co (equivalently, E G*Ba- Aa) for all

a < co,. Note that [Ba — Aa: a < co,} is a decreasing tower in [co]" (i.e., a < ß

implies Bß — Aß G * Ba - Aa). Thus X(Y) is countably compact if and only if this

tower is unbounded below (i.e. T is a tight gap).

From this it is clear that if Y is a tight gap, then/) = co, (this proves Theorem 1.2

(ii) - (iii)).

Proof of Theorem 1.2. (iii) -» (ii). Ifp — co,, then there is a tight (co,, u*x)-gap. If

p = co,, then there is a maximal decreasing tower {Ta; a < co,} C [co]" (i.e. a < ß

implies Tß<Ta and there does not exist any H G [co]" such that H G *Ta for all

« < co,). Clearly, it suffices to prove that there exists an (co,, co*)-gap Y — {(Aa, Ba):

a < co,} such that Ba - Aa = * Ta (i.e., Ba - Aa G * Ta C * Ba - Aa) for all a < co.

The maximality of the tower is not needed in the construction of the gap so we state

the following more general result.

3.3. Lemma. If {Ta: a < co,} is a family of infinite subsets o/co such that T0 < co and

a < ß < co, imply Tß < Ta, then there exists an (co,, u^)-gap Y = {(Aa, Ba): a < co,}

such that Ba — Aa = Ta for all a< co,.

This lemma can be proved by making minor modifications in Hausdorff s proof

that there exists an (co,, co*)-gap. A somewhat different proof of a more general

result has been given independently by A. Blaszczyk and A. Szymañski [BS].

3.4. Definition. Let N be a countably infinite set, and {(Aa, Ba): a < co,} a

family of pairs of infinite subsets of N. Such a family is called an (co,, u*x)-gap in N

provided (2.0), (2.1) and (2.2) hold for this family with N substituted for co.
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It follows from Hausdorff's Theorem 1.1, that every countable, infinite set N has

an (co,, co*)-gapin N.

Proof of Theorem 1.3 (ZFC). There exists an (co,, u>*[)-gap which is not tight,

hence there exists an (co,, u*x)-gap space which is not countably compact. Partition co

into three infinite sets M, N, and P. Let {(A'a, B'a): a < co,} be any (co,, co*)-gap in

N. Define Aa = A'a U M, and Ba = B'a U M U F for all a < co,. Then {(Aa, Ba):

a < co,} is an (co,, co*)-gap having the infinite set F beside the gap.

4. Big (to!,<oï)-gaps.

4.1. Definition. An (co,, tof)-gap Y = {(Aa, Ba): a < to,} is called big provided

there exists a family {F„:nEco}C[co]"of pairwise disjoint sets such that each En

is beside the gap Y, and for every D C to such that | D n E„ | = co for infinitely many

n G co, there exists a < co, such that \Aa n D\— to. This concept is motivated by

4.2. Lemma. // Y is a big (ux,u*)-gap, then X(Y) cannot be embedded in a

countably compact, first countable T2-space.

Proof. Let Y = {(Aa, Ba): a < co,} and let {£„: n G to} be pairwise disjoint

infinite subsets of co satisfying 4.1. Suppose that X(Y) can be embedded in a

countably compact, first countable F2-space Y (we assume X(Y) C Y). Each En has

an accumulation point yn in Y and further yn G Y\X(Y) because £„ is beside the

gap T. Since X(Y) is locally compact, Y — X(Y) is closed in Y. Thus, there is a point

y G Y — X(Y) which is a cluster point of the sequence {yn: n E to}. By passing to

subsequences where necessary, we may assume without loss of generality that (1)

[yn: n G co} converges toy in Y, and (2) each En converges toj>n (i.e., >;„ is the unique

accumulation point of En in Y). Now let {[/„: n G co} be a local base for y^ in Y. Pick

an increasing sequence (/'„:« E co} of natural numbers such that the sets Z), = Un O

F,n are infinite. Put D = U {D¡\ n G co}.

By (4.1) there exists (a first) a < co, such that \Aa D D\— co. Thus the point

(a, 1) E X(Y) is a limit point of D. But this is impossible because D has all its limit

points in y \ AY r).

Proof of Theorem 1.8. There exists a big (co,, u*)-gap if and only ifb = co,. First

we assume that b = co,. Let [fa: a < to,} be a family of strictly increasing functions

from to into co which has no upper bound in the < * order on "co. Let N be a copy of

co disjoint from co X co. Let {(A'a, B'a): a < co,} be any (co,, co*)-gap on N. Define

Ba = B'aU(uX co) and Aa = A'a U {(i, y > E co X u:j >ftt{i)} for all a < to,. Then

{(Aa, Ba): a < co,} is a big gap on the countable set (co X co) U N; so there exists a

big(co,,cof)-gap.

Conversely, assume that {(Aa, Ba): a < to,} is a big (co,, cof)-gap in co. Let {E„:

n < co} be a family of mutually disjoint infinite subsets of co satisfying the property

of a big gap in (4.1). Since for every n < to and a < to, E„ C * Ba — Aa, we may

define functions fa by the rule: /„(«) is the first integer such that

J^L(n)^(jGEn^jGBa-Aa).
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We show that {/„: a < co,} has no upper bound in "u, and thus b = co,. Suppose

that there is a function g such that fa < * g for all a < co,. Define Dn = [x G En;

x> gin)}- Clearly Dn is an infinite subset of En for all n < co. Since the gap is big,

there exists a < to, such that (Aa D UnDn) is infinite. Further, since each Dn is

beside the gap, Aa D £>„ is finite for all n < co. Thus, there are infinitely many n such

that A n Dn¥= 0. Since /a < * g there exists n < u such that for all m > n we have

fa(n) < #(«)• Now pick an n > m such that there is y E Aa n £)„. We have y > g(n)

> /„(«); so by definition of fa,j G Ba— Aa. This contradicts that 7 E v4a, and that

completes the proof.

4.3. Remark. It is easy to see that there exists a non-big gap (in ZFC). If p = co,, a

tight gap is not big. If p > to,, then b > co, (by Rothberger's inequality); so every

gap is not big by Theorem 1.8.

5. Proof of Theorem 1.4. If b = c, then every first countable, locally compact,

F2-space of cardinality < c can be embedded into a countably compact, first

countable, locally compact, zero-dimensional F2-space.

5.1. Lemma (van Douwen [vD2]). If X is a first countable regular space of

cardinality < b, then X has property D (i.e., for every closed, discrete sequence {x,:

/ < co} in X, there exists a discrete family {U¡: i < co} of open sets in X such that

XjG U,~j=i).

Now let (X, T) be a topological space satisfying the hypothesis of 1.4. We

construct a space Y by transfinite induction in the manner of Ostaszewski [Ö]

starting with X at the first step. The underlying set of Y will be X U c where c is the

cardinal number 2", and where we consider X and c as disjoint sets. Let {Ha:

co *s a < c} list [c]" such that Ha G a for all to « a < c. Let {Ea: to < a < c) list

[XIa. This requires only that | X\< c, but we need | A^< c in order to apply 5.1, and

to have X zero-dimensional. In order to catch up with the listings, put Xn = X and

Tn—T for all n < co. Assume for all a < y, where co < a < y < c, we have defined

topologies Ta on sets Xa such that

(l)Xa = XU a (for co < a < y).

(2) (Xa, Ta) is a first countable, locally compact, zero-dimensional F2-space.

(3) ß < a < y imphes (Xß, Tß) is an open subspace of (Xa, Ta).

(4) co =£ a<a + 1 <y implies that both Ha and Ea have a limit point in

(^a+l> •'o+l)-

In order to construct Ty on Xy = X U y, we proceed in two cases (ya successor or

limit ordinal) as in many Ostaszewski type constructions (see [vD^O.Vj]). For

completeness we sketch the proof. If y is a successor ordinal, say y — a + 1, and if

both Hy and Ey have limit points in (A^, Ta) we let a be isolated in (Xy, Ty). If one

or both of Hy, Ey is closed discrete, we use zero-dimensionality, local compactness,

and Lemma 5.1 to get a discrete family of compact clopen sets {V^. i' G to} each of

which meets Hy and/or Ey (whichever is closed discrete) in an infinite set. We let a

local base at a be [Wn: n < co} where W„ = U {V¡: i > n) U {a}. In case y is a limit

ordinal, define a subset U of Xy to be open in Ta if and only if U C\ Xa G Ta for all

a < y. It is possible that for some a< c, the space (Xa, Ta) is countably compact
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(even (X0, T0)), and we could stop right there. Our construction, however, would

continue by adding isolated points for countably many steps and then pick up again

adding limit points. Thus we can get the final space Y = ( Xc, Tc) to have underlying

set XU c. The space Y is a countably compact, first countable, locally compact,

zero-dimensional F2-space containing X = X0 as a subspace. We leave the details to

the reader.

References

[B] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970/71), 1-24.

[BS] A. Btaszczyk and A. Szymanski, Hausdorff's gaps versus normality, Bull. Acad. Polon. Sei. Ser.

Math. 30 (1982), 371-378.
[vD,] E. van Douwen, Hausdorff gaps and a nice countably paracompact nonnormal space. Topology

Proc. 1(1976), 239-242.
[vD2]_, Functions from the integers to the integers and topology, cocktail napkin, Hilton Hotel Bar,

San Antonio, Texas, 1975.

[E] R. Engelking, General topology, PWN, Warsaw, 1977.

[H] F. Hausdorff, Summen von N, mengen, Fund. Math. 26 (1936), 241-255.

[He] S. H. Hechler, A dozen small uncountable cardinals, (TOPO 72—General Topology and its

Applications), Lecture Notes in Math., vol. 378, Springer-Verlag, Berlin and New York, 1974, pp.

207-218.
[K] K. Kunen, Set theory, North-Holland, Amsterdam, 1980.

[N] P. J. Nyikos, The topological structure of the tangent and cotangent bundles on the long line, Research

Announcement, Topology Proc. 4 (1979), 271-276.

[O] A. J. Ostaszewski, On countably compact, perfectly normal spaces, J. London Math. Soc. 14 (1976),

505-516.

[R] F. Rothberger, On some problems of Hausdorff and Sierpinski, Fund. Math. 35 (1948), 29-46.

[V,] J. E. Vaughan, A countably compact, first countable, non-normal T2-space, Proc. Amer. Math. Soc.

75 (1979), 339-342.

[V2]  _, Some cardinals related to c and topology (Topology Conf.,  1979), Metric Spaces,

Generalized Metric Spaces, Continua, Math. Dept., Guilford College, Greensboro.

[W] S. Willard, General topology, Addison-Wesley, Reading, 1970.

Department of Mathematics, University of South Carolina, Columbia, South Carolina

29208

Department of Mathematics, University of North Carolina at Greensboro, Greensboro,

North Carolina 27412


