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ON THE LOCATION OF ZEROS OF

OSCILLATORY SOLUTIONS

BY

H. GINGOLD

Abstract. The location of zeros of solutions of second order singular differential

equations is provided bv a new asymptotic decomposition formula. The approximate

location of zeros is provided with high accuracy error estimates in the neighbour-

hood of the point at infinity. The same asymptotic formula suggested is applicable to

the neighbourhood of most types of singularities as well as to the neighbourhoods of

regular points.

1. Introduction. In the oscillation theory of second order differential equations one

may distinguish three types of problems.

Given the differential equation

(Li) y" = q*y

on an interval (a, oo), let y(t) be a real nontrivial solution of (1.1). Then the

following three problems are raised.

(1) Isy(?) oscillatory on (a, oo)? Namely does y(t) possess an infinite number of

zeros?

(2) Find an estimation of the number of zeros of y(t) on (a, T).

(3) Find the location of the zeros of y(t) on a given interval (a,T).

Each of the above three problems is intimately connected with the other two. They

ascend in difficulty from (1) to (3), problem (3) being most delicate and its solution

most desired. An answer to problem (3) provides an answer to (2) and (1). An

answer to (2) provides an answer to (1). Therefore, the conditions to guarantee

answers to the three problems differ respectively. The more smoothness assumed on

q4, the more accurate is the location of the zeros of y(t) by a single given formula.

Problems (l)-(3) are difficult because we have to deal with a singular differential

equation. The singularity of the differential equation is manifested in the fact that

we have to describe the behaviour of solutions y(t) of an equation, which may have

an unbounded coefficient on a noncompact domain, (a, oo).

Classical asymptotic techniques are a major tool in the investigation of singular

differential equations.

It is surprising to notice the small amount of classical asymptotic techniques

applied specifically to oscillation problems compared with the other techniques
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appearing in the voluminous literature on oscillation theory (see e.g. Swanson [13],

Kreith [6]).

It is the purpose of this paper to demonstrate the application of a new asymptotic

decomposition theorem to oscillation theory.

The advantage of using this new suggested asymptotic decomposition formula as

an asymptotic tool stems from the fact that it is invariant with respect to the location

of the singularity of a differential equation (1.1) and it is also invariant for most

types of singularities of (1.1). In particular, the formula suggested treats a regular

point of (1.1) as if it were a singular one.

However, we will specify our asymptotic decomposition for the equation (1.1) on

(a, oo) to fit problems (l)-(3).

The technique uses matrix formulation which may be adapted to handle oscilla-

tion problems of higher order differential equations.

Also, we will be able to locate, with high accuracy, zeros of solutions of (1.1). It

will turn out that problems (2) and (1) will be illuminated by the asymptotic

technique.

Wiman's asymptotic formula, as well as Nehari's asymptotic formulas for the

asymptotic estimation of the number of zeros of a solution of (1.1), follows as a

corollary.

Many results related to problem (1) can be easier derived and better understood

by use of our asymptotic decomposition theorem if one assumes additional smooth-

ness conditions.

The results in oscillation theory presented in this paper seem to go beyond the

results obtained by Kamke [17], Rab [19], Willet [22] and many other contributors

mentioned in Swanson [13].

Unlike Rab [19] and Willet [22], it is shown how one finds detailed information in

oscillation theory without using nonlinear differential equations. The methods

shown here solve oscillation problems on the real line. However, extension of these

methods could prove productive in the complex domain.

The order of contents of this work runs as follows. After this section, we prove in

§2 an asymptotic decomposition theorem. In §3 we prepare for oscillation theorems,

and in §4 we answer problem (2). §5 is devoted to problem (3).

It is beyond the scope of this paper to mention all contributors to this subject.

Therefore, a few texts will be mentioned and the reader is refered to their references.

I apologize for the injustice caused.

Let us point out conventions used in this paper. We adopt the following conven-

tion. Whenever the complex variable z is used, we assume that

(1.2a) -7T < arg z *£ m,       z¥=0,

(1.2b) lnz = ln|z|+/argz,       z ^ 0.

By J, we will denote an infinite interval

(1.3) 7=[a,oo),   7=[a, oo].

In the sequel, we will also need a suitable norm for a matrix function

(1.4) P(t) = (pjr(t)),      j,r= 1,2.
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Our norm || || satisfies the following

Definition 1.1. We say that || || is consistent with the absolute value if \\(pJr

\\(\Pjr 1)11' j, r = l,2- We pick |] || to be consistent with the absolute value and define

(1.5) |P(/)||| = Sup||P(0
t&j

In addition, we demand

(1-6) \Pjr\<\\P\\,

(1-7) IIP,  " ̂ 11 < 11^,1111^11,
for two matrices PX,P2.

Practically all matrices in future discussion are going to be 2 X 2 matrices.

Matrices will be denoted by capital letters. By a solution of the differential equation

(1.1) we mean a functiony(t) G C2(J) which satisfies (1.1).

2. An asymptotic decomposition theorem. In the sequel we will need an asymptotic

decomposition theorem for the differential system

(2.1) Y' =
0

Y,

which is readily observed to be equivalent to (1.1) with

>i   yi
(2.2) Y =

y\   yi

There are two steps in the asymptotic decomposition theorem. One involves a linear

transformation and the other an actual solution of a matrix singular differential

equation. In the next lemma we present a linear transformation borrowed from

Gingold [2]. The proof is lengthy but one may reproduce it by a straightforward

calculation.

Lemma 2.1 Let q G CX(J) on J and let, for all t G J,

(2.3)

(2.4)

vV + (q'/qf *o,     q4*0,

V('o) +
q'(tp)
q(t0)

iq*(t0) +

q('o)

\

+ q2(t0) *0,

/

q'(h)
q('o)

*o,

for some t0 > a. Then, the transformation

(2.5)

with

(2.6)

(2.7a)

Y= WY,

W
-i

1
-q exp    arctan nil

q'(t)arctan
q\t0)

q'(t0) 2 °
R0'

^0 =
0     1

-1     0 q2,   c = £,   X=ijq<+[(lnq)f,
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(2.7b)
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X0 + d0 ICn
,    d0 = q2(t0),    c0 = ^4,    X = X(t0),

(x0 + d0),y -»   * -'• -   9(,,

ía&as í/¡e differential system (2.1) ircío f/ie differential system

iW(t)/q'(t)]
(2.8)   y = ?4+(^

1       0
0    -1

2(1 +[q3(t)/q'(tj\'

0 1
1 0

Y.

Proof. The lemma can be verified by a straightforward calculation (see also

Gingold [2]). Given the differential system (2.8) under fairly general conditions we

"suspect" that "the leading term" in the coefficient matrix of (2.8) on an interval J

is

(2.9)
1       0
0     -lj

In order to prove this we proceed to show that a fundamental solution of a system

(2.10) Y
1       0
0    -1

0 1
1 0

with X, r denoting some mappings on /, can be written in the form

(2.11) Y=(l + P)exp((fx(s)ds)[l    _°]),

with

(2.12) \\P\\<0(t)<l,        lim (9(í) = 0,
f— 00

for some positive 6. It will be important to estimate 0 in (2.12).

Lemma 2.2. Let X, r be integrable mappings on J. Let

(2.13) Y=(I + P)Z

s.t. the differential equation (2.10) is taken into

1       0
0     -1(2.14) Z' = X

Then (I + P) satisfies the differential equation

(2.15)    (/ + />)'= (x[¿    _î]+r[j    l])(I + P) - (I + P)X[1    _°],

and P satisfies the differential equation

(2.16) P' = X
1       0
0    -1

'-"[¡ -îMî ¿P + r
0 1
1 0
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Let P be a continuously differentiable mapping on J which is a solution of the integral

equation

(2.17) P = P0 + FP,

with

(2.18) P0:= fr(s)D(t)D-l(s)

(2.19) FP= f'r(s)D(t)D~x(s)

0 1
1 0

0 f
1 0

D(s)D~x(t)ds,

P(s)D(s)D-x(t)ds.

j'Q(s)ds is to be interpreted as a matrix whose entries are

(2.20) f qkj(s)ds,       k,j= 1,2,
<*kj

for some akj G J (akj will be specified later) whenever

(2.21) Q={qkj(s)),       k, j =1,2,

qkJ(s) are integrable on J, and D(t) is given by

I        rt
exp / X(s) ds 0

0 exp — / X(s) ds
(2.22) D(t):-

Proof. If

(2.23)

(2.24)

(2.25)

Y' = AY,

Z' = BZ,

Y=WZ

and if W is invertible, then it is easily verified that

(2.26) B = W~XAW- W~XW',

which implies that

(2.27) W' =AW- WB.

Therefore, if W is any matrix solution of (2.27) and Z is any matrix solution of

(2.24), T given by (2.25) is a solution of (2.23). In (2.27) let

(2.28)

(2.29)

A =X

B = X

1 0
0 -1

1 0
0 -1

+ r
0 1
1 0

and substitute in (2.27)

(2.30) W=(I + P).

Then (2.15) follows, and by rearrangement of (2.15) we get (2.16).
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In order to verify (2.17) we differentiate both sides to obtain

(2.31)
r0     1

PV) = r(t)\°l     l\+fr(s)D'(t)D-x(s)
0 1
1 0

D(s)D~x(t)ds

+ /V(i)ß(r)Z)-'(i)[j    l]D(s)(D-x(t))'ds

+r(t)
0 1
1 0

P(t)+fr(s)D'(t)D-x(s) 0 1
1 0

P(s)D(s)D~x(t)ds

0     1+ fr(s)D(t)D-x(s)l»     l0\P(s)D(s)D-x

Since

(2.32)

and since

(2.33)

D'(t) = X(t)
1       0
0    -1

D(t),

(D-X(t))'=-D'x(t)X(t) 1       0
0    -1

one has from (2.31), with the notations (2.18), (2.19),

(2.34) P' = r(t)
0 1
1 0

+ X(t) 1       0
0    -1 [P0 + FP]

~[P0 + FP]X(t)
1       0
0    -1

+ r(t)
0 1
1 0

P(t).

substituting (2.31) the identity (2.17), one reaches the desired conclusion.

Theorem 2.3. Given the differential system (2.1) let q(t) satisfy assumptions of

Lemma 2.1. Let

(i)

(2.35)

and

(2.36)

(ii)

(2.37)

with

(2.38)

(iii) Let

(2.39)

X(t):=i¡q*(t) + (q'(t)/q(t)f

Sup  Re j a(tj) dt\ = m.

/oo
\r(s)\ds   and   g(t) < g(a) < oo

i       [qVW(t)]'
r(t) =

2 [\ +W(t)/q\t)]2]

m
*i(0:= zrem[exp(m2g(t))-l]

m
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where

(2.40) m,
0 1
1 0

,   m2 — max{l, e"'}

and

(2.41) hx(a)<l.

Then the differential system (2.1) has a fundamental solution

(2.42) Y=W(I + P)exp([(fx(s)ds)[l0    _°])

with Wgiven by (2.6). (I + P) is an invertible matrix with

(2.43) l|P||<M0,

for a suitable norm to be described in the sequel.

Proof. Lemma 2.1 shows that it suffices to consider the differential system (2.10).

By Lemma 2.2 it suffices to prove that (2.17) possesses a solution P which satisfies

(2.16). Choose all lower limits akj in the matrices of P0 and FP to be

(2.44) «a, = °o,       k,j= 1,2.

Choose an appropriate norm which is consistent with the absolute value. Then

/oo
\r(s)\e

Choose the norm || || also to be s.t.

(2.46)

0 1
1 0

ds = mxemg(t).

Pn(s)    Pn(s)

Puis)    pX2(s)

Puis)    px2(s)

Pu(s)    Pn(s)

(For example,

(2.47) \\P(s)\\ = max[\pXj(t)\+\p2j(t)\},      j = 1,2,

satisfies (2.46).) Then if P is a solution of (2.17), it is true that

/oo |r(S)|m2||P(r)||c*.

Gronwall's generalized lemma (see e.g. Hille [5, p. 19]) implies that

(2.49) h(t):= m1e",g(í) + m2/00|/-(5)|(expj*w2|r(r,)|t/r,)[m1e'"g(í)]*

satisfies

(2.50) ||P(0H<%).

If h(t) < oo one can use the majorants technique (see e.g. Hille [5, Chapter 1]). It

turns out that (2.50) is sufficient for the existence of a solution P of (2.17). An
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integration by parts applied to (2.49) implies that

(2.51) h(t) = rmxem\r(s)\iexp fm2\r(r))\dr\\ ds

expj"   m2\r(r))\df) - 1
m.

m,

m
em[expm2g(t)-l] =hx(t).

It is readily deduced from this formula that

(2.52) /,,(«)< oo

and, moreover, that

(2.53) limA,(0 = 0.
t— 00

We proceed to our next theorem.

Theorem 2.4. Assume, in addition to the conditions and notation of Theorem 2.3 that

q(t) GC3(J).Let

(2.54) h3(t)
1 IKOI

IMOI -s;d r(s)

ds X(s)
ds

(2.55)       h4(t):= h3(t) + fCOm2\r(s)\h3(s)(expm2f\r(rl)\dr,]j ds,

and

(2.56) limh4(t) = 0,       h4(t)<h4(a)<\.

Then the differential system (2.1) possesses a fundamental solution (2.42) with

(2.57) p»(ï)||<A4(0<l-

Proof. The main difference between this theorem and the previous one stems

form the different ways of estimation of the entries of P0. After integration by parts

one has

(2.58) h2(t) =jf'r(J)(exp(2jf'Mi,)*/!,)) ds

d    r(s)
+ r

Letting a -» oo in (2.58) leads to

(2.59)   Mo-^-jr

But,

r(t)

ds 2X(s)

d    r(s)

exp 2 / X(t}) dt) J A.

(2.60) MOI 2M0
+ r

ds 2X(s)

d    r(s)

ds 2X(s)

iexp2fX(t}) dt]   ds.

(exp m) ds — h3(t).
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Similarly,

(2.61) I r(s) lexp-2 I X(t)) dr¡\ ds <M0

because replacing A(rj) by -a(tj) in (2.58) leads to the same bound h3(t) in (2.60).

Therefore, with the same choice of akj = oo, k, j = 1,2, in the integral equation

(2.17), we have

(2.62) \\P0(t)\\<h¿t).

Thus the inequality in (2.48) has to be changed to

(2.63)
/CO

\r(s)\m2\\P(s)\\ds.

Invoking Gronwall's type inequality again, one concludes that if P(t) is a solution of

(2.17) then

(2.64)    ||P(0||<M0 + ¡^m2r(s)h3(s)(expm2f\r(y])\dr^ ds = h4(t).

On the other hand, the method of majorants guarantees that (2.17) possesses a

solution subject to the inequality (2.64). The conditions (2.56) imply that (I + P) is

invertible and the desired result follows.

3. Preparation for oscillation results. Theorems 2.3 and 2.4 guarantee that a

fundamental solution of (2.1) is given by (2.42). In order to attain the solutions of

the differential equation (1.1) we have to identify first two real linearly independent

solutions of (1.1). Since in all theorems a fundamental solution is given in the form

(2.42), we proceed to find the elements of Y. To this end we need to find an explicit

form for W given by (2.6).

The following identity can be easily verified:

1       0

.0    -1
(3.1)

with

(3.2)

Jo = Wo
'-\

Vo =
1     i

i     1
v0-]

1

1

A straightforward computation leads to the following identity:

(3.3)

Since

V~XR   = -yo Ko     2
*o + do - ico        ico - (K + dj)

c0 - i(K + do)     co ~ i(K + dj)

(3.4) arctan z — arctan zn =
rz    ds     _ Cz l\    1

°~Li + s2~l Ms-i

2/     \ z + i    zn — i

s + i
ds
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we denote

/-. ^\ ' / ^ 1  ,   / z — i    z0 + /'
(3.5)        e '■ = exp —(arctan z — arctan z0) = exp -r In1

Z + i      Zn

or

(3.6)

In (3.5) we let

(3.7)

to obtain

(3.8)

e =

z(t)

e =

(z-i)    (zp + QT

(z + i)    (z0-i)

= d(t) = d(t0)

~ c(t) '       Z°     c(t0)

d(t) - ic(t)    d0 + icQ

d(t) + ic(t)    d0-ic0

Therefore, it can be verified that, with

(3.9)

1/4

W,:= x
e(\0 + d0- ic0) + ie-'(co - i(*o + do)), <K«'o " (*<> + «/„)) + ie-'(c() - /(X„ + </„))

ie(\0 + d0 - ic0) + e-'(cQ - i(\0 + d0)), ie(ic0 - (X0 + dix)) + e"'(c0 - i(A„ + </„))

we have for If (which was given by (2.6)),

.-i
(3.10) W

-i
•7
-9 W2.

7*= 1,2,

If we use the notation

(3.11) P(0 = (/>,*),    ^= (";*),    *=(*,*).

we substitute into (2.42),

(3.12)

and

(3.13)

such that

«11 =  1  +Pll  + *12WÍÍP2\>     «12 =  1  +/>22 + WllWnPl2>

w,'jk

W= W(I + P),

j,k= 1,2,wjkvjk

(3.14)

(3.15)

Thus,

(3.16)

«21  =  i  + Pli + W22W2lP2U     »22 =  i  + />22 + W2lW22P2l~

yx — w,, exp i X(s) ds,   y2 — >v,2exp — / X(s) ds

are two linearly independent solutions of (1.1) and

(3.17) y{ = w2X expf'x(s) ds,   y's = tv22exp - j\(s) ds

are their respective derivatives.
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We let A(t), B(t) be two real-valued functions defined by

(3.18) (A(t) + iB(t)) : = f'x(s)ds

and we denote by

(3.19) Wjr=\Wjr\e»J>,      j,r= 1,2,

(3.20) 0jr = arg wjr,   for | wjr\^ 0,j, r=l,2.

We choose two real linearly independent solutions of (1.1), yx, y2, as follows:

(3.21) yx = Re{wxxexp(A(t) + iB(t)))

(3.22) =\wxx\(expA(t))cos(B(t) + exx),

(3.23) y2 = -Img{vvl2expM(0 - iB(t))}

(3.24) = \wX2\(exp-A(t))sin(B(t) - 6X2).

A general real solution of (1.1) will be given by

(3.25) y = cxyx(t) + c2y2(t)

where cx,c2 are real numbers. Using trigonometric identities with

(3.26) a(t):= c, |wn | (exp A(t)) cos 6 xx - c2|vv12| (exp-.4(f)) sinf)12,

(3.27) b(t) := -cx\wxx\(expA(t))sinßxx + c2| vvl2| (exp-/!(/)) cos 012,

(3.28) tan*(0 = -b(t)/a(t),

we obtain

(3.29a) y(t) = ]/a2 + b2 cos(B(t) + *).

For >>'(/), we have exactly the same formulas. However, in the expressions for a(t),

b(t) which correspond to.y'(0' wxx, wx2 are replaced, respectively, by w21 and vv22.

Therefore, we put

(3.29b) y'(t) = ]/â2 + b2'cos(B(t) + *)

with

(3.30) â(i) = c,|w21| (exp/!(/)) cos 021 - c2| w22|(exp(-^(r))) sinÖ22,

(3.31) b(t) = -c,|iv21| (exp/!(/)) sin021 + c2|»v22|(exp-^(i))cosÖ22,

(3.32) tan* = (-b)/(â).

We add an estimate lemma which will be needed later.

Lemma 3.1. Let the assumptions of Theorem 2.3 or 2.4 hold on [a, oo). Let p > 0 be

such that

(3.33) p < (1 + 0"l(l - e"*)

with the assumption that

(3.34) /': = sup (| wx2wxxx | ,| w;xwxx \ , | w22w2Xx \ ,\ w2Xw22x |} < oo.



482 H. GINGOLD

Then for p obeying (3.33), there is an â(p),

(3.35) <*<â(p),

such that on [â(p), oo) the following inequalities are true: (i)

(3.36) ||P(0ll*£p,   l/fr(0l<P.      j,k= 1,2,

(ii)

(3.37) \vjk(t)-l\<p(\ + l),      j,k= 1,2,

(recall formulas (3.14), (3.15)).

(iii)

1 \
(3-38) |argê,t|<p(l + /)ln

1 - p(l + /")

Proof. We notice from formula (2.39) that hx(t) is a monotone decreasing

function of / with

(3.39) limhx(t) = 0.
f—00

Similarly, because of (2.56), h4(t) satisfies

(3.40) limA4(0 = 0.
i^oo

This implies the existence of â(p) s.t.

(3.41) either hx(t) < p   or   h4(t) < p   for all í G [â(p), oo).

(For example if the hypotheses of Theorem 2.3 are satisfied we could choose with

h the inverse function of hx(t), where A, is given by (2.39),

(3.42) à(p) = h(p))

Thus,

(3.43) \\P(t)\\^hx(t)    or   ||P(/)||<Â4(0    on[á(p),oo),

which implies (3.36). By (3.43) and the definitions of vJk(t) we have

(3.44) \vjk(t)-l\^hx(t)(l+ï)    or   \vjk(t)-l\<h4(t)(l+ï).

Since

(3.45) arg(l +x) = Imgln(l + x),

we have, for|x|< 1,

oo    I jH"-1 /-II/00 \ 1

(3.46)      |argvjk|<|x\ 2 i-J— =\x\r\  2 /'-'U=|*|hi
v=l        V J0    \v=l j

1

which implies, by (3.33), that

(3.47) p(l + /")< 1 - e-* < 1.

Therefore,

(3.48) \argvjk(t)\<hx(t)(l+I)ln[ \ ) <ff
\ 1-^,(0(1 + 0/
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or

(3.49) l"»M')KM»(l+/)b.(1_M|')(|+0)<..

and the result follows.

From now on, we will consider all problems encountered on an interval / =

[â(p), oo), â(p) subject to (3.33) and (3.35).

4. Application to oscillation theory. At this stage we proceed to find oscillation

criteria for solutions of (1.1). This is the simplest problem of the three mentioned in

the introduction. We first adopt a notation.

Notation 4.1. We denote by yx(t) a particular solution o/(l.l) obtained by inserting

cx — I, c2 = 0 in (3.25) and choosing, for some tx,

(4.1) B(t, tx,S):= Img Nq* + (q'/qfds + «,

(4.2) B(t,tx):= B(t,tx,0).

Then,

(4.3) yx(t) =| wxx | (expA(t)) cos (B(t) + ^x(t))

where \px(t) may be chosen to be

(4.4) *,(0 = M0-
The following theorem holds.

Theorem 4.2. Let assumptions of Theorem 2.3 or 2.4 hold. On J let

(4.5) |*ii 1*0.

(i) Then (1.1) is oscillatory if cos(B(t) + 6xx(t)) = 0 for an infinite number of

values of t on J.

(ii) Therefore (I.I) is oscillatory if either

(a) (B(t) + 6xx(t)) is unbounded for t -» oo or

(b) for a fixed tx G [ â( p ), oo ) the function f(t), defined by

(4.6) f(t) := Img Nq4 + (q'/qfds + 6xx(t),

changes sign an infinite number of times on (â(p), oo).

(iii) In particular, let e0 be an arbitrarily small fixed positive number. If the range of

(4.7) Img ['jq4 + (q'/q)2ds + 6xx(t)
Jti

covers the interval (-e0, e0) an infinite number of times for t G (â(p), oo), then (1.1) is

oscillatory.

(iv) Denote by N(â(p), t) the number of zeros of yx(t) on (â(p), t] and denote by

[[x]] the largest integer not larger than x. Then, with

V:= ir-x[max(B(s) + 6xx(s)) - min(B(s) + 6xx(s))],       â(p)<s<t,
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[[V]] + l>N(â(p),t)>[[V]].

one shows

(4.8)

(v) Denote by sgn[/, â(p), t] the number of times that f(t) changes sign in [â(p),t].

Then

(4.9) N(â(p),t)>sS>n[f,â(p),t].

Proof. The proof is easy and therefore it is omitted.

Next we turn to the problem of estimating N(â(p), t). For this purpose we will

need some additional notations and assumptions.

Notation 4.3. We denote by <%x the following family of mappings q4 on J:

(i)

(4.10) ?4(0+k(0/*(0]2<0,        tGJ,

(ii)

r«     \(q'/q3)'\

(4.11) q<GC2(J),    f
Jt l + U'/V)2!

We denote by §2 the family of mappings q4onJs.t.

(i)f2C^„

(ii)q4GC3(J),

ds < oo   for all tGJ.

(4.12)

(4.13)

lim
/-•oo

(q'/q3)
3V

s; d_
ds

(l + (?'A3f)

(q'/q3)'

2\V2

= 0,

[l + (q'/q3)2}
3/2

ds < oo,        tGJ.

We make the following assumption throughout the discussion of this section.

Assumption 4.4. In the differential equation (1.1) the function q(t) is such that

q4 G ÍF, or q4 G ^2, and conditions of Theorem 2.3 or 2.4 are satisfied.

Lemma 4.5. (I) If Assumption 4.4 holds, then for tx G J and 8 a real constant,

(4.14) B(t, tx,8) = B(t) := Img Nq4 + (q'/q)2ds + 8

is a monotone increasing function of t on J with range included in the interval

(B(a) + 8, B(<x>) + 8).

(II) The inverse function of B(t) exists and is defined on the interval (B(a) +

8, B(oo) + 8).

(Ill)

(4.15) ,4(0 = Re i']/q4 + (q'/q)2ds=0   foralltGj.

(IV) If we make use ofLeighton's disconjugacy function

(4.16) h-2(t):=-q4(t),
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then

(4.17)

(4.18)

Also

(V)

(4.19)

h-x(t) = iq2(t),    *- = U'    ™d    T
2 h '

B(t) = fh-x(s)\jl - i(h'(s))2ds + 8.

-2<h'(s)<2   or   -\q?<\q'\<\q\\

(VI) If we choose t0GJ in (2.4) then e(t), given by (3.6), is real and

1/4

(4.20) e(t) = onJ, An
2 + A'(Q    2-A'0

2-A'(0 ' 2 + A'0

(4.21) X0 + d0- ic0 = ia,   c0 - i(X0 + dQ) = b,

where a, b are real-valued and

A'('o),

(4.22)

(4.23)

a = h-ji/l + Wo(^ + Wo + ^ - Wo),

b = h0xi¡l-Wo(^+Wo + ^-Wo)-

(Since h(t) is not a constant function we may assume without any loss of generality that

ab^O)

A ó ¥=■ 0 and that

(4.24)

Moreover,

(4.25) = {q-\l + i)[e-]b + iae],   wx2 = j-^'O + i)\e~xb - iae],

(4.26) w2x = {-q(l - i)[-e-xb + iae],   w22 = \-q(l - i)[-e-xb - iea]

and

(4.27) wjk*0   onJ,       j,k= 1,2.

Also,

1 - iab-xe2
(4.28)

(4.29)

wx2wxx =

H^Vf-ji   -

1 + iflA-'e2 '

1 + iab-xe2
VJ2W2\ . .-12

1 - tab e

and Ï, given by (3.34), satisfies

(4.30) /"= 1.

Denote by x(t),

(4.31) x(0 = *i(0   or   x(t) = h4(t)

according to whether Theorem 2.3 or 2.4 is used. Then, for p > 0,

(4.32) 2x(0<P< 1 -e-],
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we have

(4.33)
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argiU0|<2x(0ln
1

2pln
1

1 - 2x(t)

Proof. Parts (I)—(III) are self-evident. Part (IV) is a consequence of the notation

(4.16). Inequality (4.10) implies that q4 < 0 on J and therefore h(s), h'(s) are

real-valued mappings and thus,

1 - \-(h'(s))2 > 0   onJ.

Then (V) follows from (4.10). The identities (4.20)-(4.29) can be easily verified by a

straightforward computation. Since the identity (4.20) holds, the inequality (4.19)

implies that e(t) in (4.20) can be taken to be positive on J, and that a, b are real

constants. We notice that

,,,,, I — iz
(4.34) w = —

is a Möbius transformation which maps the line Img z = 0 on the circle | w | = 1.

Therefore, for real z,

(4.35) z = ab~xe2.

We conclude from (4.28) and (4.29) that (4.30) is valid. From Lemma 3.1 and the

fact that /(«):= m In (1/(1 — u)) for 0 < u < 1 — e'x is a monotone increasing

function of u, the required result follows.

Theorem 4.6. LetJ — [â(p), oo) be an interval such that assumptions of Lemma 4.5

also holds. Then (i)

(4.36) TT-xfh-x(s)]¡l-i-(h'(s))2ds + 1 ^N(â(p),t)

lT-Xfh-X(s)Jl-i(h'(s))2ds

+ oo.

(ii) Moreover, (1.1) is oscillatory if

(4.37) lim f'h-x(s)^l-Uh'(s))2ds
/->oo •'a

(iii) Then on any interval (a, t ], a < â(p),

(4.38) hm    J       f'A-'í^/l-HA'^)2^ = 1
/-oo 77Aja, t) Ja

or, in asymptotic notation,

(4.39) N(a,t)~v-x['h-x(s)Jl - {-(h'(s)2 ds,       r^oo,

if ( 1.1 ) is oscillatory.

Proof. The proof is actually contained in Lemma 4.5 and we omit the extra

details.
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Corollary 4.7. With assumptions of Theorem 4.6 let

(4.40) limA'(i) = Y-
/ — 00

Then we obtain Nehari's generalization of Wiman's formula (see e.g. Swanson [13,pp.

95-101]),

/ 2 \ 1/2

(4.41) N(a,t)~7T-]il-^j\     f'h~x(s)ds,       t - oo.

Also see the original papers by Wiman [16] and Nehari [10].

A comparison of our formulas (4.36) and (4.39) with Nehari's estimates (see e.g.

Swanson [13, p. 96, (2.85) and p. 98, (2.90)]) shows that Nehari's estimations may get

"rough". We notice that (4.36) holds even if (1.1) is nonoscillatory.

Theorem 4.6 implies a necessary and sufficent condition criteria for oscillation of a

large class of differential equations (1.1) with coefficients q4 belonging to S7, or l52.

The price paid for this necessary and sufficient condition is not very high. It is an

extra requirement of smoothness. It is noteworthy that Wiman's formula does

require a smoothness condition.

Next we turn to the location of the zeros of solutions of (1.1).

5. Location of zeros. We will demonstrate our technique using the following

assumption.

Assumption 5.1. For t on J the following hold:

(5.1) ¡i(t):= \h'(t) - y\   where lim p.(t) = 0,
/-> 00

(52) s{^WttW = í<0°-
We notice that Assumption 5.1 is compatible with condition (2.37) in Theorem

2.3.

In order to better understand what is happening, for a given 8, in (4.3), we let

(5.3) Pjr(t)=0,       j,r= 1,2,

and correspondingly, in (3.13),

(5-4) vjr=l,    arg»,r = 0,       j,r= 1,2.

Thus we define an "ideal solution" of (1.1) to be

(5-5) yL(t) = wxx cos(B(t, tx) + 8 + 0n(oo)),

with an " ideal derivative"

(5.6) y'L = w2X cos(B(t, tx) + 8- 6xx(oo)),

where 0,,(oo) may be chosen to be, by (4.25), the constant

(5.7) 0n(oo) := argw,,(oo) = argq'x + arg(l + i) + arge~x(co)b

+ arg(l + iab~xe2(rn)).
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Therefore, for this ideal solution (we do not claim that is an actual solution o/(l.l)),

we have the exact location of the zeros of yL(t) at points tL„,

(5-8) ä(O = 0   útnL = B-x[(2n+l)\-8-6xx(<x)

for any integer n. We notice that actually

(5.9) f?n(oo) = arg[l +iaè-,e2(oo)].

Since, by assumption,

(5.10) ab-xe2(n) = (2r^1)      ^0,oo,

we have

(5.11) 0 <*,,(») <w/2-

This implies that we cannot simultaneously have

(5.12) yL(tL»)=yL(tLn) = 0 = cos(B(tLn, tx) + 8 + 0„(oo))

= cos(B(tLn,tx) + 8-6xx(rx>)),

since that implies

(5.13) 20n(oo) = 7T,

contrary to (5.9) and (5.10). Moreover, tLn are the only zeros of yL(t), because

B(t, tx) is a monotone function of t.

The advantage of the asymptotic decomposition Theorems 2.3 and 2.4 is

manifested in the fact that for sufficiently large values of / we are able to locate with

high accuracy the zeroes of any solution of (1.1). We do not expect to obtain the

location of all zeroes of y(t) with high accuracy on every interval (a, oo) to be given

by a single formula. Those formulas have a "locaF'nature. They provide accurate

behaviour of a solution in the neighborhood of one point, in our case the dis-

tinguished neighborhood of t = oo. A close examination of the Wiman formula

and of Nehari's estimates for N(a, t) show that accuracy of location of zeroes of y(t)

as well as the accuracy of counting of zeroes of y(t) may be lost by such "global"

formula where a is not required to be sufficiently large. Thanks to the additional

assumptions made here, a general solution of (1.1) can be given by specifying two

parameters out of the given three, cx,c2, 8. One of the simplifying choices is c2 = 0.

Then making use of (3.25), (3.26), (3.27), (3.28), (4.15) it suffices to consider the

zeroes of

(5.14) y(t)=\wxx\cos(B(t,tx,8) + 6xx(t)),

(5.15) y'(t) =\w2X\cos(B(t, tx,8) + 62X(t)).

Our ability to locate all zeroes of y(t) given by (5.14) depends on our ability to

find all values of t and all integers n such that

(5.16) B(t,tx,8) + 6xx(t) = (2n+l)^.

The function B(t, tx8) is given. The function 6xx(t) is not explicitly given. However,

an estimate of 6xx(t) — 0,,(oo) can be easily obtained from Lemma 4.5.
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Now turn to estimates summarized in a lemma.

Lemma 5.1. Let p be a positive fixed number. Then there exists â(p) > a, s.t. on

[ â(p), oo) all conditions of Theorem 2.3 or 2.4 hold, and

(5.17) m{t):=2x(t)lnT-^ + ß(t)lnT-^<2plnT^-p,

where x(t) is given by (4.31) and

(5.18) £(0:= H2-YM0I2-
Proof. Define An(r) by

(5.19) A,,(0 := 0xx(t) - 0„(oo) = argf3M(0 + arg^'i/M»)) + !(t),

with

-. . 1 + iab'xe2(t)
5-20) /(/):= arg-—-—^

1 + tab  -

Let

1 + iaA_le2(oo)

(5.21) v(t):= ab-xe2(t).

Then,

i(v(t) - o(oo))

with

(5.23) A(0 =
1 + iv(oo)

By a straightforward computation we derive

(5.24)   O(0-o(co) =-4(»V)-y)
[(4 - (A'(0)2)'/2(2 - y) + (2 - A'(0)(4 - y2)''2] '

Using the inequality

(5.25) a + ß>2(aß)l/2,       a>0,ß>0,

we obtain

(5.26) |o(0-o(oo)|*-- _Jäll
\2\1/4,-> _ ,.\»/V> _ .,/^xl/2^ _ _.2\l/4

2(4-(A'(0f) ^-Yy^-A^W^-y2)1

<2u(0l2-

Thus, by (5.24)

<«?>    i^o^,+((22;(;)/p-v))^(2-t)''(,)i'-

Since

(5.28) l(t) = arg(l + Â(r)),
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we obtain

1
(5.29) \l(t)\<ß(t)ln

1 - p(t)

Moreover, since we may substitute in (5.19)

(5.30) arg(e-x(t)e(oo)) = 0,

we obtain the estimate

(5.31) |A„(0l<2x(0ln1-j—- + /l(/)ln        \       = m(t),
1 — 2x(r) 1 — fi(t)

where argû,,(r) was estimated by (4.33) using the assumptions of Lemma 4.5.

Choose 0 < p < 1 — e~x and â(p) s.t. that on [&(p), oo)

(5.32) 2x(t)<p,       ß(t)<p.

These inequalities guarantee that conditions of Theorem 2.3 or 2.4 are satisfied, and

by an argument of Lemma 4.5, the required result follows.

Next we formulate a lemma.

Lemma 5.2. Let B(t, tx) be a monotone increasing function of t which maps the

interval [tx — à(p), oo) onto [0, B(oo, tx)). Let A,,(i)> A21(r) oe continuous mappings

on [&(p), oo) and let X be s.t.

(5.33) [X-e, X + e] g[e, B(oo,tx)),

(5-34) max{|An(0l+|A21(0l}<£,

(5.35) 8e < max{(-n- - 2011(oo)),201,(oo)}

with

(5.36) 0<0xx(oo)<ir/2.

(i) Then the mapping B~x(Xn — A,,(r)) is well defined for X — e < r «s À + e.

(ii) If for a given 8 and some integer n

(5.37) \ = \n:=(2n+l)ir/2-8-0u{ao)

belongs to the interval [X — e, X + e] then the equation

(5.38) B(t,tx) + Axx(t) = Xn

has a solution tn in the interval [X — e, X + e].

(iii) For a fixed n there are no other solutions of (5.38) outside the interval

[X - e, X + e].

Proof. Consider the function

(5.39) F(t):=t-B-l(Xn-Au(t)).

The inverse mapping of B, namely B~x(v), is defined for all v in the interval

[0, 5(oo, i,)) since, by (5.34),

(5.40) 0<\n-e<v = \n-An(t)<Xn + e.
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B~x(Xn — A,,(r)) is defined for all t in [â(p), oo). Therefore F(t) is defined for all t

in [X — e, X + e]. Consider the interval [tnL, tnR] defined by

(5.41) tnL : = B-X(X„ - e),   t„R := B~X(X„ + e).

Then

(5.42) F(tnL) = B-x(Xn - e) - B-X[X„ - Axx(B'x(Xn - e))].

Since

(5.43) Xn ~ e < Xn - Axx(B~x(Xn ± e)) <X„ + e,

then

(5.44) -B-x(Xn + e)< -B-x(Xn - Axx(B-x(Xn + e))) < -B~X(X„ - e).

Therefore,

(5.45) F(tnL) < B-x(Xn - e) - B-\Xn - e) = 0.

Similarly,

(5.46) F(tnR) = B-X(X„ + e)- B~x(Xn - AXX(B~X(X„ - e)))

>B-x(X„ + e)-B-x(X„ + e) = 0.

We conclude, then, that in the interval [tnL,tnR] there exist tn s.t.

(5-47) tn = B-x(Xn-Axx(tn))

or

(5.48) B(t„, tx)+8 + öu(oo) + Axx(t„) = (2n + 1)tt/2.

Now we show that

(5.49) F(t)<0   ifâ(p)<t<tnL.

We have, from (5.38) and (5.35),

(5.50) F(t) = t - B-x(Xn - An(0) = t-tnL+ tnL - B-X(X„ - Axx(t))

< (t - hi) + tnL - B~x(Xn -E) = t-tnL<0.

In a similar way, if

(5.51) t>tnR

we have

(5.52) F(t) = t-tnR + tnR - B-x(Xn - Axx(tj)

>t-tnR + tnR ~ B~X(Xn + e) = t - t„R > 0.

This takes care of (iii).

Coming back to the original problem we have

Lemma 5.3. With the assumptions and notations of Lemmas 4.5, 5.1 and 5.2, let e be

given by

(5.53) e = pln-——.
1 — p
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Assume also that A2x(t) is given by

(5-54) A21 = e2X(t) + *,,(<») - it.

Then tn, guaranteed by Lemma 5.2, is the only solution of (5.38) in [tnL, t„R].

Moreover, tn is the only zero ofy(t) in [tnL,tnR\.

Proof. If y(t) is given by (5.14) then

(5-55) y(tn) = 0.

Assume that t„ is another solution of (5.38) in [tnL, tnR], Then also

(5.56) y(t\) = o

and, consequently, by Rolle's theorem

(5.57) y'(t) = 0

for some / in the interval [tnL,tnR\

We will show that this is impossible. We use (5.15) to obtain, by (5.57),

(5.58) y'(i) =|h>21|cos(s(í", tx) + 8 + -n- 0,,(oo) + A21(0) = 0,

(5.59) B(i, tx) + 8 + TT- 0,,(oo) + A21(0 = (2k + 1)tt/2

for some integer k. Subtracting (5.48) from (5.58) one obtains

(5.60) B(t, tx) - B(t„, tx) + TT- 2dxx(<x>) + A2x(t) - Axx(t„) = (k - «)vr.

Assume that t>t„. Then

(5.61) 0 < B(t, tx) - B(tn, tx) ^ B(tnR, tx) - B(tnL, tx) = 2e.

Similarly, if r<r„,

(5.62) 0^B(tn,tx)-B(t,tx) <2e.

Thus we conclude that

(5-63) \B(t~,tx)~ B(t„,tx)\< 2e.

By utilizing the notations (3.11)-(3.15) we find

(5.64) 021(O = argü2l(í) + arg t5u(r) + w - 6xx(cc) - Axx(t).

Therefore,

(5.65) A21(/) = arg t521 + arg vxx(t) - Axx(t)

and

(5.66) \A2x(t)\*i\arëv2X(t)\+\argvxx(t)\+\Axx(t)\.

From (5.60) one obtains

(5.67)

|(* - n)* -(*- 2ö„(oo)) \<\B(t, tx) - B(t„, tx)\ +\ A2X(Ï) | +\Axx(tn) |

or

(5.68)   \\(k-n- 1)\it-26xx(<x>)\

<\B(t,tx)-B(tn,tx)\ + \argv2x(t)\+\argvxx(t)\+2\Axx(t)\

< 2e + 4x(i) In-}—— + 2m(t) < 2e + 6pln -r-^— = 8e.
v '     1 - 2x(r) v ' 1 - p
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If

(5.69) k - n - 1 = 0

we obtain, by comparing (5.41) and (5.68),

(5.70) 20,,(oo)<8e.

which contradicts (5.35). If

(5.71) |Ac-»-l|¥=0

then from (5.68) one obtains

(5.72) ir-2«11(oo)<||(Jt-n- l)|w - 20„(e) |< 8e

which, again, contradicts (5.35).

Finally we return to the basic problem. Consider an interval [â(p),T] where â(p)

is assumed to satisfy the conditions of Theorem 2.3 or 2.4. Pick p, < p to be sure

that

1
(5.73) e, = p,ln

Then all conditions of Lemma 5.3 are satisfied. Let r, = â(px) be fixed and let 8 be

specified so that B(t,tx,8) is determined for a specific solution of (1.1). Consider

(5.43) for all values of integers n and let nx be the smallest integer such that

(5.74)   0<A,,-«, = (2n, + l)ir/2-*-•„(«>)-«p       X,h + ex < B~X(T).

(Of course such nx may not exist.) Let us assume that there exist such an «,. Then in

the interval

(5-75) [*„,,.<'»,*]<       >„,!. = B~\K -£i)'    '»,* = *''(*«,+*.)

we are guaranteed that y(t) has precisely one zero.

We define e2 by

(5.76) e2 = max{£,, c2)

where

(5.77) l2 = Sup2x(f)ln--J—-
/ l-2x(/)

(5.78) 5-'(\Bi - e + w) < T.

We let

(5.79) n2 = n,+ 1.

Then if

(5.80) Xni + e2<B(T),

we are guaranteed thatj>(/) possesses exactly one solution in

(5.81) [f„2L, r„2Ä]    where r„2¿ = 5-1(\n2-£2),ín2R = 5-1(X„2 + e2).

We continue by an inductive procedure. Let n, be the maximal integer s.t

(5.82) n, = nx + (l-l)
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where

(5.83) B-x(Xni + e,)<T.

Introduce the following subintervals:

(5.84)

[V'Vl'       tnjL = B-l{Xnj-ej),   tnR = B-x(Xn+Ej),      j=l,...,/.

Then, in each of them the solution y( t ) possesses exactly one zero.

We claim that on the interval

(5-85) [Xn¡-Ex,Xni + E,]c[a(px),T]

those are the only zeros of y(t).

By Lemmas 5.2 and 5.3 it is enough to show that outside LK~'[rn L, tn R], namely

on(tnR,tn     L), no zeros of y(t) do exist forj = 1,...,(/— 1).

Suppose to the contrary that y(t) = 0 for some t with

(5-86) tn¡R <t<t„¡+i>t.

This implies that

(5.87) B(t, tx) + A,,(0 = A* = (2k + l)m/2 -8- 0,,(oo)

for some integer k.

By Lemma 5.2, we must have

(5.88) k<nx    or   k > nr = «,+/- 1.

By the monotonicity of B(t, tx) and the bound on A,,(i) we obtain

(5.89) Xnj - £j = B(tnjR, tj) - tj < B(î, tj) + A„(0

<B(tnJ+,l.^i)+eJ+x=Xnj+¡+EJ+x.

This imphes that

(5.90) 2(n, +j - 1) < (2(nx +j - 1) + l) - 2£j/m < (2k + 1)

< (2(nx +j) + l) + 2eJ+l/iT < 2(nx + j) + 2

or

(5.91) (»,+;)-!-2-<* <(",+;') + !,

which also implies that

(5.92) nl+j-\<k<nl+j,      j= 1,...,(/- 1),

since k, nx andj are integers. But (5.92) is a contradiction of (5.88).

The previous discussion establishes the following theorem.

Theorem 5.4. With the assumptions and notation of Lemmas 5.1, 5.2 and 5.3, every

solution y(t) of (1.1) possesses, in an interval [â(p), T], I zeros

a(p)<B-x(Xn¡-Ex)<t„í<t„2<---<t„¡*íB-x(X„i + EI)^T,

(5 93)
B-l(\„rej)<tnj<B-x{Xaj+i + eJ+l),      j = 1,...,(/- 1),
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if an integer nx can be found.

If

(5.94) fl"'(oo) = +00

then there exists an infinite sequence of zeros tn,j = 1,2,..., such that

(5.95) lim£y = 0,
y-oo

(5.96) lim (tnj-B-x(X  )) = 0
n —oo        J '

a«t/

(5.97) ^-B-'ÍA^),       «7-+oo.

/« /Ae special case that

(5.98) w;(0 := Inf
/

o«e obtains, by the mean value theorem,

(5-99) |i„y-Ä-1(Anj)|<(2m;1(i))S.

Proof. This is an easy consequence of the previous discussion.

Remark. Our asymptotic decomposition formula (2.42) has the same form whether

(1.1) has a singularity at t = t0 or at t = oo or at both ends of the interval (t0, oo).

Consider, for example, (1.1) on (0, oo) with

(5.100) q4 = -(t-" + tß)(lnx)m,       a > 2, ß > -2, m > -1.

t/jirtg o«/- asymptotic decomposition formula one is able to simultaneously handle the

oscillation of solutions of (I.I) at t = 0 and the oscillation at t — oo.

Acknowledgement is due to Professor V. Komkov for remarks which improved the

contents of this paper.
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