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THE STRUCTURE OF u,-SEPARABLE GROUPS1

BY

PAUL C. EKLOF

Abstract. A classification theorem is proved for a>,-separable io,-free abelian

groups of cardinality w, assuming Martin's Axiom (MA) and 2N°>S|. As a

consequence, several structural results about direct sum decompositions of u,-sep-

arable groups are proved. These results are proved independent of ZFC. and, in

addition, another structural property is proved undecidable in ZFC + MA + 2K° >

H|. The problem of classifying these groups in a model of 2 ° = N, is also

investigated.

Introduction. Throughout this paper we shall use the term "«,-separable group" to

mean an abelian group such that every countable subset is contained in a countable

free direct summand. In particular, such a group is co,-free, i.e., every countable

subgroup is free. (This is a more restricted usage than that in Fuchs [F, p. 121] but

agrees with that in Griffith [G2, p. 102].) Obviously, co,-separable groups are

separable and homogeneous, so the results which follow provide a partial solution to

Problem 77 of Fuchs [F, p. 184].

Griffith was the first to construct an ^-separable group (of cardinality co,) which

is not free [Gl]. Since then an unholy number of nonisomorphic co,-separable groups

of cardinality co, have been constructed (see [Ml]). These are usually constructed by

defining, by transfinite induction, an ux-filtration of the group, i.e., a continuous

chain {Av: v < co} of countable subgroups whose union is the group, A, such that

each Av+X is a summand of A. If the set of v such that A/Av is not co,-free, is large

enough (i.e., stationary in co,) then A is not free (see §1). By this means one can, for

example, construct a family of 2s' nonisomorphic co,-separable groups of cardinality

co, which are pairwise quotient-equivalent, i.e., any two, A and B, have co,-filtrations

[Av: v < co,} and {Bv: v < co,} such that for all v < p. < co,, AfJAv = Bp/Bv (cf. [E,

Chapter 11] and Lemma 3.1 of this paper; see also [EMS, Theorem 3.3]).

In this paper we attempt to put some order into this apparent chaos by proving a

classification theorem for co,-separable groups of cardinality co, under the assump-

tion of Martin's Axiom (MA) and the denial of the Continuum Hypothesis (-.CH)

(see Theorem 1.2). We also show that this theorem fails in models of CH (Theorem

3.2) and, in fact, gives strong evidence that no useful classification of all co,-separa-

ble groups of cardinality co, is possible in models of CH (Remark 3.3(1)). On the

other hand, we show (Theorem 3.4) that there are models of GCH in which the
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classification theorem holds in part, viz., it holds for a nontrivial initial segment of

values of Y(A) (where Y(A) is a certain invariant of A—an equivalence class of

subsets of co, (see §1)).

The classification theorem says that (assuming MA + -,CH) two co,-separable

groups A and B are isomorphic iff they have co,-filtrations {Av: v < co,} and {#„:

v < co,} all of whose proper initial segments are isomorphic, i.e., for all v < co, there

is an isomorphism/,,: Av -» Bu such that for all ¡x < v,fp(Aß) — B^. Thus the invariant

of an co,-separable group which classifies it is an equivalence class of co,-filtrations

(under the equivalence relation of isomorphism of all proper initial segments). In

certain special cases this invariant can be described in a more concrete fashion

(Theorem 1.4), but even in its general form the classification is a useful one. This is

demonstrated by its application in §2 to prove the following structural results (which

are theorems of ZFC + MA + -,CH but not of ZFC).

(I) If B C A are co,-separable groups of cardinality co, and A/B is the direct sum

of a countable group and a free group, then B s A (Corollary 2.5).

(II) If A is co,-separable of cardinality co,, then A = A ® Z(W|) (Corollary 2.6).

(Ill) If A is a nonfree co,-separable group of cardinality co,, then A is the direct

sum of co, nonfree subgroups (Theorem 2.8).

The above results are false in models of V = L (3.7, 3.6 and 3.5, respectively). It is

open whether or not (II) and (III) are consistent with ZFC + CH (but partial

versions—for some values of Y(A)—are consistent with CH (see Theorem 3.8)).

We also make use of the classification theorem to prove that certain questions

about co,-separable groups are undecidable even in ZFC + MA + -,CH. In particu-

lar, we consider a strengthening of property (III) above, in which we require that A

have direct decompositions corresponding to all possible partitions of Y(A) (see

Definition 2.9). We show (Theorem 2.10) that the assertion that all co,-separable

groups of cardinality co, have this decomposition property is true in some models of

ZFC + MA + -,CH (constructed by proper forcing) and is false in others (con-

structed as c.c.c. extensions of L).

We shall make use of the following notational conventions: A(K) denotes the direct

sum of k copies of A ; \A\ denotes the cardinality of A ; ZFC denotes the Zermelo-

Frankel axioms of set theory with the Axiom of Choice; CH is the Continuum

Hypothesis; GCH is the Generahzed Continuum Hypothesis; V — L is the Axiom of

Constructibility; co, and X, are used, interchangeably, to denote the first uncoun-

table cardinal. We use Z = XII7 to mean Z = A'U7andArnT=0.If^lisa

torsion-free group and X is a subset of A, (X) denotes the subgroup of A generated

by X, and (X)t denotes the pure closure in A of (X), i.e., (X)^ = [a G A \na G

(X) for some n ¥= 0}. If d G Z and a G A, write d\a in A to mean 3 x G A s.t.

dx — a.

I would like to express my thanks to M. Magidor, A. Mekler and S. Shelah for

their invaluable help in the course of this work. I owe a special debt of gratitude to

Wilfrid Hodges for his hospitality and assistance during the time I pursued this work

while visiting Bedford College on sabbatical leave, 1980-81. In particular, I was

aided greatly by the seminar in iterated and proper forcing held at Bedford College,

and especially by the lucid seminar notes written by Wilfrid.
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Added in revision. A. Mekler has recently proved many of the results of this paper,

under the assumption of PFA, for mixed co,-separable groups, i.e., groups such that

every countable subset is contained in a 2-cyclic summand. In particular, he has

proved a structure theorem for such groups from which such results as 2.6 and

2.10(2) (or their analogs) follow more easily. (For more details, see the Proceedings

of the Honolulu Conference on Abelian Groups, December 28, 1982-January 4,

1983, Springer-Verlag Lecture Notes in Mathematics.)

0. Set-theoretic preliminaries. It is suggested that the reader read through Lemma

0.4 and then use the remainder of the section as reference, returning to it as needed

for notions and results used in the rest of the paper. The reader is also referred to [J

or E] for more detail about some of the definitions and theorems which follow.

Most of the sets we consider will be subsets of co,, so we shall generally drop

mention of co, and say e.g., "stationary" instead of "stationary in co,."

A subset <2 of co, is called a cub if it is unbounded in co, and closed in the order

topology of co,. For example, Lim(co,) = {a < co,: a is a limit ordinal} is a cub. A

set E C co, is stationary if it has nonempty intersection with every cub; in particular,

every cub is stationary (cf. [E, Lemma 1.1]). £ is costationary if co, — E is stationary.

A fundamental fact about stationary sets (explaining their name) is the following [J,

Theorem 22, p. 59]: A function 8: E -* co, s.t. 6(v) < v for v G E is called regressive.

0.1. Fodor's Theorem. If E is stationary and 6: E -» co, such that 6 is regressive,

then there is a stationary £0 C E and a y < co, such that d(v) — y for all v G £0.    D

0.2. Definition. If 8 G Lim(co,). a ladder on 5 is a strictly increasing function t)s:

co — 8 such that sup{Tjs(/i): n G u) = 8. A ladder system on £ C Lim(co,) is a family

{r/s: 8 G £} where each rjs is a ladder on 8.

If P is a partially ordered set (poset), and p, q G P, we say p and q are compatible

if there is an r G P such that r < p and r < q. P is said to be c.c.c. (or satisfies the

countable chain condition) if every uncountable subset of P contains a pair of

compatible elements. A subset D of P is called dense if for all p G P there exist

q G D such that q *s p. Martin's Axiom (MA) is the statement that for every c.c.c.

poset P and every X < 2s«, if {£>„: v < X} is a family of dense subsets of P, then

there is a set G Ç P which is directed (i.e., for all p, q G G 3 r G G s.t. r < p, r < q)

such that for all v G X, Dv n G ¥= 0; MA(co,) is the preceding statement with

A = co, [J, p. 230].

0.3. Theorem [ST]. // ZFC is consistent, then ZFC + MA + -,C# is consistent.

D

A lemma which is often useful in verifying that a given P is c.c.c. is the following

"A-lemma" [J, Lemma 22.6, p. 225].

0.4. Lemma. For any uncountable family <% of finite sets there is an uncountable

subfamily <§' and a finite set A such that X D Y - A for all X, Y G f.    D

I am grateful to S. Shelah for supplying the proof of the following in response to

my query. (It is used to prove Theorem 2.8.)
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0.5. Theorem (MA + -,CH). For any stationary set E Q Lim(co,) and any ladder

system [t¡s: 8 G £}, there is a decomposition of E into disjoint stationary sets,

E = üß<u Eß, such that for all ß and all 8 G Eß, 8 > ß and there are only finitely

many n G co such that t]s(n) G £ — Eß.

Proof. We shall use MA + -,CH to show that there exist functions £„: £ -» co,

(n G co) such that

(i)Vrt G uV 8 G E(r,s(n) < F„(8) < 8) and

(ii) V « GcoVS GE3N\/m^N((i¡s(m) G E) => Fn(-qs(m)) = F„(8)).

Supposing for the moment that we can do this, define S(n, ß) = {8 G E: F„(8) =

ß) for n G co, ß G co,. It suffices to prove that there is an n such that there are

uncountably many ß such that S(n, ß) is stationary (for the S(n, ß) will be disjoint

for fixed n). Suppose, in order to obtain a contradiction, that there is no such n;
def    ' def

then it = sup{ß: 3n S(n,ß) is stationary} is less than co,. Hence, £'= {8 G E:

def
8 > p.} is stationary; since £' is the union of the sets Yn= {8 G E': Fn(8)> p.)

there is an m such that Ym is stationary. Now Ym is the diagonal union of the sets
def

Xß = S(m, ß) n Ym for ju < ß < co„ i.e., Ym = {8: 3ß< 8(p < ß and 8 G Xß)}.

But this is a contradiction, since each S(m, ß) is nonstationary for ß > p., and the

diagonal union of nonstationary sets is nonstationary (cf. [J, p. 58]).

Thus it remains to prove the existence of the functions £„. Let us say that a finite

set

5 = {(nJtôj,Nj,aj) G co X £ X co X co, :j'< k)

of 4-tuples is a condition if there exist functions £„:£->co,(«Gco) such that for all

j < k, Fn (8j) = ay; tj8.(«_,•) < a, < S,, and for m s* Nj, if r)s(m) G E, then

Fn (rts(m)) = Fn(8j). In an abuse of language, we shall say of (n, 8) G co X £ that

(n, 8) G S if 3 TY, a such that (n, 8, N, a) G S; say 8 G S if 3 n s.t. (n, 8) G S.

Let P consist of all conditions, partially ordered by D . Then one may check that

for all (n, 8) G co X £, D(nS) = {S G P: (n, 8) G S] is dense in P, and, by a

standard argument, if P is c.c.c, MA + -,CH implies the existence of the desired

family of functions.

So it remains to prove that P is c.c.c. Let {Sp: v < co,} be an uncountable subset of

P, where say Sp = {(nj 8j, Nf, a]): j < kp) and {£„": « G co} is a family of func-

tions: £ -> ux showing that Sp is a condition. Using the A-lemma (0.4) we can

assume that there is a finite set A such that for all v < co,, Sp = A U Sp where if

p¥^v, there is no 8 s.t. 8 G S' and 8 G S'v. Moreover, without loss of generality (by

restricting to an uncountable subset of {Sp: v < co,}), there exist nn, Nj, k such that

for all v G co,, kp = k and for all/ < /c, «J = «y and A^" = TV,. Also without loss of

generality for ally < k, 8j > v. Define for each/ < k a function tr^: £ -> co, by

¡Pj(v) = max{r¡s,(m): m G co, i)$>(m) < vj

The <pj are all regressive functions, so by repeated use of Fodor's Theorem, there is a

stationary subset £' of £ and a y < co, such that, for all / =£ k and all v G £',
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<pj(v) < y. Now (by restricting to an uncountable subset), we may assume that, for

all ju, v < co, and all/ < k, the ladders r/s, and r)s„ are identical below y. Moreover,

we may assume that if there is an m > Nj such that t]s-(m) G E n v for some (hence

all) v, then for all v, p. < ux, oj = a? (since in this case a" = £„ (t/6.(w)) < r/s,(m)

< y). Then if we pick v < p such that for all / < k, 8j < p., one may prove that

S U Sp is a condition by defining the function Fn to be £„" on [0, ju> and F£ on

[/a, co,).    □

The remainder of this section will assume some familiarity with the method of

forcing. This material is used only for the proofs of 2.10, 2.11, 3.4 and 3.8, and, even

there, knowledge of the details of proofs of 0.7 and 0.8 is not needed. The following

notions are due to Shelah. (See [B2, D, H or S2] for details.)

If A is any set, 9(A) (resp. <$a(A)) denotes the set of all (resp. all countable)

subsets of A. A subset S ctyu(A) is called a cub if it is closed under unions of

countable chains and if for all X G % (A) there exists Y G S such that X C Y. Let

P be a poset. If q G P and N G %{ (P U f(P)), q is said to be (P, N)-generic if for

every D G N such that D is a dense subset of P, and for every r < q, there exists

p G D n TV such that p and r are compatible. P is said to be proper if there is a cub §

in <3> (P U 9(F)) such that for all N G S and all p G N there is a q < p such that q is

(P, 7V)-generic.

A poset P is E-complete (for £ G co,) if there exists a cub G G %jP U <3>(P) U co,)

satisfying for all N G G, if N D ux G E and [p„: n G co} G P n N such that (i)

Pn+i ^ Pn f°r a^ n> and (") f°r a"l dense subsets D of P which belong to N, there is

an « G co such that pn G D; then there is a q G P such that for all « G u,q <pn.

0.6. Definition. We shall make use of the following hypotheses ('PFA' stands for

Proper Forcing Axiom).

PFA(a): if P is a proper poset of cardinality < X and {£>„: v < co,} is a family of

dense subsets of P, then there is a directed subset G G P such that for all v < co,,

DPDG^ 0.

PFA: for all cardinals X, PFA(A).

+(co, — S): there is a stationary and costationary subset 5 of co, such that: (i) if

P is a proper poset of cardinality co, which is (co, — S)-complete, and {Dp: v < co,}

is a family of dense subsets of P, then there is a directed GçP such that for all

v < co,, Dv n G t¿ 0 ; and (ii) for all £ G co, such that £ g S (i.e., £ n (co, - S) is

stationary), <>(£) holds.

0.7. Theorem (Shelah). (1) ZFC + PFA(ux) implies ZFC + MA(ux).

(2) If ZFC is consistent, then ZFC + PFA(ux) is consistent.

(3) If ZFC + "3 supercompact cardinal" is consistent, then ZFC + PFA is con-

sistent.

(4) // ZFC is consistent, so is ZFC + GCH ++(«,- S).    D

For a proof see [B2, D, H, or S2]. See also [M2] for an exposition of an

application to Whitehead's Problem.

From now on, we assume the consistency of ZFC.
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0.8. Theorem. (1) There is a model of ZFC + MA + ^CH in which there are

disjoint stationary subsets £0 and £, of Lim(co,) and a ladder system {r¡s: 8 G £0}

such that

, , for every cub G, there exists 8 G £0 such that for arbitrarily

^*' large n G co, ins(n) G G D £,.

(2) There is a model of ZFC + MA + -,CH such that

for any stationary E Ç Lim(co,) and any ladder system (r/s:

(**) 8 G£} on E, there is a cub G such that for all 8 G E, 3 Ns such

that for n > Ns, r¡s(n) G G.

Proof. (1) It is consistent to assume that the universe is L.

Let £0 and £, be any disjoint stationary subsets of Lim(co,). By <0(£o) there is a

sequence {Ss: 8 G £0} such that for all X Ç co,, {8 G E0: X n 8 — Ss} is stationary

(cf. [E, p. 21]). If Ss n £, is not cofinal in 5, let r/8: co -> 8 be any ladder on 8. If

Ss n £, is cofinal in 5 define rjÄ: co -* 5 so that its range is a cofinal subset of

Ss n £,. Now given any cub G in co, let G n £, denote the closure of G D £,; this is

a cub so there exists 8 G (G n £,) n £0 such that G n 8 = Ss. But then Ss n £, is

cofinal in 8 and by construction for ail n, r¡s(n) G Ss D £, = S n £,. Thus we have

proved that in V, (*) holds. Now there is a c.c.c. poset P such that Vp N ZFC + MA

+ -,CH (see e.g. [J, §23]). Since P is c.c.c,

Vp f "£0 and £, are stationary subsets of co,"

(see e.g. [D, Lemma 2.1]). Also, since P is cc.c, for every name t such that

Vp N"tis a cub in co,",

there is a cub G in V such that Vp f "6 ç t ". But then if 8 G G D £0 such that, in

V, V n T/s(«) G G n £,, the same holds in Kp. Hence (*) holds in Vp.

(2) We shall show that in a model of PFA, (**) holds. So let {i)s: 8 G £} be a

ladder system on a stationary set £ Ç Lim(co,). Let P = (C: C is a closed countable

subset of co, s.t. for 8 G E 3 Ns V« > Ns(t]s(n) G C)} partially ordered by the

relation of end extension, i.e., C2 < C, iff C2 n (supC,) = C,. For p G co,, let

£>'' = {C G P: sup C > /x}; then D* is dense in P since for any C G P, if p > sup C,

C U (u + 1} G Z^. If P is a proper poset, PFA says that there is a pairwise

compatible subset G of P such that Vp(G D D* =£ 0); then £ = U G is the desired

cub. So it remains to prove P is proper; let S be the cub in % (P U ^(P)) consisting

of sets N = ©II® satisfying the following, where <S G %(P), 5D G ^(^(P)) and
def ' '

sup N = sup © = sup(P n TY):

(a) for all D G £>, D is a dense subset of P, and D n N is a dense subset of

pn w,
(b) for all p < co,, £>" G ® « ju. < sup A/,

'.   (c) if C G e and p < sup /V, then C U {v} G P n A/.

• Let S* = {JV G S: tf = UnEw AT,, where for all «, N„ GS,NnG Nn+X, and supNn <

sup A/n+,}. Clearly, S* is a cub, so it suffices to prove that if C G N G S*, then there

exists C G P such that C ^ C and for all D G S) G N, C G D; then C is clearly

(P, AO-generic
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Write N = Uneu) A^ as in the definition of §*, and let a„ = sup A„; thus {a„:

n G co} is a strictly increasing sequence whose limit is sup N (= 5, say). Without loss

of generality we may suppose that C G N0. If N — ©112), let {£>„: « G co} be an

enumeration of 23, where we may suppose that for all n, D„ G Nn+X. We shall

inductively define a chain

C„> O ■ ■ ■ > C > ■ ■ •

of elements of © such that C0 = C, and for all « G co, sup Cn+, > an, and C„+, G D„

D A,,+1. We shall then let C = Unew C„ U {Ô}; in order to insure that C G P, we

shall also require that if 5 G £, then for all n, m G co, r¡s(m) G C„ implies t]s(m) < a0.

Suppose C„ has been chosen. Pick

vn>max({ins(k):k G co, i¡B(k) < on+x) U {a„}),

and let C„ = Cn U {j»B}, which belongs to P D Afn+, by (c). Then by (a) there exists

Cn+X G P n Nn+X such that C„ > Cn+X and Cn+X G D„.

By 0.7(1) and (3) the preceding argument shows the existence of a model of (**),

assuming the existence of a model of ZFC with a supercompact cardinal. However,

the latter assumption can be eliminated. (I am grateful to M. Magidor for the

following argument.) Notice that | P | = S, provided CH holds. We shall make use of

the following lemma.

0.9. Lemma. If V V CH and P is a proper poset of cardinality N,, then Vp 1= CH.

Assuming the lemma, we can, by standard methods of iterated forcing (cf. [Bl, J

or H]), construct an iteration sequence (P,)I<W2 with countable support such that for

all / < co2, P/+, = P, * g, where Vp< t= (CH "Q¡ is proper and of cardinality K,"),

and such that if P = lim(P,),<u,2, then Vp f- (**). (Since P is proper, co, does not

collapse.)

Proof of 0.9. It suffices to prove that if p G P and t is a name such that

p I1-"t G co", then for any generic G containing/? there is a countable subset JV'ÇP

such that for all « G co, V[G] f"/i G t" iff 3 p' G N' n G, p' <p, such that

p' \Y"n G t". But D — [q <p: 3 countable submodel N of the universe s.t. p,r G N

and q is (P, A'j-generic} is dense below/?, since P is proper; so if/? G G, 3 q G D D G.

If N is as in the definition of D for this q, let N' = P D N. Then for ail « G co,

A = [p' ^P- P'^"n G t"} is dense below p and belongs to A' so since q is

(P, AO-generic, 3 /?' G D'n n N' n G.    D

An alternate proof of 0.8(2) can be given using 0.7(2): see the article by Mekler in

the Proceedings of the Honolulu Conference on Abelian Groups, Springer-Verlag

Lecture Notes in Mathematics.

1. The classification theorem. Throughout the rest of this paper we shall be

considering the structure and classification of strongly co,-free abelian groups of

cardinality co,. A group A is strongly ux-free if it is co,-free and every countable

subgroup of A is contained in a countable subgroup B such that A/B is co,-free. (We

say B is ux-pure in A.) Mekler [Ml, Theorem 25] has shown that MA + -,CH

implies that the strongly co,-free groups of cardinality co, are precisely the co,-separa-

ble groups (but this is not the case in a model of CH [S3]).
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A principal technique in the study of strongly co,-free groups is the use of

co,-nitrations (cf. [E, Chapter 2]). If A is co,-free of cardinality co,, A has an

cox-filtration i.e., a chain {Ap: v<ux) of countable subgroups of A such that

A = UKU|^ and for all limit ordinals 8 < co,, As = Up<sAp. Moreover, if A is

strongly co,-free, A has an co,-filtration which satisfies, in addition,

(i)A/A0 is co,-free, and for all v < ux,A/Ap+x is co,-free, and

(ii) for all v < co„ Ap+X/Av s Ap+l/Ap © Z<">.

(Note that if (i) holds, then for all v, for sufficiently large t > v, AT/AP+, s Z(w).)

From now on, whenever we write A — Dp<:u Ap we shall mean that {Ap: v < co,}

is an co,-filtration of A satisfying (i) and (ii) above; co,-nitrations of A agree on a cub

(cf. [E, p. 26]):

1.1. Lemma. If {Ap: v < co,} and {A'p: v < co,} are both ux-filtrations, then there is a

cub G in co, such that for all v G G, Ap — A'p.    D

It follows that we can associate to A a given equivalence class of subsets of co,,

which is an invariant of A. In fact, if A — Dp<u Ap, let £ = {8 < co,: A/As is not

co,-free}; by property (i) above, £ G Lim(co,). By Lemma 1.1 above £ is uniquely
-def

determined by A "up to a cub," i.e., if we let Y(A) = E = {£' G co,: 3 cub G s.t.

£nß = £'Pi6}, then T(^l) is independent of the choice of co,-filtration of A.

Let Z)(co,) = {£: £ Ç co,}; it is a Boolean algebra under the ordering induced by

G . If {£„: v < co,} G D(ux), then the sup of this set, denoted V {É„: v < co,},

equals the equivalence class of Uj,<w(£„ — (v + 1)). (Use [J, Lemma 7.5].) If

A = ®P<U¡AP, then Y(A) = V{Y(AP): v<ux}. Note also that the sup of {£„:

n<o>)\s(UnE„j.

Definition. If A and B are strongly co,-free groups, A and B are filtration-equiva-

lent (denoted A ^ B), if there are co,-nitrations A — Up<u Ap and B = UKu Bp

such that for all v < co, there is an isomorphism/,: Ap -» Bp such that for all p< v,

fÁ^p) = B . We shall call such an /„ a level-preserving (I.p.) isomorphism (from Av

onto5„).

It is easy to see that if A and B are filtration-equivalent then they are quotient-

equivalent, i.e., there are co,-nitrations A — Uy<u Ap, B = Ui/<iJ Bp such that for

all v < p, AVJAP s £■/£„; so, in particular, Y(A) = Y(B). It is known that there

exist quotient-equivalent groups which are nonisomorphic [E or EMS]. However, we

have the following theorem of ZFC + MA + -,CH (which is not a theorem of

ZFC + CH by Theorem 3.2; but see also 3.4).

1.2. Theorem (MA + -,CH). If A and B are wx-separable groups of cardinality co,

which are filtration-equivalent, then they are isomorphic.

Proof. Fix co,-filtrations A = UIJ<U Ap and B = Up<u Bp such that for every

v < co, there is a level-preserving isomorphism from Ap onto Bp. Let P be the set of

all isomorphisms <p: L -> L' where <p is the restriction of some l.p. isomorphism and

L (resp. £') is a finitely-generated pure subgroup of A (resp. B). Partially order P by
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D . For each a G A (resp. b G B) let Da = {cp G P: a G Domcp} (Db = {<p G P:

b G Rancp}). We claim that Da/and similarly Dh) is dense in P. Indeed, let a G A,

<p G P; say cp: L -» £' is the restriction of some level-preserving isomorphism /:

Ap -» 5„; since L is finitely-generated we may assume that v = o + 1 for some

a < co,. Choose t > v such that a G A7, and let g: AT -> £T be a level-preserving

isomorphism (which exists because A and ß are filtration-equivalent). Then since

A/Ap(= A/Aa+X) is co,-free (by property (i) of an co,-filtration), we have AT = Ap@

F for some free group £, and then BT = Bp® g(F); so if we define h: AT -» 5T by

hi Ap=f, h\ F — g, then h is a level-preserving isomorphism. (Note that if we

define for a G A, 1(a) = least p s.t. a G A^, then if a = x + y, 1(a) =

max{l(x), l(y)} if /(;c) # /(>>)). If we let £, = (L, o)„ £', = <£', A(a)>, and

cp, = hi L, then cp, G Da and <p, < cp.

Since Da and Z),, are dense for all a G A, b G B, if 8, < 2K° and P is c.c.c, MA

implies there exists a directed G GP which intersects every Da and Dh; then U G is

an isomorphism of A onto 5. Thus it remains to prove that P is ccc (The following

argument is an improvement on my original proof which owes much to one found by

Alan Mekler.)

Let S be an uncountable subset of P. As in [E, p. 68], we can assume that there is

a finitely generated pure subgroup T of A such that for all cp ̂  ty in S, Domcp n

Domty = T and <p r T = ty I T. Also, without loss of generality, T G A0. Construct
def

by induction a sequence {%: v < co,} of elements of S such that if Dp = Domcp,,,

A n Ap+X = T; it follows that

{Dr + AJ)nC\Ar+x=A,

and therefore (Dp + Av)n/Ap is free (cf. [E, proof of 7.1]). Say cp„ is a restriction of

the l.p. isomorphism gp: Aa^+X -» Ba+X.

For each v G Lim(co,), let 6(v) — the least y < v such that there is a basis

Xq,... ,xvm^ of Dp and representatives y^,... ,yvn of a basis of (Dp + Ap)^/Ap such

that each x, (0 < / < w) is a linear combination of the yj's modulo Ay. By Fodor's

Theorem (0.1), there is a stationary £0 G Lim(co,) and a y < co, such that for all

v G £0, 6(v) = y. By restricting to an uncountable subset of £0 we can assume that

there are m, n G co, dtj G Z (/' < m,j < n) and elements w0,...,wm of A such that

for all v G £0, there is a basis xy0,... ,x"m of Dp, and representatives yl,... ,yvn of a

basis of (Dp + Ap)lf/Ap such that for all i < w,

7=0

Moreover, we can assume that, for all p, v in £0 and all /' < m, gjiWj) = gr(wd-

Now choose p < v in E0 such that a + 1 < p and write Aa +, = ^„ +, © C,

where>'f5:,...,>'n,,G C(=Z(u)). (This is possible because jtf,...,< G (Dp + Ap)ít G

Aa +, and {j'o»-• •^„"l is pure-independent mod /4„ and hence pure-independent

mod Aa +x). Define h: Aa^+X -* Ba+, to be g^ on Aa +, and gp on C. Then /i is a l.p.
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isomorphism and hl D)l = cp^. Also for any x",(i =£ m),

h(xl)=h\Í duyj +w,)=  i d,jgp(yj) + g>;)
\j=o I     y=o

n

= 1 d,jg„(yj) + 8Âwi) = %{<)■
;=0

Thus h I Dv = <pp, so h I ( D^, Dp )„, is an element of P extending both cp^ and cp,,.    D

In the next section we shall present some applications of this theorem which give

structural information about arbitrary co,-separable groups. For the remainder of

this section we shall show how the relation of filtration-equivalence can be given a

more explicit meaning for some particularly simple quotient-equivalence classes of

strongly co,-free groups. This analysis is not needed for the results of §2, but the

arguments used here to provide simple paradigms for some of the more complex

ones which follow in the next section.

1.3. Definition. If H is a countable torsion-free group which is not free and A is

a strongly co,-free group of cardinality co,, we shall say that A is of type H if A has an

co,-filtration A = U„<u Ap such that whenever Ap is not co,-pure in A, then

AP+X/AP^H®Z^\

Suppose, for example, that A — U„<w Ap is of type Q(p) where /? is a prime and

Q(p) is the group of rationals whose denominators are powers of p. If £ = {8 < co,:

As is not co,-pure in A), choose for each 5 G £ an element ys G A8+x such that

({yg} u ^«)*/^fi — Q(p>- Let 8 G £. We claim that there is a ladder tjä on 8 and a

strictly increasing function ks: co -> co — {0} such that, for all m G co — {0}, if

ks(n — 1) < m < kg(n) (where ks(— 1) = 0) then pm divides >>smod Afi+X iff p s*

t]g(n). Indeed, we define the functions by induction: tjs(0) = least v < 8 such that p

divides ysmod Ap+X and ks(0) = the largest k such that pk divides >>smod Ar¡s(Q)+x.

(Note that As+x/AVs(0)+x is free so ks(0) is defined.) If r¡s(n) and ks(n) have been

defined, let d = ks(n) + 1 and let r¡s(n + 1) = least v < 8 such that pd divides

j^mod v4„+,,andlet/<:Ä(rt + 1) = the largest k such that pk divides ys mod Am(n+X)+X.

(Again T)g(n + 1) exists since As+x/AVe(n+X)+x is free.)

Now the set £ and the functions r/fi and ks are uniquely determined once the

co,-filtration A = U„<üj Ap and the elements^ have been chosen. The function r/s is

called an associated ladder to A at 8. Define a function 9) on £ by ^(8) = (tjs, ks)

for all 8 G £, and call 9) an associated divisibility function for A.

1.4. Theorem. If A and A' are strongly ux-free groups of type Q(p) which have

co x-filtrations with identical associated divisibility functions, then A is filtration-equiva-

lent to A'.

Proof. By hypothesis there are co,-nitrations A = Up<u Ap and A' = U„<u A'v,

a set £ G Lim(co,) and elements^ G As+X,yg G A's+X such that

£= (v < co,: Av is not co, -pure in A)

= [v < co,: A'„ is not us ,-pure in A');

As+l/As^({ys} UAg)it/Ag®Z^\

A's+i/A's ^({y¿} U As)jA'g © Z<"\
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and the corresponding 9) and ÖD' are identical, i.e., for all 5 G £, p < 8 and m G co,

pm\ysmodAll+xiíípm\y¿modA'll+l.

To show that A and A' are filtration-equivalent we shall prove by induction on v the

following stronger result:

for all /i < v < co,, given a l.p. isomorphism/: A +x — A' + x

and given x (resp. x') in Av+X (resp. A'p+X) such that x + Av

(*) (resp. x' + .4',,) generates a free direct summand of Ap+X/Ap

(resp. /T„+1/y4j,), there is a l.p. isomorphism/: /1„+, ^^'„+,

extending/ such that/(x) = x'.

The proof is by induction on v; there are 3 cases, 2 of them easy.

Case 1. v = t + 1 /or some t. By induction we may assume that t = p. Then since

^,+ \/A?+1 (resP- ̂ +1/4+1)is free and

<*+^M+i>/^+l (reSP-  (^'+4+l)/(4+l))

is a direct summand, it is clear that we can extend/: A¡í+X -> A')L+X to/: Ap+X -* A'p+X

s.t.f(x) = x'.

Case 2. p G Lim(co,) — £. Choose a strictly increasing sequence an approaching v

such that a0> p. Then by induction define a chain of l.p. isomorphisms gn:

A*„+i -*A'«n+\ (with 8-1 =/)•  If 8= u„eo,g,r then g is a l.p. isomorphism:

Ap — A'p, and since Ap+ X/Ap is free we can extend to/just as in Case 1.

Case 3. v = 8 G E. We have

At+i/A* = ({ys} U Ag)jAs © Z(x + As)/As © £,

A's+]/A'g= ({yg'} UA'g)*/A'g®Z(x' + A'g)/Ag®F',

where £ and £' are free of rank co. Moreover, by hypothesis there is a ladder r)s and

a strictly increasing function ks: u -* co — {0} such that for all m, n if ks(n — 1) <

m < /cs(«) and a„ = r¡s(n) then for all t < 8,

pm\ygmodAT+x    iffr>a„   iff pernod A'T+l.

Since 8 is fixed write /c(n) for ks(n). By replacing _y8 (resp. y's) by ys + u (resp.

js + «') for suitable u G Alí+2 (resp. «' G A' +2) we can assume that a0 > p. We

shall define by induction on « a chain of l.p. isomorphisms g„: Aa +x — A'a +, each

extending / and such that there exists anGAa+x such that pk(n)\ys — an and

pk(n)\y;-gn(a„) in A'.

Suppose for the moment that we can do this. Let

y_±ZllL -J - Jfr'~g»(fln)
pk(n)    ' " pk(n)

and notice that

({yS} ^>As)* = ({zn:«Gco} U¿a)

and similarly for ({y¡} U -d'g),. Now

Ug„:A8-»A's
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is a l.p. isomorphism which we can extend to/: As+, -> A's+, by sending representa-

tives of a basis of F onto representatives of a basis of £' and defining/(jc) = x', and

forallrt,/(z„) = z'„.

So it remains to define the gn's. Suppose gn: Aa +x -^ A'a +x and a0,...,an have

been defined for some w > -1 (where we let g_, = /, a_, = jti). Since n is fixed let

us write a for an+x, k for /<:(«) and k + d for k(n + 1). Now there exists w G ,4a+,

such that pk+d\ys — w (by definition of an+x and k(n + 1)). Moreover, since

Pk\y& ~ an, we nave/>*Ia« ~~ w i-e> w = a« + P** f°r some x G /la+,. Now we can

write Aa+X/Aa = C,/i4a © C2//la where Cx/A2 ~ Q(p) or C,/^2 = 0 (if a G E)

and C2/Aa s Z<w). Then we can assume x G C2, since if x = c, + c2 where c, G C,,

then also/?/t~M|( v-8 — (an + pkc2)) becausepk+d\pkcx mod Aa. (Here we use the fact

that Q(p) is of idempotent type.) By replacing x by x + pdu for some u G C2 which

is of height 1 and is independent from xmod Aa, we can assume that x is of height

1 mod Aa. (Notice that/?) x + pdumod Aa because otherwise p \ x mod Aa and hence

Pk + ] \y¡ ~ û„mod Aa, which contradicts the definition of k = k(n).) Thus x + Aa

generates a free direct summand of Aa+X/Aa (because C2/Aa is separable). Simi-

larly, we can find w' = a'n + pkx' such that pk+d\y' — w' and x' + Aa generates a

free direct summand of A'a+X/A'a. By induction (use (*) with p = an, v = a) we can

extend g„ to g„+x: Aa+X - A'a+X such that gn+t(x) = x'. But then g„+x(w) =

8n+ i(an + Pkx) ~ a'n + P*x' ~ w'■ Thus we can let an+, = w.    D

1.5. Remark. With appropriate modifications, Theorem 1.4 holds for groups of

type H, where H is a rational group of idempotent type, i.e., its characteristic

consists of only 0's and oo's. We shall see in the next section (Corollary 2.11) that

the analog of Theorem 1.4 may fail to hold for other H's, e.g., H = R = the group

of rationals with square-free denominator.

2. Direct sum decompositions. Throughout this section, we shall consider a fixed

co,-filtration of a strongly co,-free group A = U„<u Ap. Let £ = {8 < co,: As is not

co,-pure iny4}. For each 8 G E fix a sequence^ = {ys ,: / < ks} of elements of As+ ,

(kg < co) which are linearly independent mod As and satisfy

¿•+i/¿a=<AUi4,>./i4a©V¿a

where Fs/As is a free group of countably infinite rank; since ô G £, (ys U As)^/As

is not free.

(It may be helpful to first read the following proofs thinking of the special case

when A is of type Q(p) (see Definition 1.3)—in which case we can take ks = 1 and

(y8UAg),/Ag^QlPK)

A term in ys is a finite linear combination of the ys, with integer coefficients.

Obviously there is a countable set of terms r,(ys), positive integers d¡, and elements

a¡ G Ag such that

au^=(|{iÄ^:iEco}u^|.

Our first goal is to define a ladder on 5—analogous to that defined before

Theorem 1.4 in the special case—whose range will give the places where new

generators of (ys U As)^ first appear. We begin with the case when ksis finite.
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2.1. Lemma. Let 8 G E such that ks is finite. Then (1) the set

(2.1.1) Sg= {v<8:(ysUAp+x)^(ygUAp),+Ap+x}

is an w-sequence whose limit is 8 (i.e., Ss is the range of a ladder on 8). Moreover,

(2) if y'g — {yj¡: i < ks} is another sequence of elements of As+X (linearly indepen-

dent mod Ag) such that (ys U As)„. = (ys' U As)+, then the ^-sequence

(2.1.2) S¿= {v<8:(ys'UAy+x)^(ys'UAv)t+Ay+x}

agrees with Ss except possibly for a finite number of places.

Proof. (1) Note that (ys U As)Jf/As = U„<Ä/7„ where, for all v < 8,

H„ = (y, U Av), + Ag/Ag = (ys U AJ)JAP

is a free group of finite rank, and Hp ¥= Hv+X iff v G Ss. Since (ys U Agy^/Ag is of

finite rank but not finitely generated, Ss must be infinite. If there exists p < 8 such

that {v G Ss: v < p) is infinite then (ys U A +X)^/Afl+X is not finitely generated,

which is impossible since As+X/All+, is free.

(2) Given y's as in the hypothesis, since ys G (y'g U As)^ and y's G (ys U ^1Ä>+,

there exists p < 8 such that (ys U A)l+X)^ = (y'g U ^4^+,)*. But then, for all v >

p+ 1,

UU/i,+ ,)t=({ÄU/lf+,),U/l,+ ,),= (^UA+1)„

so»» GSgiff»' G 5a.    D

In the case when ks is infinite Ss will not be an co-sequence unless the ys, are

chosen with some care.

2.2. Lemma. Let 8 G E such that ks = co.

(1) Suppose there is a ladder a: u -> 8 on 8 such that, for all n G co,

(2.2.1) (äu4w+,),= ({y8y.j<n- 1} u^a(n)+,),+ (y8>.

Then Ss (defined as in (2.1.1)) is an co-sequence. Moreover, if {yg$,.. -,ygtm) is

pure-independent mod Aa(m+X)+X then the least element of Ss is > a(m + 1).

(2) For any ladder a: co -* 8 on 8 there is a sequence ys = {ys ,: / < co} of elements of

As+, which are linearly independent mod As and satisfy (2.2.1) such that

(2.2.2) As+X/Ag = (ys U AS)JAS © Fs/As

where Fs/As s Z(u).

def
Proof. (1) If Ss" is defined as in (2.1.1) using ys" = {ySfi,---,ys,n} instead of ys,

then, using (2.2.1) and the linear independence of ys over As, one can prove that

Ssn[0,o(n)]=Sg"-xn[0,o(n)].

Hence, since each Ssn is an co-sequence by 2.1, Ss = UnSs" is an co-sequence.

Moreover, since

Ss n[0, a(m+ 1)] = Ssm n[0,a(m+ 1)],

if {.Ve.o> • • • >ys,m) is Pure independent mod Aa(m+,)+ „ then Ss n [0, a(m + 1)] = 0.
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(2) Let ys be as in the introduction to this section (so in particular, ys is linearly

independent mod As and (2.2.2) holds). We shall define by induction on « a new

sequencey's such that (2.2.1) holds for this sequence and, for all i < co, ySj + Aa(n)+2

= y'gj + Aa(nX+2. Suppose that^', has been defined for all /' < « — 1. Yet y'g n = ys n

+ un, where un G ^0(n)+2is of height 1 mod Aa,n)+X and is independent mod Aa(n) + X

from the first components of yj0,... ,yj„-X, ys „ in a decomposition

(2.2.3) As+i/Aa{n)+x = (Aa(n)+2/Aa(n)+x) © D

(where D s As+x/Aa(n)+2). Now notice that by construction if z = 2"=0 r¡yj¡ (r¡ e

Z) and if q divides z mod Aa(n)+, then q divides rn. This is sufficient to imply (2.2.1).

D

2.3. Definition. Let A — U„<w Av, E and ys be as in the introduction to this

section, and moreover, let ys G As+X (8 G £) be chosen so that (2.2.1) holds for

some ladder a on 8. Given the co,-filtration and the ys there is for each 8 G £ a

unique ladder t¡s on 8 whose range is 5S (cf. (2.1.1))—called the associated ladder to A

at 8; the set {tjs: r\ G £} is called the associated ladder system to A. (It is, of course,

not an invariant of A: it depends upon the choice of co,-filtration and of the ys.)

The following will be our main tool in constructing direct sum decompositions of

A; it is a theorem of ZFC.

2.4. Theorem. Let A = U„<ü) Ap, ys and {r/s: 8 G £} be as in Definition 2.3.

Suppose there is a partition E = ]lß<Ui Eß such that, for all ß and all 8 G Eß, 8 > ß,

and for all sufficiently large n,r¡s(n) G £ — Eß.

Suppose also that for each ß < co, there is a pure subgroup Bß of A such that for all

ß < co, and all v < co,, if B? = Bß D A

(0)forall8GEß,ysGBß+x;

(i) Eß — {v<ux: Bß is not ux-pure in Bß}\

(ii) ifv>ß, Bß+X/Bß s Bß+X/Bß © Z<">; and

(iii) ifv>ß, Bß+, + Ap is pure in Ap+X.

Then A is filtration-equivalent to ®^<ü)| Bß.

Proof. Without loss of generality, redefine Bß = 0 for v «£ ß. Then Bp = ®ß<U[ Bß

defines an co,-filtration of ©/3<ÜJ| Bß. It suffices to prove

for all p < v < co,, given a l.p. isomorphism/: Aß+X -> B +x

and given x0,...,xm G Bpy+X  which are pure independent
( * ) -

modAp, where v G £ — Ey, there is a l.p. isomorphism /:

Ap+X -> Bp+X extending/ such that for all/ < m, f(Xj) = x¡.

The proof is by induction on v; there are 3 cases, 2 of them easy.

Case 1. v — t + 1 for some r. By induction we may assume that t = p. Then since

A,+ \M*+\ (resP- Bp+X/Bli+X) is free, xQ + Ali+X,...,xm +A)l+X are a basis of a

summand of Ap+X/Afi+X and 5„+I/5(J+1, and it is clear that we can extend /:

Ap.+ i -» ß^+i to/: ^r+i -» B,+i so that/(x7.) = *y.
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Case 2. i? G Lim(co,) — £. Choose a strictly increasing sequence an approaching v

such that a0 > p. Then by induction define a chain of l.p. isomorphisms g„:
def

^«„+i - Ba„+\ extending/. If g = U„eug„ then g is a l.p. isomorphism: Av -» Bp

and since Ap+X/Av and #„+ ,/5„ are free, we can extend to/just as in Case 1.

Case 3. v G E. Say v = 8 G Ey. Suppose we are given p,f and x0,... ,xm as in (*).

Since 8 is fixed, let us writer instead of ys, andy} instead of _ya .. Because changing

the sequence y in finitely many places will only change finitely many values of tj8 (cf.

Lemma 2.1(2)) and because x0,... ,xm belong to Bsy+, and are linearly independent

mod A8, we can assume without loss of generality that y, = x, for/ < m. Moreover,

we can assume that y satisfies (2.2.1) with o(m + 1) > p, so, since x0,... ,xm are

pure-independent mod As, by 2.2(1), tj8(0) > jti.

By hypothesis there is an N such that for n > N, tj8(h) G £ — Ey; let r (> m + 1)

be such that o(r) > tj8(A/). By replacing jy by j>7 + u} for appropriate ujs in Bjr)+2,

j = m+l,...,r-l (cf. proof of 2.2), we can get Ss D [0, a(r)] = S8m n [0, o(r)],

without changing Ss n [a(r) + 2, 5). Then, since x0>... ,xm are pure-independent

mod Ag (and hence mod AaU)+x), Ss D [0, a(r)] = 0, so for a// « G co, r¡s(n) G £
- £Y.

Notice also by (0) and (iii), (y U 58r>^ + As = (y U As)^; so

(2.4.1) ¿a+1/V4a = (( V U Itf), + ¿a)/yla © Fs/As

and by (i),

(2.4.2) Bs+ X/Bg =(yUBys) JB¡ © £8'/58

where Fg/Ag^Z^^FgVBg.

Finally, notice that tj8 is the associated ladder to By at 5 (determined by y).

For this, we show that, for all p < 8, (y U Bj+X)„ ¥= (y U Bj)^ + Bj+X iff

(y u Ap.+1)* ̂  (y u Ay.)* + ^+i- It is not hard to see that this will follow if we

show that for all v < 8, all terms t — t(y) and all d G co — {0}, if d\ tmod Ap then

d\tmod 5^. If false, then there is a v < 8, a G Ap, b G 5^+, such that d\t — a and

d\t — b but d) í mod By; thus í/|ü — ¿?, or i/|Z?mod Ap. Now (iii) implies By+X/By is

a pure subgroup of Ap+ X/Ap, so d\bmod i?,/ Hence, d| í mod 5/, a contradiction.

After all this preparation we can begin the construction of /: As+X -> Bs+X

extending/. For all n, let a„ = t/8(m). We shall define by induction on n a chain of

level-preserving isomorphisms

8n- Aa„+l ~* "a„+l-

Simultaneously we shall define finitely many terms t"(y), positive integers d" and

elements a", in By +1 (/ < r„) such that for all / < rn, g„(af) = a," and <y U By +, >„

= <yU5Jn>,+"(Z„> where
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Suppose for the moment that we can do this; then

(yUB¡)m=(\JzmUB¡y

def
Thus we can extend g = Un g„: As -» Bs to a l.p. isomorphism /: As+, -» Bs+X by

sending (d")~x(t"(y) — a") to itself and sending a basis of £8mod As onto a basis

of £8' mod Bs (cf. (2.4.1) and (2.4.2)).

Thus it remains to define the gn, a" etc. Suppose this has been done for g„_,

(whereg_, =/,«_,= p and r_, = -1 ; notice that <y U 5^+,)* = (jFU 5„+,>).

Let

//^{yUÄJ^ + B^,    and   G,,= (j?U **+,).,

so G„/H„ is a torsion-group, which is finitely-generated because of (2.2.1). Thus by

the Fundamental Theorem there are finitely many elements

Z'~ d~1

(/ <r„) of Gn such that

G„/H„=ê(z? + Hn)
1=0

and each z" + Hn has order/?™' for some prime/?, and some m¡ > 1. (Since n is fixed,

we shall omit the index n on p¡ and w,, and also from now on, write z¡ for z", d¡ for

d", and r for rn.)

A crucial observation is that, since rj8 is the associated ladder to By at 8,

{yUByJ,= {y\JBl_x + x),+Bj,

so

(2-4.3) Hn={yUBl_t+l), + Bl+l.

Now, since d¡z, G Hn, p?1 divides d,; let e, he the quotient. Then ey\t,(y) — a,) G

Hn, so by (2.4.3) and by induction there exists b, G By +x such that e, divides

a, — b, and g„-X(b¡) = b,. Thus, a¡ = b¡ + e,x, for some x, G B¡ +v By replacing x,

by x, + p\n'ul (I = 0,. . . ,r), where the u¡ G By¡¡+X are pure-independent

mod(Byb, x0,... ,xr), we can assume that the x/s are independent and that if 47 is a

prime

r

(2.4.4) <7| 2 k,x,mod B^   implies q — p, for all I s.t. q\k,.
1=0

We claim that x0,... ,xr are pure-independent mod ^4an. If true, we are done, for

we can apply (*) with p = a„_,, v = an, f= gn_x and let g„ = /. (Notice that here

we need that an G Ey if a„ G £.)

Thus it remains to prove the claim. Since A +x/(B^+l + Aaj) is torsion-free, it is

enough to prove that (x0,... ,xr} G By +x is pure-independent mod By. So suppose

ç is a prime such that q \ 2S,=0 k¡x,mod By, for some s < r; i.e., SJ=0 k¡x¡ = qw + z,
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where w G Aa +x, z G By. By (2.4.4) and renumbering we may assume that q = p,

for all / *£ s. We shall show that

(2.4.5) ¿<7""~V/
/=o

belongs to //„, which implies that q\k, for all / < 5. because z, + Hn has order q'"!

(=/?;"). Now (2.4.5) =

2 (qe,Vk,(h(y) - (b, + e,x,)) = (qeV'U- e ¿ *,*,)
i=o \ i=o       '

where e — e0ex ■ ■ ■ es and

£ G (y U Bj i+l)= (4»)_,(€ - eUw + z)) = ((«e)_,U - zj) - w

which clearly belongs to Hn since z G ¿?^.    D

2.5. Corollary. If B is a subgroup of a strongly ccx-free group A of cardinality co,

such that A/B s C © £ w/iere C ¿s countable and F is free, then B is filtration-equiva-

lent to A. Hence, assuming MA + —¡CH, B is isomorphic to A.

Proof. Let us write A/B = H0/B © Hx/B, where H0/B = C and Hx/B is free.

Then we can choose an co,-filtration A = U .    Av such that for all v < co,,

(Ap+B)/B = H0/B®HXp/B

where Hx/HXp is free. Thus for all v < co,, A/(B + Ap) is free; so

A/AP^(B + AP)/AP®A/(B + AP)

and /4/(Ä + Ap) is free. Hence, for all v, AP+X/(BP+X + Ap) is free. By choosing a

subsequence if necessary, we can also assume that for all v < co,, if Bp = B n ^4„,

Bp+X/Bp = Bp+X/Bp © Z(u). Hence, if we let £= (5 < to,: /18 is not co,-pure in yl},

and for 8 G E choose ys G B independent over Bs such that Bs+X = (ys U Bs)^,

then we can apply Theorem 2.4 with E° = E, B° = B + A0 and for ß > 0, Eß = 0,

ß^ = 0. Therefore A is filtration-equivalent to B + A0, which is filtration-equivalent

toß. G

Corollary 2.5 fails in a model of CH (see Theorem 3.7).

2.6. Corollary. // A is a strongly u>x-free group of cardinality co, then A is

filtration-equivalent to A® Z(u>|). Hence, assuming MA + -,CH, A = A © Z(U|).

Proof. Apply 2.5 with A = A © Z(ü,|) and B = A.    D

The next theorem will imply the existence of the subgroups Bß satisfying (O)-(iii)

of Theorem 2.4.

2.7. Theorem. Let A be a strongly wx-free group of cardinality co,, and let [Ap:

v < co,}, £ and y'g (8 G £) be as in Definition 2.3. Then for any E' G E there is a pure

subgroup B of A such that, if we define BP — BC\ Ap, wè have

(0)forall8GE',ygGBs+x,

(i) £' = {v < co, : Bp is not wx-pure in A),

(ii) for all v < co„ Bp+ X/Bp a Bp+ X/Bp © Z^\ and

(iii) for all v < co,, Bp+X + Ap is pure in Ap+X.
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Proof. We shall define by induction on v < co, a continuous chain of pure

subgroups BpofAp such that

(a) for all p<v,Bpr\A)l^Bfl,

(b) for all v < co„ Bp+X/Bp s Bp+X/Bp ® Z<">,

(c)ifp G E- E',AP+X = BP+X +Ap,and

(d) for all v < co,, a G y4„, and ci G co — {0}, there exists b G Bp such that

d\(b-a).

Let A_x = 0 = B_x and suppose p G co, such that B^ has been defined for all

p < v. If v G Lim(cO|), let Bp = U B^. Otherwise v — 8 + 1 for some Ô; then we

can write

oc

As+X/Ag = (ys U ,48)*//l6 © © Fm/As
m=\

where for all m G co, Fm/As = Z(w), and ys (= 0 if <5 G £) is a sequence of

elements linearly independent over As. Let (a™ + As: n G co} be a basis of Fm/As.

Let £0 = <j8 U A8)m (so £0 = /48 if 8 G £)• For each m G co, let {(x„m, J„m): « G co}

be an enumeration of ( UA<m £^. > X (co — {0}). Then for each m G u let Z?„m = x"! +

d„na"+x, and let j?"1 = {b™: n G co}. Let ô = Umeubm. By induction on m one can

prove that ys U ¿>° U • • • Ubm is linearly independent over ^48; also, by Pontryagin's

criterion, (Bs U ¿)*/.B6 is free. If 8 G £ - £', let 5S+, = <£„ UysU ¿)*. If

5 G £ — £', let 58+, = (58 U b)^. By construction (d) holds; let us verify (c).

Suppose ô G £ — £'• If a G As+X then by construction there exists t G (ys U b),

u G Ag, and d G co — {0} such that da = t — u. By (d) there exists b G Bs such that

d\(b — u). But then ¿divides t — b so d~x(t — b) G Bs+X and, hence,

a = d~x(t - b) + d~x(b - u) G Bs+X + As.

Yet us verify (a). Suppose 8 G £ — £' and z G 58+, n As. Since z G Bs+X, there

exists d G u — (0} such that dz = t — c where / G (y8 U ¿?> and c G ¿?8. Also since

z G Ag, t — c G Ag, which implies / = 0 since c G As, and _y U b is linearly indepen-

dent over Ag. Therefore dz — c G Bs, so z G Bs. The proof is similar if 8 G E — £'.

Finally we must verify (b). If 8 G £ — £' then, by (c), Bs+X/Bs sAs+x/As, so

(b) holds by choice of the co,-filtration of A (see introduction to §1). If 8 G E — £'

then B8+X/Bg = (¿?8 U b)^/Bs is free and clearly not finitely-generated.

This completes the construction of the Bp. Let B = Uy<ul 2?„. By construction, (0)

and (ii) hold; and (d) implies (iii). As for (i), £' G [v < co,: Bp is not co,-pure in 5}

since for 8 G £ — £', by (c), Bs+X/Bs =AS+X/AS. The opposite inclusion holds

because—as noted above—Bs+X/Bs is free if ô G £ — £', and Bß/Bs+X is free for

all 8 < p < co, since, by (a), Bii/Bs+X is isomorphic to a subgroup of Afl/As+X.    □

2.8. Theorem (MA + -,CH). If A is an ux-separable group of cardinality co, which

is not free, then A » ®^<w, Bß for some nonfree groups Bß.

Proof. Let A = U„<Ui Ap, E, ys (8 G E) and (tj8: 8 G E) be as in Definition 2.3.

By Theorem 0.5 there is a partition of £ into disjoint stationary sets, £ = II ̂ <<o, Eß

s.t. for all ß and all 8 G Eß, 8 > ß and only finitely many members of the range of
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t/s belong to £ — Eß. For each Eß, let Bß be a pure subgroup of A constructed as in
»def a

2.7, so that in particular (if Bß = Bß n A„),

Eß = {v<ux: Bß/Bß   is not co,-free}

and for all 8 G Eß, ys G B§+, and if v G £ - Eß, Ap+, = 5f+, + A,. Then Theo-

rem 2.4 applies and A is filtration-equivalent to ®ß<Ul 5^. Hence by Theorem 1.2,

Ast®P<a,Bß.    □

Note that in the above proof the hypothesis MA + -,CH is used twice: first (by

Theorem 0.5) to get the decomposition £ = IIj8<W| Eß; second, in order to apply the

classification theorem (Theorem 1.2). The observation that in some models of

MA + -,CH, the conclusion of Theorem 0.5 holds (modulo a cub) for any decom-

position of £ (cf. Theorem 0.8(2)) leads to the following (cf. remarks after Lemma

1.1).

2.9. Definition. Say that an co,-separable group A with Y(A) = É has the

decomposition property if whenever £ = V {Eß: ß < co,} where Eß n Éy — 0 for

all y ¥= ß,v/e can write A = ®^<U| Aß where for all ß < co,, Y(Aß) = Eß.

Using Theorem 1.4 one can prove that in any model of ZFC + MA + -,CH,

every co ¡-separable group of type Q(p) has the decomposition property. However, for

arbitrary co,-separable groups the problem is undecidable in ZFC + MA + -,CH.

2.10. Theorem. (1) There is a model of ZFC + MA + -,CH in which there is an

ux-separable group of cardinality co, which does not have the decomposition property.

(2) There is a model of ZFC + MA + —,CH in which every ux-separable group of

cardinality co, has the decomposition property.

Proof. (1) We shall use the model in Theorem 0.8(1). Let £0, £, and (r/8: 8 G £0}

be such that (*) holds. For every 8 G £,, let t/8 be an arbitrary ladder on 5. Let

£ = £0 U £,. We shall construct an co,-separable group A of type R (cf. 1.3) such

that Y(A) — É and A does not have the decomposition property; in particular, A is

not the direct sum of groups AQ and Ax such that Y(AQ) = £0 and r(^4,) = £,.

(Recall that R is the group of rationals with square-free denominators.) We shall

define A as a subgroup of

D=   ©Qx,©  ©QÄ.

For each « G co and 8 G E, if/?„ denotes the «th prime, define z8 „ by induction on 5

as follows: if f)s(n) = y and y G £,

_   y»' Xy

ZS-"~ Pn        '

and if y G £,

_   y» - Zy,„

ZS" - Pn •
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Let A be the subgroup of D generated by {xp: v < co,} U (z8 „: 8 G E, n G co}.

Define an co,-filtration of A by

A, = Anl®QXp®    ©   QyX

Now suppose A = A0 © Ax, where Y(A¡) = £,(/' = 0, 1). Define AiP = A¡ n /4„

(/' = 0, 1; v < co,). For / = 0, 1, since Y(A¡) = £,, there is a cub G¡ such that for

y G fi,, i» G £, iff A,/A,p is not to,-free. Let G = G0 D Gx D {v < co,: A, = /40„ ©

/!,„}. Then G is a cub, so by (*) there exists 8 G G n £0 such that for arbitrarily

large «, tj8(«) G G n £,. Now

.4//48=/V/l<u©/l,//l,,5

where A0/Aos is not co,-free and Ax/Ax s is co,-free. Hence, since^8 is divisible by all

primes mod As, ys = a0 + ax where a0 G A0 and a, G Ax s. Choose n so that r¡s(n)

(= y, say) G £, and a, GAX. Now z is divisible by infinitely many primes

mod Ay, so, just as above, zy n — u0 + ux where ux G Ax and u0 G A0y. By construc-

tion, /?„ divides ys - zyn in A, i.e., /?„ divides (a0 — u0) + (a, — h,) in /10 © Ax.

Therefore, pn\(a0 — u0) in A0; hence, /?Ja0mod Ay and thus, since a, G Ay, pn

divides a0 + ax = ysmod Ay. But then, sincepn\ys — zy n, p„\zy n mod A , which is

impossible by construction. This contradiction completes the proof of (1).

(2) We shall use the model in Theorem 0.8(2). Let A = U„<u Ap, E, yR and {tj8:

8 G £} be as in Definition 2.3. Then in the model of 0.8(2) there is a cub G such that

for all 8 G E, for all sufficiently large n, t/8(h) G G. Given £ = V ß<u Eß as in 2.9,

we can assume £ = \lß<ü,l Eß where 8 G Eß implies 8 > ß. Let 5^ be as in 2.7 for

£' = Eß. If £ G G we can immediately apply Theorem 2.4 and obtain the desired

result. In general, though, we must apply a slight variation of the argument. By

similar methods to those used in the proof of 2.4 we can prove that A is G-filtration-

equivalent to B — ®ß<u Bß, i.e., for every v<ux, there is an isomorphism /„:

Ap -> Bp such that for all p < v, if p G G, f(Aj) — B^. In fact, the proof is somewhat

simplified, because in Case 3, if v = 8 G G n £, we can assume that m — -I, i.e.,

there are no elements x0,... ,xm in As+, pure independent over As which have to be

taken to themselves by/(because for all t G G, t > 8, r/T can be chosen so that for

all n, rjT(n) £ G. There will be a Case 4: v G E — G, which will be easy since there is

a largest t < v such that we require f(AT) = BT). Inspection of the proof of Theorem

1.2 shows that, assuming MA + -,CH, 6-filtration-equivalence implies isomorphism.

D

By similar methods one can prove the following, which says that the "associated

divisibility function" for a group of type R may or may not determine the group up

to isomorphism in models of MA + -,CH (cf. Theorem 1.4 and Remark 1.5).

2.11. Corollary. The following is undecidable in ZFC + MA + -.CH:

For all (¿inseparable groups A and A' of type R, A is isomorphic to A' provided there

are a stationary set E, cox-filtrations A = U„<(0 Ap and A' — U„<u A'p, and elements

ys G As+X,y8 G A's+X (8 G E) such that {v < co,: Ap is not o>x-pure in A) = E = {v <

co,: A'p is not ax-pure in A'}; (ys, As)jt/As s (^8', A's)m/A's = R, and for all « G co,

all p<8,pn \ys mod A^+, iff pn \y¿ mod A' + l.    D
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Added in revision. An alternate proof of Theorem 2.8 (which avoids the construc-

tion in 2.7) can be given as follows. If A, ys, {tj8: 8 G £} and £ = II^<U| Eß are as

in 2.8, let Bß be the pure closure of {ys: 8 G Eß) and Bß = Bß n Ap. Since Bß is
„def „

pure in A, Gp — {v\Bp + Ap is pure in A) is a cub; moreover, without loss of

generality, if v < p in Gß, Bß/Bß s Bß/Bß © Z(u). If G = the diagonal intersection

of the Gß (cf. [J, p. 57]), one may show, as in 2.4, that A is ß-filtration-equivalent to

®ßBß.

For a simpler approach to the proof of 2.5 and 2.6 see the proof of Theorem 2.2 in

the paper by Eklof and Mekler in the Proceedings of the Honolulu Conference on

Abelian Groups, Springer-Verlag Lecture Notes in Mathematics.

3. Models of CH. In order to prove that the classification theorem (Theorem 1.2)

fails if 2N° < 2N' we shall make use of results of Devlin and Shelah on weak

diamond. We say that a stationary set £ G Lim(co,) is nonsmall if the following is

true.

$(£): given for each v G E a partition Fp: 9(v) -» {0,1} of the

subsets of v into 2 classes, there is a function cp: £ -» (0,1}—called

a weak diamond function for {Fp: v G £}—such that for all X G co,,

{v G £: FP(X n v) = <p(v)} is stationary.

Devlin and Shelah [DS] proved that 2N° < 2K| implies that Lim(co,) is nonsmall.

We shall prove that the classification theorem fails for groups in r~'(£) when £

is nonsmall. All of our counterexamples will be of the kind described in the

following lemma.

3.1. Lemma. Let E G Lim(co,) be stationary and let (r/8: 8 G £} be a ladder system

on E such that for all 8 G E,n G co, r/8(«) is a successor ordinal. Define

D=®Qys® ©Qx°+,©QxI+1.

For each 8 G E, n G co let anS G {x°j(n)) x^s(n)}. £/x a prime p and for each 8 G E,

n G u let

(3.1.1) .., = »~fe'V
For each /w*£co,  let A^ be the subgroup of D generated by  {x'p:  v < p, 1=0,

def
1} U [znS: 8 G £ fi p, n G co}. Then A = Au¡ is an oix-separable group of type Q(p)

such that Y(A) = É; moreover, for all 8 G £ and all n G co, p"+x |^8mod Afl+X iff

p > rjg(n).

Proof. We claim that for all ju < co,, Afi+X is a direct summand of A. For all

S G £ such that 5 > p let A^ be maximal such that r/8(A)8) < p; then A = A)i+X © C,

where

C= {{x'p+x:v>p,l=0,l} U {zSn:8GE,8>p,n>Ng}).
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Then it is easy to see that A is of type Q(p) with Y(A) = £; in particular, if 8 G £,

Ag+i/Ag = ({ys} U Ag)^/Ag s ç2(i). By comparing coefficients in D (cf. [E, proofs

of 8.2, 11.1]) one can prove the x'p for u > p are pure-independent mod A , as well as

the final assertion of the lemma.    D

3.2. Theorem. If E G Lim( co, ) is nonsmall, there exist co x-separable groups A and B

with Y(A) — Y(B) = £ such that A and B are filtration-equivalent but not isomorphic.

Proof. Fix a ladder system {ti8: 8 G £} on £ s.t. every r¡s(n) is a successor; A and

B will be defined as in 3.1 using this ladder system. By the last part of Lemma 3.1

and by Theorem 1.4, A and B will be filtration-equivalent. (Note that the associated

divisibility system ^—see before Theorem 1.4—is given by ty(8) = (r/8, ks) where

ks(n) = « + 1 for all n G co.) Define bnS = x°s(n) for all n G co, 8 G E and let B be

defined as in Lemma 3.1 using these elements. We shall use $(£) in order to choose

elements an 8 so that if A is defined using these elements, then A ^ B.

For all a, let Da be the Q-submodule of D generated by {x'p+, : v < a, I = 0,1} U

(j>T: t<0}. Suppose that Y is a Z-submodule of Ds containing {x'p+x: i><8,
, def

/ = 0,1} s.t. V/i < 8, {xj. v> p) is pure-independent mod Y¡1 = Y n D^. For/ = 0,1,

let a'„ g = x^ (n) and let Y' = (Y L> {z!nS: « G co}), where zjs are defined as in

(3.1.1) using the a'nS. We claim that

there is no isomorphism of Bs onto Y which extends both to a

(3.2.1)       monomorphism of Bs+X into Y° and to a monomorphism of

J?8+, into Yl.

Supposing the claim to be true we shall describe the construction of A. If Y is a

subset of Ds and 6 GBSX Ds, define FS(Y, 6) = 0 if T is a Z-submodule of Ds as

above and 0 is an isomorphism of Bs onto T which extends to a monomorphism:

58+1 -» Yx; define £8(T, 0) = 1 in all other cases. By <E>(£) there is a function cp:

£ -» {0,1} such that for all A G D and 0 Ç B X £»,

{5 G £: <p(á) = £8(v4 n Ds, 0 n (¿?8 X £»8))}

is stationary in £.
def

Now, using cp, we will inductively define Ap G Dp so that A = Up<u Ap is a

subgroup of D as defined in 3.1. Suppose Ap has been defined for all v < p. If p is a

limit ordinal, let A^ = Up<fi Ap. If p = v + 1, where v G £, let ^ = (/4„ U

{x¡?, x¿}> (or i4M = Ap if k G Lim(co,) - £). If ju = 8 + 1, where ô G £, let 7 = ^8

and let y^ = y>(S). We want to prove that B is not isomorphic to A. Suppose, to the

contrary, that there is an isomorphism 0: B -* A. Then the set of v such that

0(J5V) = /!„ is a cub so there exists 8 G £ such that 0(58) = ^48 and cp(5) =

£8(^8, 0 n (Bg X D8)). Notice that 0 D (Bs X Z)8) = 0 r 58, which is an isomor-

phism: Bs -» ̂ 8; call it Ö. Let 7 = /18. First suppose cp(5) — 0, so As+X = Y°. Then

by definition of £8, 6 extends to a monomorphism: Bs+X -> Yx. But 6(ys) G As+X

(since 6(ys) is/?-divisible mod As) so 6 extends to a monomorphism: Bs+X -* Y° =

i48+,, viz 01 Ä8+1. This contradicts claim (3.2.1). We also obtain a contradiction if

cp(5) = 1, since then 0r Bs+X: Bs+X -> Yx = As+X demonstrates that FS(Y, 8) = 0.
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Thus it remains only to prove claim (3.2.1). Suppose that /: Bs - Y is an

isomorphism and/: Bs+X -» Y1 (I — 0,1) are monomorphisms extending/. Then for

some m there exist k0, kx G co and u0, ux G As such that f,(pmys) = p*'^8 + u, G Y'.

Say A:, 3s k0; choose r G co such that w0, m, G y,s(f), and let n = r + k0 + 1. Then

/?" divides^ - 2"=o P%.sin Äs+i< so/?"+m divides

«-i

pk% + u,-pm2pif(bitS)
i = 0

in 7'. But also p" divides

n-1

y» - 1 /»'<(«
i=0

in y', so (subtracting)/?" divides

»I-Pr"lp,f(bi,s)+Pk'lpixi<n
i=0 i=0

in y' and hence in Y. Therefore,/?" divides (w, — w0) — pk°'Z"Zo p'(pdxx (j) — x° (/))

in y where d= kx — k0. But this is impossible as the coefficient of x°s(r) is

p*o+' < p" an(j the (x¿: v > r)s(r)} are pure-independent mod Y {r).    D

3.3. Remarks. (1) By a slight modification we can even get that for all free F,

A ® F ïê B ® F. It may be argued that Theorem 3.2 is strong evidence for the claim

that in a model of CH there is no possible meaningful classification of all co,-separa-

ble groups. It is difficult to see what conceivable scheme of classification could

distinguish between filtration-equivalent groups—in particular, between the groups

A and B constructed in the proof of 3.2.

(2) Theorem 3.2 may be strengthened: if £ is nonsmall, there is a family of 2K|

co,-separable groups A, (i < 2N|) in r~'(£) such that, for all i #/, A¡ and Aj are

filtration-equivalent but not isomorphic The proof uses the fact that every nonsmall

£ is the disjoint union of S, nonsmall subsets (see e.g., [EH, Lemma 2.8]).

(3) In a model of CH there are (by the last sentence of (2)) many—in fact

2s '—classes £ such that the classification theorem fails for groups in Y~X(É). In

some models of CH (e.g. L) every stationary set is nonsmall, so the classification

theorem fails completely. However, Shelah [SI] has shown that there are models of

GCH in which some stationary sets are small. Using his methods we shall prove the

following result which shows that in some models of GCH the classification theorem

may be partially salvaged.

3.4. Theorem. There is a model of ZFC + GCH such that there exists a stationary

and costationary set S G co, such that (i) whenever A and B are filtration-equivalent

and Y(A) G S, A and B are isomorphic; but (ii) for every E G co, with E <¿ S, there

are ux-separable groups A and B with Y(A) = E = Y(B) which are filtration-equiva-

lent but not isomorphic.

Proof. We use the model described in Theorem 0.7(4). If A and B are as in (i), let

P be the set of all level-preserving /: Ap+X -» Bp+X partially-ordered by /' </ iff
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/' D /. Then one may prove that P is proper and (to, — S)-complete (cf. [M2]), so if

Dp—{fGP: Dom fD Ap+X], there is a pairwise compatible subset G which

interests each £>„. Then U G is an isomorphism: A -> B.

Part (ii) follows from the proof of Theorem 3.2, because if £ $Z S, <0(£) holds (so

a fortiori $( £ ) holds).    □

Next we shall show, using diamond, that the direct decomposition theorems of §2

fail. (We do not know if any of these theorems are consistent with CH.)

3.5. Theorem.2 Assume <)(E) for some stationary subset E G Lim(co,). Then there

is an ux-separable group A = U„<u Ap of cardinality co, such that Y(A) — E and A is

not the direct sum of two uncountable groups.

Proof. We shall define by induction on v<ux a chain of groups Ap and

subgroups BTP for t G v — E such that AT © BTP = Ap and for all t < p < v (t, p G v

— £), BTß © B^p — BTP. Moreover, we require that for all p < v,

'Q(p)     ifpGE,

'. free     otherwise.

If we can do this then Y(A) = É and A is co,-separable since for all t G £,

A=AT®( UT<p<a¡ BTP) (cf. [Ml, pp. 1213 ff]).

We shall use 0(E) to do the construction so that A is not the direct sum of 2

uncountable subgroups. (The methods are an extension of those in [EM or E,

Chapter 9]. I am grateful to A. Mekler for help with the case of £ = 1.) We will

always construct Ap to be a subgroup of Dp (see proof of 3.2). By 0(E) there exist

subsets y8 and Y'g of Ds (for 8 G E) such that for all Z, Z' G D, {8 G E: Z n Ds = Ys

and Z' n Ds = Yg} is stationary.

The only non tri vial case in the inductive construction is the following: As has been

defined and (*) 8 G E and Ys and Y's are subgroups of As, and there is a ladder tj8

on 8 such that for all n G co, letting t„ = t/8(/?):

ATn = (YsnATii)®(Yg'nATii);

Yg n AT   /Yg n A7 has a summand s Z; and

Y'g n Ar   /Yg n A   has a summand s Z.

For each « G co we shall define cnG Y8 n AT and c'n G Yg n AT such that

cn + c'„ G BT2n 2+UTin and cn (resp. c'„) is of height 1 mod Ys n ATin_x (resp. Y't Pi

i4Tj    ). Then letting bn = cn + c'n, define

_ys-V!=oP%
z"        p"+x

and As+X = <^48 U (zn: n G co}). Thus, if for each n we let

Bn=(BT2n+ugU{zm:m>n})

2This result has been improved by Mekler, who, assuming ()(E), has constructed an «,-separable

group A which is "almost endo-rigid" i.e., any endomorphism is, modulo a countable summand,

multiplication by an integer. See also Theorem 1.3 in the paper by Eklof and Mekler in the Proceedings of

the Honolulu Conference on Abelian Groups, Springer-Verlag Lecture Notes in Mathematics.
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we have

As+x=AT2n+x®B"

and so, if for p G (t2„ + 1) — £, we let B)lS+x = B     +1 © B" we have

^8+1 - A,,® BllS+x.

Now by hypothesis there exists c„ G Ys D AT (resp. c'„ G Ys' D AT^ ) which is of

height 1 mod y8n^T2| (resp. Yg'(1 ATin[). Since ATi¡¡ = ^T,„_,+i® 5r,„_,+i.r,„-

there exists a G Ar2i2+X G AT s.t. c„ + c'n + a G BT +lT . But since AT, _ =

(Yg n AT2n _t) © (Yg'n ATu_t) there exists u G Ys n /1T~"_~ (m;"g Yg f~l i4TiB ̂ "sùch

that a = « + m'. Then let c„ = c„ + u, c'n = c,', + u'.

This completes the construction. We claim that A is not the direct sum of two

uncountable groups. Suppose to the contrary, that A = H © H' where H and H' are

uncountable. Then

G= [v<ux:Ap = (HnAp)® (H' n A,)}

is a cub. Also

del
S= (e < co,: H n Ar+X/H D /I„ has a summand s Z}

and

dcf
5' = {r < co,: //' n Ay+X/H' n y4„ has a summand s Z}

are unbounded. Thus their closures, S and S\ are cubs. Hence, there exists 5 G £

which is the limit of points

t„ g G n s n 5'

and satisfies H H As= Ys, H' n As= Yg (cf. [EM]). Thus, we are in the crucial case

when (*) holds. Now ys = h + h' where h G H n Aß, h' G H D A'^ for some ju G G,

p s* 8 + 1. Since

A¿Ag = (HH A/H H Ag) © (7/' n AJH' n ¿4) = ß<» © Z<">

and >»8 is /7-divisible mod /18, either /i G ^48 or A' G As. Say A G yl8. Pick n large

enough so that h G A,     . Now p"+' divides
°^ T2n-1 r

* - 2 A ) + ( A' - 2 J»'«î ) G tf © #'.
i=0        /        \ i=0        /

Thus/?      divides

a - 2 A
i=0
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in H. But then p"+x divides 2"=0/?'c,mod^4T2   ^ so p"+x divides p"c„mod ATi¡¡_

(since 2"=o p'c¡ G AT2n_j). This contradicts the fact that cn has height 1 mod Ar _ .

D

An immediate consequence is that 2.6 fails.

3.6. Corollary (V = L). For every stationary E G co, there exists an ux-separable

group A G r~'(£) such that A is not isomorphic to A® Z(u,).

Proof. If A is as in Theorem 3.5, A^A® Z(u<\    D

We can also show that 2.5 fails, even assuming CH:

3.7. Theorem ($(£)). Every ux-separable group A of cardinality co, such that

Y(A) D £ contains a subgroup B such that A/B is countable, but B is not ux-separable.

Proof. Since Y(A) D £, $(£) implies Ext(A,Z) ¥= 0 (cf. [E, Theorem 3.6]). Thus

A is not co,-coseparable, so by [G2, Theorem 193] A is not totally co,-separable; in

fact, an inspection of the proof shows that there is a B such that A/B is countable

but B is not co,-separable.    D

As in Theorem 3.4 we can obtain models of GCH where the decomposition

property holds in some classes r~'(£) and fails in others.

3.8. Theorem. There is a model of ZFC + GCH such that there exists a stationary

and costationary set S G ux such that (i) every cox-separable group A such that

Y (A) G S has the decomposition property; but (ii) for every E G co, such that Ë (¿ S

there is an ux-separable group A with Y(A) = E which is not the direct sum of two

uncountable groups.

Proof. We use the model described in Theorem 0.7(4). We can show that in this

model, Theorem 0.8(2)(**) holds for every stationary £ G S; this is because the P

defined in the proof of 0.8(2) is (co, — 5)-complete. [Note also that CH implies

|P|= S,.] Then using Theorem 3.4, (i) follows just as in Theorem 2.10(2). Further-

more, (ii) holds by Theorem 3.5, because in this model 0(E) holds for all £ such

that £ <Z S.    D
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