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GLOBAL SOLVABILITY

ON TWO-STEP COMPACT NILMANIFOLDS
BY

JACEK M. CYGAN1 AND LEONARD F. RICHARDSON2

Abstract. We apply the methods of representation theory of nilpotent Lie groups to

study the convergence of Fourier series of smooth global solutions to first order

invariant partial differential equations Df = g in C°° of a two-step compact nilmani-

fold. We show that, under algebraically well-defined conditions on D in the

complexified Lie algebra, smooth infinite-dimensional irreducible solutions, when

they exist, satisfy estimates strong enough to guarantee uniform convergence of the

irreducible (or primary) Fourier series to a smooth global solution. Such strong

estimates are not possible on multidimensional tori.

1. Introduction. Let N be a two-step nilpotent Lie group, Y\N a compact

nilmanifold, and D a first order differential operator with complex coefficients,

left-invariant on N and viewed on Y\N. If g G C°°(Y\N) and if g„ is the

orthogonal component of g in some irreducible subspace corresponding to the

irreducible unitary representation tt, then gw G C°°(T\N) too [2]. Modulo unitary

equivalence, we may think of g„ as being a C°°-vector in any concrete realization, or

model, of it. We will determine algebraically well-defined conditions on D under

which the global solvability of Df = g in C°°(Y\N) is equivalent to the solvability

of TT(D)f^ = g„ in the C00-vectors for each w in the spectrum of T\N. In one sense,

we will be presenting algebraic conditions on D for the reduction of a global

(geometrical) problem on Y\N to a collection of purely group (representation)

theoretic problems, none of which needs to be regarded as living on the manifold

Y\N. Operators D admitting such a reduction are called globally regular (Definition

(3.4)). In effect, we will prove global regularity for suitable operators by showing

that if the smooth solutions /„ of "n(D)f„ = gm exist for each tt, then they can be

summed uniformly to a smooth global solution of Df = g. (Globally regular opera-

tors are usually neither locally solvable nor onto C°°(Y\N)\ [13].) In order to make

the necessary estimates on/,,, we construct a suitable Schrödinger model of it, which,

for convenience, is far removed from Y\N itself. One of the strengths of this

representation theoretic approach is that it permits the use of the method of

characteristic curves of classical partial differential equations in each Schrödinger

model, even though complex coefficients are permitted in D.
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In order to describe the main results, it will be helpful to review the classical

situation on a torus T2 of two dimensions (the situation being similar for T" with

n > 2). Yet D = a3/9x + ßd/dy and suppose, for simplicity, that a and ß are real.

Then D is globally regular if and only if ß/a is not a (transcendental) Liouville

number. (This result is essentially contained in Wallach and Greenfield [4], although

the language we use is that of [13].) The problem with (transcendental) Liouville

numbers is that, in solving for the Fourier transform of the solution function, very

small divisors occur. Now, every nilmanifold Y\N contains the structure of a torus,

Y[N, N]\N, although this torus does not reflect any of the non-abelian structure of

N. The only representations in (Y\N) which are not infinite dimensional are the

one-dimensional characters of Y[N, N]\N. Since the presence of this torus is

inescapable, we denote, for each g G CX(Y\N), the sum of the one-dimensional

components of g by g0. Then global regularity (Definition (3.4)) is taken to mean

that the solvability of Df= g is equivalent to the solvability of ir( D )/„ = g„. in

C°°-vectors for each infinite-dimensional tt G (Y\N), modulo the solvability of

Df0 = g0 in C00 of the torus Y[N, N]\ N.

If D = X + i Y, X and Y in the Lie algebra 9? of N, then the algebraic supplementa-

tion property (Definition (4.2)) guarantees that [ X, 9Í ] and [ Y, 31 ] contain supple-

mentary subspaces of [9Î, 9?], each spanned by linear combinations, with algebraic

coefficients, of elements of log(T). This property is invariant under rationality-pre-

serving automorphisms of 9?. In Theorem (4.3) we show that, if [X, Y] — 0 (which

includes the real case) algebraic supplementation is enough to establish the global

regularity of D. In Theorem (4.4) we show that, if [X,Y] — Z¥=0, algebraic

supplementation together with a number-theoretic condition on Z is enough to

establish the global regularity of D. It is interesting that number theory enters only

in the case of the latter theorem, and then only as a condition on Z instead of X or

Y. This situation is most unlike that of the torus, and also unlike that of the

Heisenberg manifolds treated by the second author in [13]. Indeed, the commutator

of the Heisenberg algebra is too small for either algebraic supplementation or the

condition on [X, Y] to be observable requirements. We remark that the role of the

algebraic supplementation property is to prevent toroidal phenomena from entering

into the infinite-dimensional representation theory of T\ N as in Example (5.1)(b).

Example (5.1)(c) shows that algebraic supplementation is not needed in certain

degenerate cases. We remark also that other examples illustrating the roles of the

various conditions appear in §5. Also, we begin in §3 with a special rational case of

the algebraic supplementation property, (Definition (3.1)), also algebraically well

defined, in order to simplify the exposition of the two theorems in preliminary

versions: Theorems (3.5) and (3.13). Example (5.5) shows that our theorems are not

true in general for n step groups, which we do plan to treat, however, in a later

paper.

We remark that Greenfield and Wallach have investigated, from a different point

of view, the small divisor phenomenon for homogeneous spaces of compact Lie

groups [5, 6]. As far as we know, [13] was the first treatment of this phenomenon for

any case of a nonabelian, noncompact Lie group. We would also like to remark
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upon a recent paper by R. Penney showing how certain second order operators on

nilmanifolds can be reduced to first order operators on a larger group [11]. There is a

possibility for some interaction between our work and his.

It is a pleasure to thank R. Howe for his very useful suggestions and comments

which he made during an informal conference at the State University of New York,

Albany, hosted by J. W. Jenkins and A. Hulanicki, whose hospitality and assistance

are gratefully acknowledged. It is also a pleasure to thank L. Corwin, who pointed

out Example (5.5) to us, as well as making other helpful observations.

2. Preliminaries. Let 9Î denote a finite-dimensional real nilpotent Lie algebra, and

N = exp 9Î the corresponding Lie group. Then Malcev proved there exists a discrete

subgroup r C N which is cocompact, meaning that the nilmanifold T \ A/ is a

compact homogeneous space, of cosets of the form Yn, if and only if Sfl has rational

structure constants with respect to some suitable basis. Such a Y is never normal

when N is nonabelian. If Y exists, the rational basis of 9? can be selected from log Y.

If T\ N is a compact nilmanifold, a subspace V G 9Î is called rational if and only if

it is spanned by vectors which are finite linear combinations with rational coeffi-

cients of elements of a rational basis of 9Î. A subgroup M G N is called rational if

and only if M = log M is a rational subspace of 9Î, and this is equivalent to Y D

M\ M being compact [10].

If r\7V is a compact nilmanifold and M is a normal rational subgroup of N, then

Malcev proved the existence of one-parameter coordinate subgroups dx(t),. ..,dk(t),

where k = dim(M\N), with the following properties. If Nk = M XI dk(R), a semidi-

rect product with M normal, and if N¡ — Ni+, XI ci,(R), then Nx = N. Also, d¡(n) G Y

for each n G Z, the integers [10].

Let N denote the space of equivalence classes of all irreducible unitary representa-

tions of TV. Then Kirillov proved that the elements of Ñ are in one-to-one correspon-

dence with the so-called Kirillov orbits of Ad* N acting in 9? ', the linear dual of 9Î.

If tt G Ñ corresponds to an orbit &n(tt) = (Ad* N)A, we may write tt = tta, and we

may speak of A G A?, for convenience. If A G &n(tt), there is a subalgebra Wl G 31,

of maximal dimension so as to be subordinate to A, in the sense that A([3Jl, W]) = 0.

Then A determines a character of M — exp 9Jc by Xa(w) ~ exp[/A(log m)], and Xa

induces tt, in the sense of Mackey. The Mackey induced representation space is

{/: N - C \f(mn) = xA(m)f(n), for all m G M, n G N, and |/|G L2(M\N)},

and TTK(n) acts by right translation on this space. If 9? is nonabelian with a

one-dimensional center spanned by Z, there is a pair of vectors X and Y with

[X, Y] = Z, and then the centralizer %(Y) has codimension one in 9Î. If A G 9Î'

and A(Z) ^ 0, then the maximal subordinate subalgebra 9JÎ for A may be selected

from inside 3(T). If Y G N is cocompact and if A(Z) G Z, then Y and 9JÎ may be

chosen also to be rational [9].

We will denote by (Y\N) the subspace of N occurring in the discrete direct sum

decomposition of L2(Y\N). The second author proved that tt G (Y\N) if and only

if there exists A G &N(it) and rational 9JÍ maximal subordinate to A such that

Xa(T n M) = 1. In particular, if 3 denotes the center of 9c, A must be integer
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valued on 3 H log Y. The multiplicity m(Tr) with which tt occurs in the 77-primary

summand %„ G L2(Y\N) is known explicitly, but here we need only the fact that

m(iT) < 00 [12].

If %„ — Hm 1 © ■ • • ®H„¡m(ir) is an irreducible decomposition, the spaces H„ , are

not canonical. Nevertheless, we will use irreducible decompositions because of the

convenience of their Schrödinger models, which we will construct in the proof of

Theorem (3.5). If g G L2(Y\N), we will write g = 2^6(rNW)-gw, the primary

Fourier decomposition into components, and g„ = 2™iV g„ q for some particular

irreducible decomposition. Auslander and Brezin proved that, if g G CX(Y\N),

then each gmq G C°°(Y\N), which implies in turn that g„ G C°°(T\N). Further-

more, the sums g = 2g„ = 2g„>? both converge uniformly, if g G C°°(Y\N).

Furthermore, if we begin with some functions g„ G H™q = H„ n CCC(Y\N),

then l^qg^q = g G C=°(r\A) if, and only if, 2„ j|£/g„J2 < 00,' for each fixed

U G 11(31), the universal enveloping algebra of 31 [2]. If D is a left-invariant

differential operator on N, viewed on Y \ N, it follows that Dfv = g„ can be solved in

%"j if and only if Df„ = gn q can be solved in //" for each irreducible component

g„   of the 7T-primary function gn.

3. The global regularity theorems. Let 31 be a nilpotent Lie algebra with rational

structure constants relative to some basis. Let D G 31 c, the complexification of 31.

Then D = X + iY, where X and Y are in 31, and we will write D = X - iY.

(3.1) Definition. We will say that D, as above, has the supplementation property if

the spaces [D + D, 31 c] and [D — D, 31 c] contain a pair of supplementary rational

subspacesof [31, 31].

Note that if D is real then D — D = 0 and 7) has the supplementation property if

and only if [D, 31] = [31, 31], which is automatically rational. But, if D = X + 1Y,

we require only that there exist rational spaces Vx G [X, 31] and V2 G [Y, 31] such

that Vx + V2 — [31, 31], one of these spaces being allowed to be trivial. We will see

that the rationality of Vx and V2 replaces, in some sense, the requirement of

rationality of coefficients of operators on a torus, in eliminating the "small divisor"

problem in estimates for primary or irreducible solutions on compact nilmanifolds.

Note that the supplementation property of D is invariant under those automor-

phisms of 9Î which preserve rationality.

(3.2) Example. If 31 is the free two-step nilpotent Lie algebra on n generators,

« > 3, then no D G 31 c can have the supplementation property, since the dimension

of [31, 31] is too large. If n = 2 (the Heisenberg algebra) every noncentral D has the

supplementation property.

(3.3) Example. Let 31 be spanned by {Xx, X2, Yx, Y2, U, V, Zx, Z2) where all

nontrivial brackets are generated by [XX,U] — Z, = [Yx, V] and [X2,U] = Z2 =

[Y2, V]. Let D = X + iY, where X = Xx + J2X2 and Y = J2 Yx + Y2. Then D does

not have the supplementation property. However the operators D + cU and D + cV

do have the supplementation property provided that c is any nonzero complex

constant.

Now let T\N be a compact nilmanifold and let g G CX(Y\N). Let g0 denote the

sum of all the 1-dimensional primary components of g, so that g0 really lives on the
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torus Y[N, N]\N. (On this torus, the phenomenon of small divisors is inescapable,

but none of the non-abelian structure of N is present here.) Let tt G (Y\N) be

infinite dimensional, and let %„ = 77„, © ■ • • ©77^ m(w) be any irreducible decom-

position of the w-primary subspace of L2(Y\N). We write g„ = g„,x + • • ■ +g„ m(w)

for the corresponding components of g, all of which are in CX(Y\N) D %„ = %j

- HmX W • ■ ■ ®H„m(v).

(3.4) Definition. D G 3ic is called globally regular on Y\N if the three condi-

tions,
(i)gGCx(Y\N),

(ii) for each infinite-dimensional tt G (Y\N) and/ G {l,...,m(7r)} there exists

/.,, G 77^ such that Dfmq = g„„, and

(iii) there exists/0 G CX(Y[N, 7V]\JV) such that Df0 = g0,

imply that the/„ 9's can be chosen, if necessary, in such a way that 2^e(r\A/)-2™iV f„ q

converges uniformly to a function/ G C°°(r\ TV) such that Df = g.

Note that the function g„ q G H„ q can just as well be regarded as a C°°-vector g„

in any realization of the irreducible representation tt. From this viewpoint, if D is

globally regular, then the solution in Cco(Y\N) of Df = g G C°°(r\A) is reduced

(except for the problem on the torus Y[N, N]\ N) to the solution of w(D)/, = g

in the C°°-vectors of the chosen realization of w. Thus the global geometrical

problem on Y\N is replaced by a purely group (representation) theoretic problem

(together with a well understood classical problem on a torus). This viewpoint is also

critical to the proof of the theorem since we will obtain our estimates on the/, by

solving ir(D)f^ = g in a suitable Schrödinger model of w. The freedom of choice

of this model grants us the flexibility needed to obtain our estimates.

Note that global regularity carries no implication that D is onto C°°(Y\N).

Global regularity means only that ifm(D)fmq — g„ can be solved in the C°°-vectors

for m, for each component g„ of g G C°°(r\./V), and // Df0 = g0 can be solved in

C00 of the torus, then Df= g can be solved in CX(Y\N).

(3.5) Theorem. If 9Î is a two-step nilpotent Lie algebra and if D G 31 c has the

supplementation property, with the real and imaginary parts of D commuting, then D is

globally regular on each compact nilmanifold Y\N, where N = exp3l and Y is

cocompact and discrete in N.

The idea of the proof is as follows. For each infinite-dimensional tt G (Y\N) we

will form a corresponding quotient algebra 31 with a one-dimensional center on

which tt ° exp is nontrivial. In case D = X G 31 we will embed a 3-dimensional

Heisenberg algebra containing X into 9Î. If D = X + i Y G 3lc, we will embed a

5-dimensional Heisenberg algebra containing X and Y, if [X, Y] = 0, or a 3-dimen-

sional Heisenberg algebra if [X, Y] # 0, the latter case being treated in Theorem

(3.13). Our Schrödinger models for tt will be formed relative to these Heisenberg

subalgebras of 31. The C00-vectors in these Schrödinger models will be Schwartz

functions [14], and we will make estimates of the Sobolev type on the Hubert space

norms of these Schwartz functions and their derivatives.
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Part I of Proof. The Schrödinger models.

Case I. Let D G 31. Let {Z„.. .,Z„) G log T be a rational basis for [31, 31] G 3

= the center of 31. Yet Yx,...,YnG 31 be such that [D, Yj] = ZJtj = \,...,n. Let tt

be an infinite-dimensional element of (TA/) and let A be in the Kirillov orbit

eN(TT) with A|[9c, 31] G Z": i.e., A(Z;) = \y G Z,/ = l,...,n. Then there is some

value of/ for which Xj ¥= 0. By factoring out the kernel of A 13, and then factoring

out the kernel of A restricted to the center of that quotient, we obtain, since 9? is

two-step, a quotient algebra 31, depending upon A, with a 1-dimensional center

generated by Zy, and, identifying A with the corresponding functional on 31,

A(Z~) = Xj ¥=(). Here [D, Yj\ = Z~, and 3Ï = Rö©3(^), where_3(y:) denotes the

centralizer of Yj. We can pick a maximal subordinate subalgebra 3JlA G 8(Yj) for A,

with Zj and f] thus in MA, but D g 3JÍA.

Now, we will construct an appropriate Schrödinger model for tt. Let {A",,... ,X,}

be a basis for 3ÜA\S(Yj), so that {X,,...,X,, D) is a basis for MA\3c. Let

yy(i) = exptXj, j = 1,...,/, and yD(t) = exptD. Using these 1-parameter Malcev

coordinate subgroups, we can decompose

7V = exp9t = (exp9Jc"A)y,(i,).y,(t,)yD(tD),

where the products must be written in this order. Let Xa be the 1-dimensional

character on 9ft A determined by A and inducing it. Then tt can be viewed as acting

in L2(R'+ ' ), where we regard it now as representing N, since we have factored out

only a subspace of ker(77). Specifically

<n((expm)yx(tx) ■ ■ ■ y,(t,)yD(tD))f(sx,... ,s¡; sD) = xA(m')f(s'x,... ,s¡; s'D),

where

exp(m')yx(s'x) ■ ■ ■ y,(s¡)yD(s'D) = yx(sx) ■ ■ ■ yD(sD)exp(m)yx(tx) ■•■yD(tD).

This is just an L2(R/+1) reahzation of the Mackey space for the representation

induced by xA °f MA. From the right-hand position of the coordinate subgroup yD,

we find that tt(D) — 9/3x. On the other hand,

yD(x)(exp yYj) = exp(yfj + xyZj)yD(x),

by the Campbell-Hausdorff formula [8]. Thus ^(1^) = iXjX, since each X¡ G 3(Yj).

Also, tt(Zj) = iXj. Thus the equation DfA   = gA   becomes, in this model,

-^¡A,q(sA, x) = gAq(sA, x)   wheresA = (sx,...,s¡).

Since the C°°-vectors in this model of tt are the Schwartz functions [14], we are

assuming that gA   andfA   are both Schwartz. Thus

y.00 ÇX

(3-6) ÍK,q(sA,x) = -\   gA,q(sA, t) dt = i    gAq(sA,t)dt.
X -00

Instead of proceeding directly to the estimates on fA in this case, we will show

first what the Schrödinger models are for the remaining three types of operators D.

Case II. Let D = X + iY, with X G 31 and Y G 3, the center. In this case, we pick

an infinite-dimensional tt, and A G 6n(tt) such that A(Zy.) = Xj G Z,/ = !,...,«,

just as in Case I. We proceed just as we did in Case I, except that we pick Yj such
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that [X, Yj] = Zj. In other words, we proceed right through the construction of the

Schrödinger model in Case I as if D were equal to X. The only change is that

tt( Y) = iX for some real constant X. Thus the equation DfA   = gA   becomes

w(Z))/a,<? = a^A.î ~ AÀ.4 = Sa,?-

Hence/^9(iA, x) = eXx{/0x gAi(?(sA, i)<?~*' <# + O for some constant C.

Subcase IIA. X > 0. Since/A(iA, x) is assumed to be Schwartz,

(3.7)    fAJsA,x) = -rgAJsA,t)ex<x-'xdt=f  gAJsA,t)e**-'>dt.
J x - 00

Subcase IIB. X < 0. The hypothesis tna\fA^q is Schwartz produces exactly the same

formula for fA q as in Subcase IIA.

Case III. Le/ 7) = X + iY, X and Y G 31, [X, Y] = 0, but neither X nor Y in 3.

(This completes the list of cases since if we had X G S and Y & 3, we could just as

well have obtained estimates for -iD in the following.)

Pick an infinite-dimensional tt and A G Bn(tt), A(Z-) G Q, / = 1,...,«, as be-

fore. Suppose A(Zy) = Xj =£ 0, and suppose there exists Yj such that [A", Y¡] = Zj. (If

not, replace D by -iD for purposes of estimating the w-primary solution). We pass

again to a quotient algebra 9Î with a one-dimensional center generated by Z- and

[X, Yj] = Zj. Let Tj = [Yj, Y] and let V] = Y + A(f])X/XJ G S(Yj). Then [X, Vj] =

0-
Subcase IIIA. Let Vj G 3(9?)- Then choose the Schrödinger model of Case II, and

we have

Then we obtain the same formula for fAq(sA, x) as in Case II, except that gA is

divided by 1 - »A(7})/Xy. Since 11 - i'À(7})/A.y |_1 < 1, we will see that this can

only strengthen our estimates onfA  .

Subcase IIIB. Let there exist ÜjG3¡ such that [Ü¡, îj] = Z~}. Without loss of

generality, let l/- G 3(^)- Now 31 can be spanned by vectors X, Yj, Zy, IL, Vj and

{Xx,...,X,} G S(Yj), where we can assume [X, XJ = 0 = [V¡, X¡], i = Y...,I, sim-

ply by subtracting any necessary multiples of Yj and t/. from each X¡. In these

coordinates, we have D = (1 — iA(Tj)/Xj)X + iV¡. The critical observation is that

D commutes with XX,...,X¡. Now we pick 9ftA maximal subordinate to A in 9Î,

containing Yj and Vj but «c?i A" or Uj. We may suppose {Zj,Yj,Vj, Xi+l,...,X¡)

generates 9ftA, and {X, IL, XX,...,X¡) generates 9ftA\9î. Let

D = D/(l-A(TJ)/XJ).

Then D — X + ßVj where ß G C. If we can prove our regularity estimates for D,

then, if ir(D)\q = gAq, the solution of Tr(D)fAq = gAq will be
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which has smaller modulus than ?FA . So we will obtain an even stronger estimate for

fA  . So we will examine D — X + ßVj, for some ß G C.

Now let y.(t) = exptXj,j = 1,...,/', Yt/(j) = expj'í/y, and yx(x) = expxX Then

we can parameterize N = exp ft as (exp 9ftA)y,(r,) • • • yi(ti)yu(y)yx(x), where

these factors are unique if we require that they be written in this order. Let Xa be the

1-dimensional character of 9ft A determined by A and inducing tt. Then tt can be

viewed as acting in L2(R'+2), where we regard tt now as representing N, since we

have factored out only a subspace of ker( tt ). Specifically,

Tr((expm)yx(tx) ■■■yi(ti)yu(tu)yx(tx))f(sx,...,s,;y,x)

= xa("0/(*;>-•-.*;;/,*'),

where

exp(m')yx(s'x) ■ ■ ■ y^y^y^y^x')

= Y,(*i) • ■ ■y¡(si)yu(y)yx(x)exp(m)yx(tx) ■ ■ ■ yi('l)yu(tu)yx('x)-

This is just an L2(R'+2) realization of the Mackey space for the representation

induced by xA of MA. From the right-hand position of the coordinate subgroup yx,

we find that tt(X) = 8/3x. Now recahthat [X, Vj] = 0 = [Xk, Vj], k = 1,...,/. On

the other hand, yu(y)exptVJ = exp(il^ + tyZj)yv(y), by the Campbell-Hausdorff

formula. Thus tt(VJ) — iXjy. Also, tt(ZJ) = iXj. Now, denoting sA = (sx,... ,s¡), we

have

HD)fA,q(sA; y, x) = -^fAq + iXjßyfAq = gAq.

Thus there is a complex number a = -iXß such that

(3-8) fA.q(sA;y,x)=~f   gA,q(sA;y,t)ea^-'>dt
Jx

= f gA,q(sA;y,t)e«y(*-<Ut
•'-oo

since fAq and gA q are both assumed to be Schwartz.

Part II of Proof. The estimates. Because of Auslander and Brezin [2], we can

complete the proof by showing that

7r„e(T\N)  \   4-]

for every  [/„. ..,U„ G 31, n= 1,2,....  Here fAq is the function in C°°(r\A)

corresponding to the C°°-7rA-vector fA   in the Schrödinger model of the appropriate

type above.

We observe first that, if DfA   = gA   , then

D(un---uxfAJ = un---uxgA,q+ 2 Un---Ul+xU,_x---Ux[D,Ul]fA,q
i=i

< oo
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since 31 is two step, where m — 1,2.m( tta ). Thus we can write

(3.9)    ((]„■■■ t/,/A.,)(iA, x) = -fXÜ„ ■ ■ • ÜxgA,q(sA, t)<b(x, t) dt

- 2 /   IÍ, ■ ■■ UMU,-i ■ ■ ■ Ux[D,u]fAq(sA, t)*(x, t) dt.
<*oo  m

l=\"x

or the corresponding equation using j*m, where tt(Uj) = Üj, and where

1, in Case I, equation (3.6),

<j>(x, 0 = 1 eMx~'\      in Case II, equation (3.7),

eavlx~'\    in Case III, equation (3.8).

(For notational simplicity, we have suppressed the dependence of <f>,fA¡q and gA on

y- in Case III. For this case, we may imagine y to be part of the composite

invariable.)

Observe also that if Z G 3(9?) and DfAq = gAq, then DZfAq = ZgAq, so that

Z/A is given by a formula of the type (3.9), involving only a central derivative of

gA . We begin by making an estimate on gAq(sA, t). Recall that, in each of the three

cases, we have a rational basis element Zj of [9?, 31] such that A(Zj) = X # 0,

j=\.n.  Because of rationality,  S = Inf7{Xy | A G &n(it), tt G(Y\NJ] >0.

And, without loss of generality, if D = X + iY, we may assume [X, Yj] = Z,

/ = 1.n. (The symmetrical case with [Y, Yj] = Zy is a trivial variation on the

argument to follow.) Then we have, for k = 0,1,2,...,

(3-10)    \gA.ll(sA,t)\ = \(X)+(XJt)2)kgA,q(sA,t)\X-2k(l + ,2)-k

= \{z2+Y2)kgA,q(sA,t)\Xfk(l + t2yk

<8-2k(l+t2)-ksup\{z2+Yj)kgA,q(sA,t)\

t

^C2(f[X'{zf+Y/)kgA^SA,t)fdt
1=0 v  -oo

ir2\    for|r|>l,

'  i,      form<i,      U-i>2,...,wK)).

1/2

Here the constant C comes from the Sobolev lemma [1] applied to the function

?(? i-> (Zf + Y2)gA q(sx, t); C depends only upon the dimension, 1, of R\ and the

constant S > 0.

Now, to estimate the solutions fA   , we make the following

(3.11) Inductive hypothesis.

I ¿4-1.#i/a.,('a.*)I

A.

Min(l,|xr(2*-',(*-î~))),
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where k — {kx,.. .,kr] and s - {sx,... ,sp} are any subsets of {l,...,n — 1} and

where n(k, s) «£ n and Ck - are constants depending only upon k and s. Here, Zs

stands for a typical term of the form [D, Üj] in [3lc, ftc].

Initial case, n = 1. Here we interpret k and s to be the empty set. Thus there are

no differentiations Uj, and there is no integral involving/^ in (3.9). Then by (3.9),

there is available an interval 7(x) of integration on which \<¡>(x, t) |< 1. Thus

(3-12) I/a.,(ía.*)I</    I#a.,(*a.O|A.

For « = 1, we will take n(/t, s) = 1, and we need only show that

m    I   /-oo i \ !/2

|/Alf(*A,*)|<C-2   /   |l'(z/+^2)gA,i(,A,f)|2^       Min{l,|x|'-"}.
/=o v -°° '

To prove the latter inequality, we simply calculate the integral in (3.12), using the

inequality (3.10) for \gA_q(sA, t) |, and recalling that 7(x) must be either (-oo, x) or

(x, oo).

Inductive step. Suppose the inductive hypothesis is true: we will derive the

corresponding formula for n derivatives Un,...,Ux. To this end, substitute Ü„

■ ■ ■ ÜxfAq(sA, x) into (3.9). But, in the resulting identity, the inductive hypothesis

can be applied to each term of the form Ü„ • • • Ük+xÜk_x ■ ■ ■ <7,([73, Ük]fAq), since

we have D([D,Ük]fA q) = [D,Ük]gAq in a two-step nilpotent algebra. Then we

apply (3.10) to Ün ■ ■ ■ ÜxgA in place of gA . The integration with respect to t of

Min(l, | x p*2*-"**'*))) changes the constants Ck ¡ and increases n(k, s) by 1.

Now, to obtain the desired estimate on \\U„ • ■ ■ UxfAq\\L2iT^N) we square both

sides of (3.11), apply the inequality (2"=01 a,\)2 < n 2"=01fl/P> and integrate first with

respect to x and then with respect to sA. Thus, if k is selected from a set of n

elements (and the same for s), we have

2    13.-1 • ■ • ûJa J2
AE(r\w)'
K?<m(ffA)

m

< 2"+x(m +1)2  2 I Cfc-fp||*'(z,2 + Yj2) Ük/-- ÜkZSp ■ ■ ■ Zs¡gAJ2
k,s'=0

■Ck,n(k,s) < °°-

Now, since 7.2(R') 3/A ~~* f\,q e L2(Y\N) is an isometry, we have the desired

estimate. Note that the right-hand side is finite since g G C°°(r\/y).

This completes the proof of Theorem (3.5).

In our next theorem, we will determine when D = X + iY is globally regular in

the case in which [X, Y] #0. It will turn out that there is a number theoretic

condition, invariant under rational automorphisms, not on the coefficients of X and

Y relative to a rational basis of 31 (as one might have guessed from the case of a

torus), but rather on [X, Y] relative to a rational basis of [31, 31]. That such a

condition is necessary will be shown by the example following the theorem. One

other curious fact is this: we will see that for some A G (Y\N), the existence offAq
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such that DfA = gA is not guaranteed, although this existence would imply strong

estimates on/A . However, for other A G (T\N), the existence of /A q is guaran-

teed, but the estimates then depend upon a number theoretic condition. It is as if

there were a trade-off between these two phenomena of existence and estimates.

(3.13) Theorem. Let 31 be any two-step nilpotent Lie algebra and D = X + i Y with

X and Y in 31. If N = exp 31 and Y is a cocompact discrete subgroup of N, let

Z,,...,Z„ be a basis of [31, 31], rational with respect to Y. Suppose [X, Y] = Z is a

multiple of a vector with algebraic coefficients with respect to {Z,,...,Z„}. Then D is

globally regular provided it has the supplementation property.

Proof. By the supplementation property, we pick a rational basis Z,,...,Zn for

[31, 31] such that, for each fixed / = 1,...,«, either there exists Yj such that

[X, Yj] = Zj or else there exists Yj such that [Y, Yj] = Z-. Pick an infinite-dimen-

sional tt and A G &n(tt), where Ay = A(Zy) is integral for each/ = l,...,n, and for

some/, we have Xj ¥= 0. If A(Z) = 0, then, when we form 31 with a 1-dimensional

center, we will be in exactly the same situation as we would have been in if we had

assumed [X, Y] = 0: this was covered in Case III, Theorem (3.5). So suppose here

that A(Z) — X ̂  0. Later, when we do our estimates, if it turns out that the only/

for which Xj =£ 0 come from [Y, Yj] = Zy-, then we will construct 9ftA excluding Y.

But for now, since we are not yet estimating, let us ignore this technicality and

construct a Schrödinger model just as in Case I, Theorem (3.5), except that we will

use 3(Y) in place of 3(Yj). Again, there exists real X ¥= 0 such that

*(D) = l-Xx
and the equation DfAq = gA   becomes

3^/a.?(ja> *) - **/a,?(*a> x) = gA,q(sA, x),

so that

fA.q(sA,x) = e^/2yjA.q(sA,t)e-*'2/2 dt + C(sA)},

where C(sA) is a constant depending upon iA. We are assuming there exists a choice

of C(sA) which makes fA   Schwartz.

Case (A). Let X > 0. Since fA   is Schwartz, it follows that

/•OO

(3.14) /a,?(*a>*) = -(  gA,q(sA,t)e^-'^2dt
J X

= f gA,q(sA,l)eM*2-'2)/1dt.
•'-00

Case (B). Let X<0. Here we can pick C(sA) = 0, so that

(3.15) jU'a.*) =fgA,q(sA,t)e^2-2^2dt.
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Since we have picked a solution, we do not know a priori that the function we have

picked is Schwartz. Clearly, fAq is Cx. It will be sufficient to show that, for each

positive integer K,

lim     |(5„ x)\KfgA q(sA, f )ex<*2-'2>/2 dt = 0.
|(5A,.X)|-OC JQ

What we do know by hypothesis is that there is a function C(sA) such that

fWW)^2"V2^ + ^2/2C(5A)
•'o

is Schwartz. This implies that C(sA) is Cx too. Also, since, for each fixed x,

\sA \KgAtq(t, sA) -» 0 uniformly as \sA\-> 00 on the domain c < t < x, it follows that

|ja|*C(ía) -* 0 as |iA|-»0. The same holds for all derivatives of C(sA). Thus

C G S(R'), and eXx /2C(sA) is Schwartz on R'+1. Hence our choice for fA is

Schwartz, being the difference between two Schwartz functions.

For those A such that X = A(Z) > 0, we can pick an interval of integration

(either (-00, x) or (x, 00)) on which </>(x, t) = eK(x ~' >/2 < 1. For these A (the ones

for which it is not guaranteed except by hypothesis that /A G S exists, we get our

estimates exactly as we did following equation (3.9) in the proof of Theorem (3.5).

The critical factor is the infinite domain of integration. For X < 0, in equation (3.15),

we must use a different technique of estimation. (That it is really necessary to use

our number theoretic hypothesis here will be made clear in the example following

this theorem.)

Let \\fAtq(sA, -)\\x denote supx\fAq(sA,x)\, for each fixed sA, and define

IITa,?(sa> OII2 similarly. YetfAq be defined by equation (3.15). By the 1-dimensional
Sobolev lemma applied to gAq(sA, •) and using our Schrödinger model, we have

m

||ia,?(*a, OIL < c 2 |*Wja, 0|L
/=0

where C depends only on the dimension, 1, of R1. Therefore, since /o*ex<Jt "' )/2 dt <

1 — 1/A for all x,

m

|/a,?(*a, OIL < c(i - i/x) 2 \\x'gA,q(sA, 0[2-
1=0

Now we apply formula (3.9) using f£ instead of -/" and with d>(x, /) = eMx ~' }/2,

X < 0, to prove by induction that, for any Un,...,Ux G 31,

(3.16)
/ 1 \i +H m

ü„---üxfA,q(sA,-)\l<c(n + i)\2 i-x      2 \\x'K"■■■ v?&U
e   V ' /=0

SA> ' J\h

where Ej = 0,1; / = 1,... ,n; Vj = UJt Vj = [X, Uj], e = (e„,... ,e,), |e|= l"k=x ek,

and the summation runs over all 0-1 sequences e of length n.
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In (3.16), we substitute (a) U„ = t/„_, = Z,., and then (b) U„ = i7fl_, = Y,, Then,

adding the results of (a) and (b),

|A2(l+x2)(7„_2---c7,/A, q(sA,x)\

m

< c(n + i)?2(i - i/A),+,e| 2 {|^M""-,^,-V • • • *7'fA.?(^ 0|2
f / = 0

+ |^f/-f/--'^r1»---KI''#A,,(jA,0|2}

where Z0° = Z,, Z,1 = [*, Z,] = 0, Yj° = YJt and Yj = [X, Yj].

In the estimate above, we divide both sides by X2(l + x2), square both sides,

integrate over sA and x, take the square root and sum over A and q to get

2 13,-2 • • ■ ÜJA J2 ^ S A"2 (constant) (l - ±)' +
A,? \,q

• (finite sum of terms of the form \\X'V„e-P?Ia,?I|)-

The sum on the right converges since the Xjs are bounded away from 0 (by the

supplementation property), since g G CX(Y\N), and since X is a constant multiple

of an integral linear combination of algebraic numbers [7]. The latter condition

means that   1/X grows at most polynomially in  (X,,...,X„) G Z".  However,

WX'VJ.l^r'f A.?ll2 decreases much faster than the reciprocal of any polynomial in

(X,,...,X„), as can be seen by applying arbitrary elements of the universal envelop-

ing algebra of the center of 31 to X'V„e.V{'g G C°°(Y\N).

This completes the proof of Theorem (3.13).

The following example shows that, when D — X + i Y with [X, Y] — Z not

satisfying the number theoretic hypothesis of Theorem (3.13), regularity can fail.

(3.17) Example. Let 31 be spanned by {X, Yx, Y2, Z,, Z2], where all nontrivial

bracket products are generated by [X, Y¡] = Z¡, i— 1,2. Let D = X + iY, where

Y = Y, + £y2, with i a Liouville number [7]. Then [X,Y] = ZX + £Z2, which does

not have algebraic coordinates relative to the rational basis (Z,, Z2} of [9Î, 31]. Let

N — exp 31 and let Y be the discrete, cocompact subgroup of N generated by exp X,

exp Yx, and exp Y2. Let tt G (Y\N) be infinite dimensional, and A G 6n(tt), with

A(Z,) = X,: G Z, /' = 1,2. Then there is a Schrödinger model of w in 7/(R) derived

from the Mackey induced representation space using the maximal subordinate

subalgebra 9ft spanned by {Yx, Y2, Z,, Z2}. Here tt(X) — d/dt, tt(Yj) = iXjt, and

tt(Zj) = iXj,j = 1,2. Thus 7i-(7J>) = d/dt - (X, + £X2)r. Suppose X = X, + £X2 < 0.

Then we have, as in (3.15),

/a» = e^2[fjA,q(t)e~^2 dt + CA},

where CA is a constant depending upon A, for the most general solution possible for

fA in terms of gA . We will show that there exists g G C°°(Y\N) such that,

although fAqG C00 exists, for each (A, g), it is impossible to pick CA so that

2a,?II/a,?II2<^-
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In particular, we will use only one irreducible component for each tt as above,

regardless of m(ir). So we will suppress the q in our notation. Let T2 be the

two-dimensional torus, and let <b G CX(T2) such that d> is real valued. For each A

such that X = A(Z) < 0, put gA(t) = (Xr/2)eA,2/4<HX,, X2). Then gA is Schwartz

and g = 2x<o£a £ C°°(Y\N), by the Auslander-Brezin condition [2]. Without loss

of generality, let CA G R, since a complex value could only increase the \\fA\\2. By

direct calculation,

/A(x) = (*(X„ X2) + CA)eXx2/2 - eXx2/%(Xx,X2),

so that

II/aIII = (* + CA)\ tt/ (-X)j/2 + $(2tt/ (-X))i/2 - 24>(4> + CA)(4V (-3X))I/2

^Min(-77/X)1/2{c>2(l + i¡2 - 4//3 ) + (2 - 4//J)¿ • CA + C2}

= (-VX)'/2^{/2-4/3}.

That is, ||/aI|2 > C • |cf>|/(-X)l/4, for some C > 0 which is independent of A. But £

Liouville implies that there exist <i> G C°°(T2) such that

2   i¿(x,,x2)i/ix, +¿x2r
x,,A2ez

X|+£X2<0

is divergent. This completes the example.

4. Generalizations. In the estimates used to prove Theorems (3.5) and (3.13), we

needed the existence of a rational basis {Z,,... ,Z„} of [31, 31] in order to have the

numbers Xy = A(Z-) bounded away from zero for A G (T\N). However, as in the

proof of Theorem (3.13), it is possible to compensate for a growth in the estimates of

fAq in terms of gA q which is at worst polynomial in (X,,... ,X„). We will formalize

this concept now.

(4.1) Definition. Let N = exp 9Î be a two-step nilpotent Lie group possessing a

cocompact discrete subgroup Y. Let (Z,,.. .,Z„] G log(T n [9Î, 31]) be a (rational)

basis for [31, 3i]. We will call Z G [31, 31] an algebraic vector if Z = l"=x a¡Z, with

a, being an algebraic number, i = l,...,n.

(4.2) Definition. Let 9? be as in (4.1), and D = X + iY, X and Y G 31. We will

say that D has the algebraic supplementation property if every rational subspace of

[31, 31] with codimension 1 can be supplemented by a vector from a finite set

{Sx,.. .,Sp) of algebraic vectors contained in {A', 31] U [Y, 31].

Note that Definition (4.2) is invariant under rational automorphisms of 31.

Without loss of generality, we may assume that the number p in Definition (4.2) is

less than or equal to n. Otherwise, if p > n, we could express one of the vectors in

terms of the others: say, Sn+X = 2,"=, a,St, where each a, G R. Then, if A is in the

linear dual of [31,31], and if A(S„+x)¥=0, we must have A(5,)^0 for some

i G {1,...,«}. The example (5.1)(a) in the next section will show that p may in fact

be either less than or equal to n.

Our new theorems are as follows.
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(4.3) Theorem. If N = exp 31 is a two-step nilpotent Lie group and if Y\N is a

compact nilmanifold, with Y discrete, and if D G ftc has the algebraic supplementation

property with the real and imaginary parts of D commuting, then D is globally regular

on Y\N.

(4.4) Theorem. Let N and Y be as in Theorem (4.3). Let D = X + iY, X and

Y G ft, with [X, Y] = Z, a multiple of an algebraic vector. Then D is globally regular

on Y\N provided it has the algebraic supplementation property.

Proofs. In order to modify the proof of Theorem (3.5) to prove Theorem (4.3), we

begin by constructing our Schrödinger models with respect to an appropriate vector

Sj.G (Sx,...,Sp) (i.e., one for which A(Sy) ¥= 0 and either [X,Yj] = Sj or else

[Y, Yj] = Sj) rather than with respect to Z,, If 5, = 2"=, a,Z,, then A(Sj) = 2"=, X,a„

an integral linear combination of algebraic numbers. Thus A(Sj)~x grows at most

polynomially in (X,,... ,X„). At every stage of Part I of the proof of Theorem (3.5),

we now replace X} with the number A(Sj). (We continue to let X} denote A(Zy)—but

the models are now constructed relative to Sj.) In Part II of the proof, we continue to

replace X by A(S.), and the first major change is that, in (3.10), 8 is no longer a

constant. Rather, I/o grows at most polynomially in (X,,... ,X„), which is thus also

true of C in (3.10), and Ck t-in equation (3.11), the Inductive Hypothesis.

Now, in the final paragraph of the proof of Theorem (3.5), in order to prove the

finiteness of the estimate on 2x,<3||t7„_,.ÚxfAq\\2, we simply observe, as at the

end of the proof of Theorem (3.13), that 2Aqp(Xx.a„)II^Ia,?II2 < °°> f°r eacn

polynomial/? and U G 31(9?). since Ug G C°°(r\A), as is VUg for each V G U(3).

Next we adapt the proof of Theorem (3.13) to prove Theorem (4.4). Here all

Schrödinger models are constructed with respect to Z, and the representations wA for

which A( Z ) = 0 are covered by Theorem (4.3). So we will assume that X = A( Z) ^ 0.

However, we will pick vectors Yj, such that [A", Yj] = 5, or else [Y, Yj] = SJf for each

/ = 1.p, and we will replace Xj in the proof by A(5y), reserving Xy again to

denote A(Z ). The first major change is then that the constant C in equation (3.16)

grows at most polynomially in (X,.X„). Now the proof is completed as before.

5. Examples. In this section we present some examples showing how regularity can

fail in the absence of an appropriate supplementation property, and illustrating the

meaning of the two supplementation properties (3.1) and (4.2).

(5.1) Example. Let 9Î, N, and Y be the same as in Example (3.17) but let

D = Yx + £Y2, with £ a fixed real number. Then tta(D) = (X, + £X2)t and fAq(t) =

#a.?(0/(ai + &i)t is tne only Schwartz solution of tta(D)}a q = gA which exists

if and only if the Schwartz function gA   vanishes at / = 0.

(a) If £ is an irrational algebraic number, then |X, + £X2|-1 is bounded by a

polynomial in X, and X2, and our third regularity Theorem (4.3) does hold here. This

is a case of algebraic supplementation, since no rational A can vanish on Z, + £Z2

— [X,YX + £Y2]. Note that this is a case of p — 1 < 2 = n. We remark also that in

Example (3.3) we do have algebraic supplementation, but not ordinary (rational)

supplementation. If the supplementation, in any example, is actually rational, then/?

must equal n.
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(b) If £ is a (transcendental) Liouville number and we put gA = g0(t)<f>(Xx, X2)

with g0 a fixed Schwartz function on R, vanishing at / = 0, and take <f> as in Example

(3.17), then we observe that global regularity does not hold. Here we do not have

algebraic supplementation.

(c) Finally, if £ is rational, all the numbers A(Z, + £Z2), A G (Y\N), are either

bounded away from zero or else equal to zero. Thus for A such that A(Z, + £Z2) = 0,

fA q(t) = 0 is a possible Schwartz solution of TrA(D)fA q = gAq whenever Schwartz

solutions do exist, i.e., whenever gAq = 0. For all other A's, lÀ.^OI^ 8~x\\g'Aq(t)\\x,

as may be checked by finding the maximum offA, where

8 = Inf{X, +£X2|(X,X2) GZ2andX, + £X2^0}.

Once again, this permits a proof of global regularity in this case. The following

remark is relevant.

(5.2) Remark. The conclusion in (5.1)(c) may be surprising, since neither rational

nor algebraic supplementation prevails in this example. The explanation is as

follows. Modulo a rational automorphism of ft, we may as well let £ = 0 in this case.

For each A G (T\N) such that ker(A | [31, 31]) is unsupplemented by an algebraic

vector in [Yx, 31], tta(D) happens to be the zero operator, and of course a sum of

zeros converges. So we could trivially generalize our regularity theorems (4.3) and

(4.4) to require supplementation only for those ker(A) with tta(D) ¥= 0.

(5.3) Example. Let 9? be a direct product of two copies of the 3-dimensional

Heisenberg algebra. Thus 9? is spanned by vectors Xx, X2,YX,Y2, Zx, and Z2, with

all non trivial bracket products generated by [X¡,Y¡] = Z¡, i = 1,2. Let N = exp 9f,

and let Y be generated by exp X¡, exp Y¡, and exp Z,, i = 1,2. Let D = aXx + ßYx

with a and ß real, and consider the Schrödinger model for those wA for which

A(Z,) = 0 =¿ A(Z2) = X 2. Then Tracts in L2(R) with tta(X2) = d/dt,mA(Y2) = iX2t,

tta(Z2) = iX2, tta(Xx) = iA(Xx), and tta(Yx) = iA(Yj). So, for these A, tta(D) =

i(aA(Xx) + ßA(Yx)), and

/a.?(0 = -igA,q(t)[aA(Xx) + ßA(Yx)]~\

Thus a two-dimensional toroidal problem arises in the infinite-dimensional represen-

tation theory, with global regularity depending upon ß/a not being a (transcenden-

tal) Liouville number. This is the effect of the absence of supplementation.

(5.4) Remark. Note that the group of Example (5.1) is a subgroup of the group of

Example (5.3). Yet the operator D of (5.1)(b) is not globally regular, even though the

same operator, in the group of (5.3), does provide supplementation and is thus

globally regular. It follows that the property of global regularity is not well behaved

with respect to the operation of restricting to subgroups.

The following example, communicated to us by L. Corwin, shows that our

regularity theorems cannot be true without further hypotheses when 31 is a nilpotent

Lie algebra with three steps. We plan a paper in the near future to show when

regularity works for suitable «-step compact nilmanifolds.

(5.5) Example. Let 31 be the Lie algebra spanned by the vectors W, X, Y and Z,

with all nonzero bracket products generated by [W, X] — Y and [W,Y] = Z. Thus
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31 has three steps and is generated by W and X. Let N = exp 31. There is a series of

representations mac G Ñ, a, c G R, a =¿ 0, which can be realized on L2(R) in such a

way that

(56) {vcW=£.   ^.ÁX) = 2TTi(c + aw2/2),

TTa C(Y) = 2iriaw   and   ttu c(Z) = 2iria,

(see Corwin, [3, p. 119]).

Let T be a cocompact discrete subgroup of N such that X, Z G log Y. Then,

letting a = 1 and c = -1,-2,-3,..., we have ttx c G (Y\N). Yet g0 be nonnegative

in C°°(R) such that g0(w) =1 for 0 *£ w < 3, and g0(w) = 0 for w £ [-1,4]. For

each negative integer c, define gc(w) = g0(w)e'ÏÏC, and let gc be the corresponding

function in CX(Y\N), each lying in a different primary summand of L2(Y\N).

Since the operators in (5.6) depend only polynomially (in fact, linearly) on c,

2;=_,||c/gi.||2 = 2;=_,||(7g(.||2< oo for every ¿7 G 21(3?), the universal enveloping

algebra of 9?. Hence g = 2^_, gc GCX(Y\N).

Now we shall examine the operator D — W + iXon Y\N. According to (5.6),

ttX[.(D) = d/dw - tt(2c + w1)

and

/» = -fg,( Oexp ir[(w3 - /3)/3 + 2c(w - /)] dt

is the only Schwartz solution of ttx i(D)fc = gc. (That/, is in fact Schwartz follows

from the facts that g(. is compactly supported and evw /3 -> 0 as w -> -oo.)

On the other hand, by a change of variables, if 0 < w < 1,

\fc(w)\= i°0|c(M'+ u)exp[-Tr(w2u + wu2 + ui/3)]e~2,'cudu > ße^,

for some 6 > 0 (estimate with \ < u < 2). Thus ||/J > Q,'e"°c, for some Q' > 0 and

c = -1,-2,_Thus 2^=_,/c does not converge in L2(Y\N), so, a fortiori, it does

not define a function in C°°(r\A).

Bibliography

1. S. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, Princeton, N.J., 1965.

2. L. Auslander and J. Brezin, Uniform distribution in solvmanifolds, Adv. in Math. 7 (1971), 111-144.

3. L.  Corwin, A  representation-theoretic criterion for local solvability of left invariant differential

operators on nilpotent Lie groups, Trans. Amer. Math. Soc. 264 (1981), 113-120.

4. S. Greenfield and N. Wallach, Global hypoellipticity and Liouville numbers, Proc. Amer. Math. Soc.

31(1972), 112-114.

5._, Remarks on global hypoellipticity, Trans. Amer. Math. Soc. 183 (1973), 153-164.

6._, Globally hypoelliptic vector fields, Topology 12 (1973), 247-253.
7. G. Hardy and E. Wright, An introduction to the theory of numbers, 3rd ed., Oxford Univ. Press,

London, 1954.

8. N. Jacobson, Lie algebras. Interscience, New York, 1962.

9. A. A. Kirillov, Unitary representation of nilpotent Lie groups, Uspehi Mat. Nauk 17 ( 1962), 57-110;
English transi., Russian Math. Surveys 17 (1962), 53-104.



554 J. M. CYGAN AND L. F. RICHARDSON

10. A. Malcev, On a class of homogeneous spaces, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 9-32;

English transi., Amer. Math. Soc. Transi. 38 (1949), 276-307.

U.R. Penney, Non-elliptic Laplace equations on nilpotent Lie groups (preprint).

12. L. Richardson, Decomposition of the L2-space of a general compact nilmanifold. Amer. J. Math. 93

(1971), 173-190.
13. _, Global solvability on compact Heisenberg manifolds, Trans. Amer. Math. Soc. 273 (1982),

309-317.
14. G. Warner, Harmonic analysis on semi-simple Lie groups. I, Lecture Notes in Math., Springer-Verlag,

Berlin and New York, 1972.

Department of Mathematics, Louisiana State University, Baton Rouge, Louisiana 70803


