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MEAN VALUES OF SUBSOLUTIONS

OF ELLIPTIC AND PARABOLIC EQUATIONS
BY

WILLIAM P. ZIEMER1

Abstract. Integral averages of weak subsolutions (and supersolutions) in R" of

quasilinear elliptic and parabolic equations are investigated. The important feature is

that these integral averages are defined in terms of measures that reflect interesting

geometric phenomena. Harnack type inequalities are established in terms of these

integral averages.

1. Introduction. In the theory of regularity of weak solutions that arises in partial

differential equations and the calculus of variations, the analysis of the set of

Lebesgue points frequently plays an important role. A point x0 G R" is said to be a

Lebesgue point of a function u if there is a number I = l(x0) such that

limr" f \u(y)- l(x0)\dy = 0.
rlO        JB(x0,r)

Here B(x0, r) denotes the open ball of radius r centered at x0. If u is a weak

solution of a partial differential equation, certain regularity properties of u often

hold at its Lebesgue points. In many instances it is necessary to investigate the

Lebesgue set and the associated integral averages of weak subsolutions and super-

solutions. Perhaps the best known results in this connection are those that pertain to

subharmonic functions. These results state that if u is subharmonic in R", then u has

the following sub-mean-value properties:

u(x0)<(a(n)r"Ylf u(y)dy,

(1)
u(x0) < (na(n)rny / u(y)do(y),

where a(n) denotes the volume of the unit ball in R". Other results in this direction

are the well-known Harnack inequahties for weak subsolutions and supersolutions of

elliptic and parabolic equations [M, TI, T2].

In this paper we investigate integral averages of weak subsolutions of elliptic and

parabolic quasilinear equations. This work was motivated by [Zl] in which the
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analysis of Lebesgue points of weak subsolutions of parabolic equations played a

vital role in determining the regularity properties of weak solutions of a wide class of

degenerate parabolic equations.

In §4 we consider weak subsolutions of equations of the form

(2) divA(x, u, ux) = B(x, u, ux),

where A and B are measurable functions subject to certain structural inequalities;

see (12) below. Because of this structure, it is natural to require that weak subsolu-

tions of (2) lie in the Sobolev space W]-p. Our results for weak subsolutions u of (2)

are somewhat analogous to (1) in that we relate sup m in B(x0, r) to the integral

average of u over an (n — k)-sphere of radius r and center x{) where 1 =s k < p. This

is a special case of the main result which allows consideration of integral averages of

subsolutions that are defined in terms of certain nonnegative measures (Theorem

4.6). Of course, similar results are valid for weak supersolutions. In §3 we consider

u G Wx'p without assuming that « is a subsolution of (2) and show that the integral

averages, that are defined relative to certain measures, converge everywhere to u

except possibly on a set whose dimension is n — p.

In §5 we consider weak subsolutions of parabolic equations of the form

(3) u, = di\A(x, t, u, ux) + B(x, t, u, ux).

We establish results which are analogous to those obtained in the elliptic case. In

particular we show that the supremum of a weak subsolution of (3) in a cylinder of

radius r in R"+ ' can be estimated by its integral average over the lateral boundary of

a suitable subcylinder plus an error term that tends to 0 as r — 0. Other results of a

similar nature can be obtained in which the lateral boundary of the subcylinder can

be replaced by other geometric objects of dimension n.

The author would like to thank Michael Crandall for several interesting and

helpful discussions during the preparation of this paper.

2. Notation and preliminaries. Points in Euclidean «-space, R", will be denoted by

x — (xx, x2,.. .,xn). In the case of a context for parabolic equations, points in R" ' '

will generally be denoted by z = (x, t) where x G R" and t G Rx. We will denote

fc-dimensional Hausdorff measure by 77*. Thus, H[ is linear measure and 77"

defined on subsets of R" is Lebesgue measure (cf. [F]). The Lebesgue measure of a

set E G R" is denoted by | E\ and fEu(y)dn(y) will stand for the integral average

\i(E)~xjEu(y) dfi(y), where it is a nonnegative Radon measure with n(E) ¥= 0. For il

an open subset of R", Wx-p(Q), oo >/?> 1, will denote the Sobolev space of

functions whose distributional first derivatives are functions that belong to the

Lebesgue space Lp(ti). Wjp(ü) will denote the closure in the Sobolev norm of

smooth functions with supports contained in Ü. Throughout, p* = np/(n — p) will

denote the Sobolev exponent, and p' = p/(p — 1) for 1 ^p < n. Following com-

mon practice, the letter C will denote a constant that may change from line to line in

the same proof.

3. Mean values of Sobolev functions. Whenever E G R" we define, for 1 «£ p < n,

yp(E) = inflj\vuA
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where the infimum is taken over all nonnegative functions u G Wx-p(R") for which

E G interior{x: u(x) > 1}. In the case p > n, the definition must be modified to

require that the functions u G WXp(R") have supports contained in some fixed

compact set. It is known (cf. [FZ]) that if 1 < p < n, then

yp( E ) = 0 implies H"-p+E( E ) = 0 for each e > 0

and

(4) H"~P(E) < oo implies yp(E) = 0.

In the event that/? = 1, then yx(E) = 0 if and only if 77"" '(£) = 0 [Fl].

3.1. Definition. The Lebesgue set of degree s for a Lebesgue measurable function

u is the set of all points x G R" such that

lim/-""/"        \u(y)-u(x)\sdy = 0.

Here B(x, r) denotes the open ball of radius r and center x. The exceptional set of

degree s for u is the complement in R" of the Lebesgue set of degree s for u.

It follows from classical differentiation theory that in case u G LS(R"), the

exceptional set of degree s for w has Lebesgue measure 0. However, in case

uG Wx-p(R") the exceptional set is considerably smaller. Indeed, we have the

following (vide [FZ, §9]):

3.2. Theorem. For every u G WXp(R"), 1 </> < n, there exists a function v G

WXp(R") such that u = v a.e. in R" and the exceptional set of degree p* for v has y

capacity 0, where p* = np/(n — p).

In particular, this results implies that the integral averages of u converge at all

points of R" except perhaps those that belong to a set of yp capacity 0; that is,

(5) lim j        u(v) dy = u(x)

for all x G R" — E, where yp(E) = 0. The purpose of this section is to show that the

integral average taken with respect to Lebesgue measure in (5) can be replaced by an

average relative to a more general measure.

For this purpose we introduce the space of Bessel potentials gx * f, f G LP(R"),

p > 1, where the Fourier transform of g, is given by gx(x) = (1 + 47r2 \x \2)'x/2.

The space of Bessel potentials g, * /, /G LP(R"), is identical to WX-"(R"), 1 <p

< oo. The Bessel kernel g, is comparable to the Riesz kernel Rx(x) =|jc |I—" in a

neighborhood of |x|=0 and has exponential decrease as ¡ jc | —*■ oo. Moreover,

gx(x) < c | x \x~" for some constant C.

3.3. Definition. For each real number 1 < a < n, let Mj denote the space of

nonnegative Radon measures m on R" with compact support which, for some

constant M, satisfy the growth condition m(Br) < Mr"~a on open «-balls of radius

r.

If p > 1 and m is a nonnegative Radon measure such that ||g, * m\\LP'(Rn) < oo,

where/?' = p/(p - 1), then clearly m G [Wx-p(R")]*, the dual of Wx-p(Rn). To see

this, let u G WX'P(R") be written as u = g, * /, / G LP(R"). Then, by changing the
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order of integration, we have

J   udm - jgx * fdm = jg, * mfdx < llg, * m\\p.\\f\\p < oo,

and thus, ju dm defines a bounded linear form on Wx-p(R"). Again, by changing the

order of integration, we have

j(g\ *mY dx = Jgi * (g\ *m)Wp~] dm.

Therefore, by appealing to Theorems 3.3 and 3.5 of [AM], it follows that if p > 1,

1 < a <p and m G Mj , then m G [Wx-p(R")]*. In case p = 1, it follows from

Theorem 4.7 of [MZ] that m G [Wx-x(Rn)]* if m G Mx+ . The main results of [M]

and [MZ] thus yield the following

3.4. Theorem. Let fi C R" be a bounded Lipschitz domain and suppose 1 =£ p < n.

Let m be a nonnegative Radon measure supported on Í2 with m G Mx+ if p = 1 and

m G Mj if 1 «s a < p. There is a constant C = C(ñ, n, p, M) such that if u G

Wx'"(ti), then

I \u(y) ~ I udm
1/P*

<c(/ Vu
12

!//>

This result will be crucial in establishing (5) where Lebesgue measure in the integral

average is replaced by m G Mj .

If w G WX'P(R"), define a measure yu by

yu(E)= f\vu\pdx

whenever Tí is a measurable subset of R". Let

P„_p = R" n ¡x: limsupr^""Yu[7i(x, rj] > 0
*• no

3.5. Lemma. 7/m G Wx-"(Rn), l^p<n, then H"-p(Pn_p) = 0.

Proof. Let Ak — R" n {x: Yimsuprl0rp~"yu[B(x, r)] > k~x} for each positive

integer k. It follows from [F, §2.10.19] that there is a constant C such that Hn~p(Ak)

*£ Cky (Ak). Note that y^ is absolutely continuous with respect to Lebesgue mea-

sure. Now yu[Ak] < oo, H"-»(Ak) < oo, 77"(^) = 0, yu(Ak) = 0 and H"~»(Ak) =

0. Hence H"-p(P„_p) = 0 because P„_p = UAk.

Let x0 6 P„_p and consider B(x0,1). If m G WX'P(R"), 1 <p < n, and if m is a

measure satisfying the hypotheses of Theorem 3.4 where we set ß = B(x0,1), then

\ i/p*

(6) / »(j) — ¡udm
•'Blv.    II ''«(JCO.O

dy C\LB(x0,\)
Vuf

\/p

Let Tr: B(x0,1) ^ B(x0, r) be defined by Tr(x0 + y) = x0 + ry where y G 5(0,1).

If we define ur = u ° Tr, then (6) implies that

/ P*     \x/p" I \Vp

\( ur(y)-   uoTrdm    dy\       < C\ [        |v«T



SUBSOLUTIONS OF ELLIPTIC AND PARABOLIC EQUATIONS 559

which is the same as

/ p>       \VP' i x\/p

(1)     \r-"f u(y)~ ju°Trdm    dy\       <c{rp~nf | Vw M
'B(x0,r) 'B(x0,r)

Because x0 G P„-p, the right side of (7) tends to 0 as r |0. From Theorem 2.2 there

is a set E with yp( E ) — 0 such that

(8) limr-"i \u(y)-u(x0)\p'dy = 0
riO JB<,x0,r)

whenever x0 £ E. Note that (4) and Lemma 3.5 imply yp(Pn_p) = 0. Now by setting

A = E U P„-p, the next result follows from (7) and (8).

3.6. Theorem. Suppose u G WXp(R"), Kp<n. There is a set A G R" with

y (A) = 0 such that if x0 $ A and m is a nonnegative Radon measure supported on

B(x0,1) with m G Mx  if p = 1 and m G Mj if I =£ a < p, then

(9) lim fu o Trdm = u(xQ).
noJ

Of course, the most interesting measures to consider are those that possess some

homogeneity properties. For example, if m = 77"_l | dB(x0,1), then clearly m G Mx

and

(u°Trdm = { u(y)dH"-x(y).
J JZB{x0,r)

Thus, we have

3.7. Corollary. If u G Wx-x(Rn) there is a set A with yx(A) = H"~X(A) = 0 such

that

limf r(y)dH"~x(y) = u(x0)
rlO JdB(x0,r)

whenever x0 G A.

A similar result could be obtained by taking m = H"~x \ 7r"~x(x0) where tt"~x(x0)

is an (n — l)-dimensional plane passing through x0. In the event that u G WX,P(R"),

1 <p<n, let m = 77"" R | S"~k(x0,1) where 1 < k <p is an integer and S"~k(x0,1)

is an S"~k sphere with radius 1 centered at x0. Then we have

(10) lim/ u(y)dH"-k(y) = u(x0)
riOJs"-''(x0,r)

for Yp-a.e. x0 G R". As in the case p = 1, a similar result follows by taking

m = H"-k\TT"-k(x0).

4. Lebesgue points of subsolutions of elliptic equations. In this section we obtain

results for weak subsolutions and supersolutions of quasilinear elliptic equations

with measurable coefficients that are analogous to Theorem 3.6 and its corollaries.

In the case of weak subsolutions we will show that (9) holds at all points x0 and,

more importantly, that the sup u in B(x0, r) is bounded above by the left-hand side

of (9) plus a term that tends to 0 as r \0.
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The equations that are considered in this section are of the form

(11) di\A(x,u,ux) - B(x,u,ux)

where A and B are, respectively, vector and scalar valued Baire functions defined on

fiXü'x R". Here ß is an open subset of R". The functions A and B are required to

satisfy the following structural inequalities:

\A(x, u, w) |< a0 | w f~x + ax \ u \p~x + a2,

(12) \B(x,u,w)\^b0\w\p + bx\w\p~x + b2\u\p-x + b3,

A(x, u, w) ■ w >\ w\p — Cx | u \p — C2.

We assume 1 < p < n and a0, b0 are nonnegative constants. The results below are

valid if the remaining coefficients are nonnegative measurable functions that are

assumed to lie in appropriate Lq(Q) spaces (vide [GZ]), but to minimize technical

detail, we will assume that the coefficients are bounded by some constant K > 0:

(13) a,(x)<K,   b,(x)<K,   c,(x)<K.

A function u G Wxà?(Çl) is called a weak subsolution (supersolution) of (11) if

(14) ¡A(x,u,ux)- V4> + B(x, u,ux)<(> <0    (>0)

for all bounded cf> > 0, d> G Wjp(Q).

The following result is due to Trudinger [Tl] whose proof is based on the familiar

Moser iteration method [Mo]. Therefore, a complete proof will not be given, but for

the convenience of the reader, we will give an outline of the main steps.

Let u G Wx^(ü) be a weak subsolution of (11) that is bounded above by L in ß.

Choose x0 G ß, and for each real number k, let uk = (u - k) * and define

(15) nk(r) = sup{uk(x): x G B(x(), /•)},

H(r) = sup{«(jc): x G B(x(), /-)}.

4.1. Theorem. Let u G rVXr^(tt), 1 < p < n, be a weak subsolution of (M) such that

0 «s u(x) *£ Lfor each x G ß. There is a constant C depending only on L, n, p and the

structure (12) such that if B(xn, r) G ß, then

[t \(i(r)-u\<\      <C[/i(r)-fi(r/2) + fl(r)],
\JB(xn,lr/%) J

where a(r) = r+ Kr + (Kr)p/{p-X) and y < n(p - l)/(n - p).

Proof. Let

(16) <#> - Vpe-h°"(n(r) + a(r) - u)",

where tj G Cx[B(x0, r)] and a < 0. Then <j> is a bounded, nonnegative test function

that can be employed in (14). If we set v = p(r) + a(r) — u, the structure (12) and

elementary estimates yield

(17) /ij'tj"-' | Vü^ < C(a)j(T]p + | V7) f)vp+a+x,
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where C(a) is a finite constant when a is bounded away from 0 and 1 —p. Let

w = vq where pq = p + a — 1 and apply Sobolev's inequality to find that (17) yields

(18) llTïw||0„<C(a)||(ij + |VTi|Hlp

where a = n/(n - p). For 0 < s < t =£ r, let r/ G C^[B(x0, t)] be such that 0 < tj <

l,Tj.= 1 onB(x0, i) and | Vtj|< 2(r - s)"1. Then (18) implies

(19) \\w\\ap:s<C(a)(t-s) -i'\ wop; s        ^\"/V''        " J     M      '7;('

Let r, = /-(2-1 + 2~y~2) for y = 0,1,... and iterate inequality (19) to obtain for any

Po > 0,

(20) 0(-oo, r/2) > C6(-Po,3r/4)

where

i/p

0(p.r)=[f
\JB{x0.r)

By performing a finite iteration of (19) and choosing the r in a different way, we

have

(21) 0(Y,7r/8)<C0(/>o,3r/4)

for any /?„ > 0 and y < «( p — l)/(n - p). Return now to the definition of the test

function ¿> and notice that in case a — -1, substitution of <f> into (14) gives

/V'| vlogt>|/'^ CJ\ Vtj|

whenever r\ G Cx[B(xQ, /•)]. Thus, from the John-Nirenberg lemma (cf. [GT, p.

158]), it follows that there exist constants C and p0 > 0 such that

f        v-Poj        vp«*iCS2"
JB(x„..i) JB{xB.s)

for 0 < s < 3r/4. That is,

(22) 0(p{),3r/4)<6(-po,3r/4).

Thus, (20)-(22) imply

(9(y,7r/8) ^ C0(-oo, r/2)

or

(/ [n(r) + a(r) - u]A    "=(/ «*)

^C    min    v = C[p(r)-p(r/2) + a(r)].
B(x0,r/2)

4.2. Remark. Note that the right-hand side of the inequality in Theorem 4.1 tends

to 0 with r and therefore

limf u(y) dy = hmju(r) = lim supw(x).
r 10 JB(x0.r) r 10 x^x0



562 W. P. ZIEMER

This implies that every bounded weak subsolution of (11) is upper semicontinuous on ß

after redefinition on a set of measure 0.

If b0 = 0 in the structure (12), then the same conclusion will hold without

assuming that u is bounded on ß. In this case it is possible to show that a weak

subsolution u G WX(g(íl) is locally bounded above on ß [S]. On the other hand, u is

not necessarily bounded below and, therefore, the estimate in Theorem 3.1 may not

hold. However, one can easily show that for each k G Rx,

lim/ \nk(r)-uk\y = 0.

To see this, replace u by uk and ¡i(r) by nk(r) in the definition of </>, (16), and

observe that the proof of Theorem 3.1 yields

(23) / \nk(r)-uk\y)      <C(k)[nk(r)-ßk(r/2) + a(r)].
\JB(x0.7r/8) I

Let X(x0) = limrl0fi(r) and choose k < X(x0). Then

/ nk(r) - uk> (X(xQ) - k)\B(x0,lr/%) n [u<k}\
JB(x0,lr/%)

and, thus, it follows from (23) that

\rmr-"\B(x0,r) n {u < k] |= 0.
no

Therefore, for each e > 0,

limr-"\B(x0,r) D [x:\u(x) -X(xQ)\> e}\=0.
no

This states that u is approximately continuous at x0 and its approximate limit at x0 is

A(jc0). However, every measurable function is approximately continuous almost

everywhere and, therefore, every weak subsolution of (11) with b0 = 0 in (12) is upper

semicontinuous on ß after redefinition on a set of measure 0.

We will now show that (9) holds at all xQ G ß if u is a subsolution of (11).

4.3. Theorem. Let u G WX(£(Q), 1 < p < n, be a weak subsolution of (11) such that

0 =£ u(x) < L for each x G ß. For each x0 G ß with B(x0, r{)) G ß for some r0 > 0,

let m G Mj , 1 < a <p, be a Radon measure supported on B(x0, r0/2). There is a

constant C depending only on M, L, n, p and the structure (12) such that

(24)

p*    \ \/p-i i-      \ i/p~

\r-[ u(y)-fuoTrdm     dy\       < C[ß(r) - ¡x(r/2) + a(rj\
\ JB(xQ,r) J I

p-l/p

for each r < r0/2 where Tr: B(x0, r0/2) -» B(x0, r/2) is defined by Tr(x0 + y) = x0

+ r/r0y.

Proof. We proceed to obtain an estimate of fß(x0,r)\ V«^ as in [GZ]. Let

t/ G C0°°[7i(x0,7r/8)] be a cut-off function such that r/ = 1 on B(x0, r/2) and let
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(b = i]pebaU. Hence, by substituting <f> into (14) and utilizing the structure (12), it

follows that there is a constant C such that

(25)

/Vi vu\p<c /v~'i vtj^'i vt)| +yv+/v-'i vt?i +fvp\ v«r'

As in the proof of Theorem 4.1, let v = ¡x(r) — u + a(r) and use (17) and Theorem

4.1 to obtain, for sufficiently small e > 0,

(26)      /V~'| Vu\p-X\ VT)|= f(t1p-xv-°+£)/p'\ Vu\p-])(v0+e)/p'\ vtj|)

p-Vp i , \ i//>

/>-!//,

< ( fVpv-°+e) \W\pY     " ( fv<>~,)(1 +£> | VT, \p )

^c(/(r,''+|VrJr)^-,-^

x([M(r) - M(r/2) + c^(r)]^-|)(1+t)•r"-'')1/,,

*£ C([/i(r) - n(r/2) + cHr)]^"'"'',-"-')^17'

x([M(r) - ^(r/2) - a(r)](p-,)(,+V^)'/;'

^ C[n(r) - n(r/2) + a(r)]p~Xr"~p.

Also, the last term in (25) can be written as

jV | Vu I"" ' = /(iJ I VK I)'-1!! « ¿ _/V I V« \" + CJY-

Hence, it follows from (25) and (26) that

r""f | vu |" ̂  C[fi(r) - M(r/2) + a(r)]'"1.

Now apply Theorem 3.4 as in the proof of (7) to establish the conclusion.

Because the right-hand side of (24) tends to 0 as r 10, the following is immediate.

4.4. Corollary. IfuG W^Q) is a bounded subsolution of (11) on ß, then

lim fu o Trdm = u(x0)
rio-*

for each x0 G ß.

4.5. Remark. As in (10), if we let m = 77""* | S"~k(x0, r0/2), we have for each

x0 G ß,

lim/ u(y)dH"-k(y) = u(x0)
noJs"-k(x0,r)

whenever k is an integer such that 1 < k < p. A similar result holds if m is taken as

the restriction of 77""* to an (n — A:)-plane passing through x0.
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Finally, we establish an inequality for weak subsolutions of (11) which is remi-

niscent of the weak Harnack inequalities proved in [Tl].

4.6. Theorem. Let u G Wx<£(ü), 1 <p <n, be a weak subsolution of (11) and

assume that 0 < u < L on ß. For each x0 G ß with B(x0, r0) C ß for some r0 > 0,

there is a nonnegative function g(r) with J0g(r)p dr/r < oo such that

sup   u</ u(y)dH"~k(y) + g(r)
B(x0,r) JSn  k(x0,r)

for 0 < r < r0/2. Here k is an integer such that 1 < k < p.

Proof. This follows immediately from Theorem 4.1 and (24), for setting c(r) =

fs"-"(x0,r) u(y) dH"~k(y), we have

p(r)-c(r) = f n(r) - c(r)
JB(x0,lr/S)

</ \n(r)-u\+<f \u-c(r)\
JB(x0,lr/%) JB(x„,7r/X)

<C[íí(r)-lí(r/2) + a(r)]p-x/p.

Now set g(r) = C[\i(r) - fi(r/2) + a(r)]p~x/p and the conclusion follows.

5. Parabolic equations. In this section we consider parabolic equations of the form

(27) u, = divA(x, t, u, ux) + B(x, t, u, ux)

where A and B are Baire functions defined on ßr X R] X R". Here ßr = ß X (0, T)

where ß is an open subset of R".

The structure imposed on A and B is similar to that considered in the elliptic case,

(12):

|j4(jc,î,m,m')|<û0|h'| -fa, | « | +a2,

(28) \B(x, t, u,w)\*zb0\ w\2 + bx\w\ + ¿>2|w| +b3,

A(x, t,u,w)-w >\w\   — cx\u\2 — c2.

a0 and bQ are nonnegative constants and the remaining coefficients are required to

lie in appropriate Lebesgue spaces (cf. [LSU, T2]), but as in §4, for simplicity of

exposition, we will assume that all coefficients are bounded by some constant K > 0.

A function u G WX¿(ÜT) is called a weak subsolution (supersolution) of (27) if

(29) f - u<¡>, + A ■ V<i> - B<j> < 0   (> 0)

for all bounded ¿> > 0, <¡> G Wj2(ttT).

The object of this section is to establish results for subsolutions of (27) analogous

to those in Theorems 4.3 and 4.6. For this purpose we consider an arbitrary point

Z0 G ßr and, for convenience, set Z0 = (0,0). We shall utilize space-time cylinders

of the following form:

R(r) = B(r) X (axr2, a2r2),   R~(r) = B(ar) X (rxr2, r2r2),

R*(r) = B(ßr)x(Pxr2,p2r2),
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where B(r) denotes the «-ball of radius r and center x0 = 0 and where

(30) 0 < ß < a < 1,        a, < p, < p2 < p, < 0 < p4 < a,.

Note that

(31) R(r/2") G R-(r)

for some integer N. Finally, for u G Wx\j(íiT) a subsolution of (27). let w(r) =

sup{w(z): z G R(r)}. The following result is proved in [T2] and its proof runs

parallel to that of the elliptic version in Theorem 4.1.

5.1. Theorem. Let u G Wx¿(ílT) be a weak subsolution of (27) such that 0 *£ u(z)

*£ L for each z G ßr. There is a number y > 1 and a constant C depending only on

L, n, and the structures (28) and (30) such that if R(r) G ßr. then

i \i/r

/      | ju-(r) — « |Y )      < Cmin [n(r) - u + a(r)]

where a(r) = r + Kr.

We now will establish an estimate on the growth of the F2-norm of ¡i(r) — u

where u is a weak subsolution of (27). This estimate is similar to the one that appears

in [Z2, Theorem 4.3] and is the parabolic analogue of the estimate that appears in

Theorem 4.3 above.

For this purpose let m be a bounded, nonnegative weak subsolution of (27) and let

(32) </> = ir2ueh«u,

where tj is a smooth cut-off function that will be specified below. Because u is

assumed to be bounded, we may assume that the terms involving ax | u | , b2 \ u \ , and

cx\u\2 in (28) can be absorbed in a2, b3 and c2, respectively. Therefore, substitution

of (32) into (29) yields

(33) ¡JT\2eh°uuu, + jJT)2eb°u(l + bQu)(\ Vu \2 - CJ)

<ff2t}uebo"[a0 | V« | +a2] | ViJ |

+ fjr,2eb°uu[b0 \Vu\2 + bx\Vu\ +b3].

Now let v = u(r) — u (for simplicity we will write /x = jti(r)) and define

(34) f(u) = b0xebo"(böx - ii) - b-jeb»p(b-j - ¿t).

Then

(35) /'(«) = -ueb°u,   /"(«) = -eb°u(l + b0u),

Ufi2 - u2) <f(u) < ne^dx -u)   for 0 < u < u.
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There is a constant C such that (33) can be written as

<C jj-q | V« | | Vtj I + jjij + jj-n | Vi) | + jjrj \ Vu

The constant C depends upon the structure (28) and the bound for | u \ . Now define

R'(r) = R*(yr) where 0 < y < 1, and choose tj so that tj = 1 on R'(r) and spt r/ C

R*(r). Refer to (30) and set ¡, = p,r2 and /2 = p2r2. Choose t* G (r,, r2) so that

fr]2(x,t*)f2(x, t*)dx>^ sup fj]2(x,t)f2(x,t)dx.
(tfh)'

If we replace ? by /* in (36), we are led to the following estimate:

(37)

sup   í[r¡f(x,t)]2 dx + /7V I Vü |2 dxdt

ffin\ vu 11 Vtj | +ff7¡2+ffv\V7]\ + jjij\Vu\ + ffr¡\v,\f

(r,,i2)

<C

We now proceed exactly as in the proof of Theorem 4.3 to estimate the rate at which

the right side of (37) tends to 0. Indeed, by employing (31) and Theorem 5.1, we find

that there is a constant C depending only on the given data such that the first four

terms on the right side of (37) are bounded by

(38) Crn[p.(r) - p(r/2N) + a(rj\.

Refer to (35) to find that |/(u) |< C, | v \ and, therefore, by using Theorem 5.1

again, we have

(39) //r, |T,, | |/(u) |< Cr"[y,(r) - ß(r/2N) + a(r)].

Referring again to (35), the next lemma now follows from (37)-(39).

5.2. Lemma. Let u G WXX¿(Q,T) be a bounded, nonnegative weak subsolution of (21).

Then

sup   f        [¡x(r) - uf dx +   if \Vu\2dxdt<Cr"[ix(r)- p.(r/2N) + a(r)}
V,.t2)JB(ßyr) ¿¡r)

whenever R(r) G QT.

We are now in a position to establish the parabolic analogue of Theorem 4.3. This

result is concerned with the behavior of a weak subsolution in a neighborhood of an

arbitrary point z0 G ßr. We will continue to assume that z0 = (0,0) and the

geometric configuration imposed by (30).
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5.3. Theorem. Let u G WXcj(üT) be a bounded, nonnegative weak subsolution of

(27). For each z0 G ßr with R,0(r0) G QTfor some rQ > 0, let m, G Mj , 1 < a < 2,

be a Radon measure supported on B(ßyr0) X {/}. There is a constant C depending only

on the bound for u and the given data such that

2

f'2( u(x,t)~ (uoTr(y,t)dm,(y)   dx dt < c[M(r) - (i(r/2N) + a(r)]
•V,   JBtßyr) J

for each r < r0 where Tr: B(ßyr0) X {t] -> B(ßyr) X {/} is defined by Tr(x, t) =

(r/r0x, t).

Proof. Because u G WXcj(QT), it is an elementary fact concerning Sobolev

functions that u( •, t) G WX(j(U X {t}) for a.e. t. For all such t apply Theorem 3.4 to

obtain

¿

f        \u(x,t) - fu°Tr(y,t)dm,(y)   dx < Cr2~" f        | Vu(x, t) |2 dx
'B(ßyr) B(ßyr)

Now integrating with respect to t from ytx = ypxr2 to yt2 = yp2r2 and applying

Lemma 5.2 yields the desired result.

5.4. Corollary. For each z0 G SlT with R, (r0) G ßT for some r0 > 0, there is a

nonnegative function g(r) with f0g(r)2 dr/r < oo such that

supw*s/    ju ° Tr(y, t) dm,(y) dt + g(r)
R(r) y,

for 0 < r *£ r0.

Proof. From Theorems 5.1 and 5.3 it follows that

f'2 MO - (u ° Tr(y, t)dm,(y)    dt
Jyt\ L •>

= f'if t(r)- fuoTr(y,t)dm,(y)
Jytx   JB(ßyr)l ■>

<cff[ii(r)- u]2 + Cf'2 f u(x, t) - fu o Tr(y, t) dm,(y)
R'tr) Jy',  JB(ßyr) J

dx dt

dx dt

c[Jtt(r)-/i(r/2^) + a(r)].

Thus,

f'2 M(r) - fu o Tr(y, t) dm,(y)\ dt < c[p(r) - ^(r/2N) + a(r)\
Jy'i L J 1

1/2

The result now follows if we set g(r) = C[n(r) - ¡i(r/2N) + a(r)]x/2.

As in §4, the most interesting case to consider is when the measure m is taken as a

geometric measure with certain homogeneity properties. For example, let

m, = H"-x\S"-x(x0,ßyr0)X{t}.
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Then

fu o Tr(y, t) dm,(y) = f u(y, t) dH"~\y)
J JS"-\x0,ßyr)X{t}

and, therefore,

f"2 fu o Tr(y, t) dm,(y) dt = f"2/ u(y, t) dH"~x(y)
V.   J "Vi   JS"-\x0,ßyr)X{t]

= /        u(z)J77"(z),
Jd*R'(r)

where d*R'(r) denotes the lateral boundary of the cylinder R'(r).

We have thus proved

5.5. Corollary. For each z0 G ßr with RZo(r0) C üTfor some r0 > 0, there is a

nonnegative function g(r) with f0g(r)2 dr/r < oo such that

supu<(        u(z)dH"(z)+ g(r)
R(r) Jd*R'(r)

for0<r*¿ r0.

As in §§3 and 4, one could establish similar results by making different selections

for the measure m. For example, in addition to the choice made in the above

corollary, one could also take m, = 77""' | Yl"~x(x0) X {t}, where n" ' is an

(« — l)-plane that is orthogonal to the /-axis.
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