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DOUBLY SLICE KNOTS

AND THE CASSON-GORDON INVARIANTS

BY

DANIEL RUBERMAN

Abstract. We find knots in all dimensions which are algebraically but not geometri-

cally doubly slice. Our new obstructions involve the Casson-Gordon invariants of

the finite cyclic covers in odd dimensions and of the infinite cyclic cover in even

dimensions. These same invariants provide new criteria for amphicheirality and

invertibility of even-dimensional knots.

0. Introduction. This paper investigates the question of double null-concordance of

knots. Fox [7] originally raised the question as to when a knot is the slice of an

unknot of the next higher dimension. If it is, it is called doubly null-concordant, or

more concisely, doubly slice. Sumners [24, 25] gave an obstruction in terms of the

Seifert form of an odd-dimensional knot, and showed (with a final step supplied by

Kearton [14]) that his condition was, in fact, the only one for simple knots in high

dimensions. He raised the question of what happens in even dimensions, in the

nonsimple case, and in the classical dimension.

Stoltzfus [22, 23] treated the even-dimensional case and gave an obstruction based

on the linking form defined by Levine [17] and Färber [6]. He remarked that for

simple knots (with some restrictions) in high dimensions, his condition is sufficient

to make a knot doubly slice. An obvious problem is to determine what happens for

nonsimple knots and for low dimensions (e.g. knots in the four-sphere).

The principle result of this paper is that there are additional criteria for double

null-concordance, and examples in all dimensions to show these criteria nonvacuous.

In particular, we have

Theorem. There are slice knots in S2k+X (k> I), satisfying Sumners' condition,

which are not doubly slice. There are knots in S2k (k>2), satisfying Stoltzfus'

condition, which are not doubly slice.

The above theorem for knots in S3 is due to Pat Gilmer and Chuck Livingston [9].

Its proof will occupy §§1-4.

The final section contains two further apphcations of Casson-Gordon invariants

to high-dimensional knot theory. The first is to obtain new criteria for an even-di-

mensional knot to be ribbon. The second is to find new examples of noninvertible

and nonamphicheiral knots, extending the work of Hillman [11].
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1. Definitions and basic results. All knots and manifolds considered will be

smooth, and will usually be considered as oriented also. Some notation will be used

throughout.

(S"+2, K ) (or just K) = a knotted 5" in S"+2.

X = S"+2 — K X D2 is the exterior of the knot, and Xx will denote its infinite cyclic

cover. Note that the choice of an orientation for K and for Sn+2 implies a particular

choice of meridian for K, and hence specifies a generator t of the covering

translations on XK. In this way, HJ,XK) becomes a module over A = Z[r, r~']. The

linking form on the torsion of a manifold M2q+X will be denoted by X: Tk(M) X

Ti^k(M) - Q/z A knot (Sn + 2, TO is called simple if tt,(X) = tti(S]) (i < n/2).

Definition. A knot (S"+2, A") is doubly slice if K is the slice of an unknotted

S"+x inSn+\

Let V be the Seifert form associated to a Seifert surface F for (52"+l, K). V is

hyperbolic if 77„ F = G, © G2 with dim G, = |- dim 7/„ 7" and K( G, X G, ) = 0. Sumners

[24, 25] made the fundamental observation that if K is doubly slice, then K has a

Seifert surface with a hyperbolic Seifert form. He also gave a partial converse, which

Kearton strengthened.

Theorem 1.1 [25, 14]. If K is a simple knot in S2k+X (k> 1) and K has a Seifert

surface with a hyperbolic Seifert form, then K is doubly slice.

By analogy with ordinary knot concordance we have the following definition.

Definition. A knot in S2k + ] is algebraically doubly slice if it has a hyperbolic

Seifert form.

In his study of knot modules [17], J. Levine defined, for a knot (S2q+2, A-), a

pairing L: Tk(Xx) X T2q_k(X00) — Q/Z. The definition of L is complicated so we

record its most important features: L is a bilinear nonsingular form over A, and L is

(-l)q+ '-symmetric on T(XX). "Nonsingular" means that ad L: Tk(Xx) -»

Hom(T2q_k(Xao),Q/Z) is an isomorphism, while "over A" means that L(tx, ty) =

L(x, y). (An equivalent form was defined by M. S. Färber [6] in a somewhat more

general context.)

Definition. L is called hyperbolic if Tq(Xx) = Gx © G2 (as a A-module) with

L(Gt X G,) = 0.
Note that G, = G2 as abelian groups, but not as A-modules. In fact the A-struc-

ture on G2 is the conjugate (interchange t and r"1) of the one on Gx.

Theorem 1.2 (Stoltzfus). If(S2q+1, K) is doubly slice, then L is hyperbolic.

Stoltzfus noted a converse for certain simple knots.

Definition. A knot (S2q+1, K) is an odd simple knot if AT is simple, and Hq(Xx)

has no 2-torsion.

Kearton [15] classified such knots when q > 2. Stoltzfus [22] states (without proof)

that using Kearton's classification one can show

Theorem 1.3. If (S2q+2, K) is an odd simple knot such that L is hyperbolic and

q > 2, then K is doubly slice. Again, by analogy, K is defined to be algebraically doubly

slice if L is hyperbolic.
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The main results of this thesis use the Casson-Gordon invariants [4, 5] defined

below.

For d an integer, set co = e2,"/d, and suppose <b: A -> BZd is a map. Then <f>

corresponds to a class <p G Hx(A;Zd) = Hom(Hx(A);Zd) and induces a cyclic

cover Ä -* j4 with a specific choice 7: A -» /I of a generator of the covering

translations. Let Hk(A,4>) = co-eigenspace of T^ acting on 77^,4; C), ßk(A,<f>) =

dimc 77^.(^4, <£) and x(^> <#>) = 2(-1)^(^4, <¡>). If A is a compact 2&-manifold, then

the intersection form on A induces a Hermitian pairing on Hk(Ä; C) = Hk(Ä) ® C:

for k even, (x® a, y ® ß)= x ■ y ® aß, and for A: odd (x ® a, y ® ß)= x • y ®

i aß. Define ä(A, <b) = the signature of < , > restricted to Hk(A, <¡>). If the character t/>

is clear from the context, we will simply write HkA for Hk(A, <f>), etc.

Now suppose M is a (closed) (2/c — l)-manifold and <b G HX(M; Zd); by bordism

theory « • (M, <¡>) = 3(W, d>) for some W.

Definition. a(M, ¿>) = (ä(W, ¿>) - a(W))/n; it can be shown that this depends

only on M and d>. For example, the bordism argument given in [8] applies as well in

any dimension.

We will need the following propositions of Smith theory due to Gilmer [8]. Let d>:

HX(A) -» Zd be a character where d = pr is a power of a prime and yl is a complex.

A is finite-dimensional, though not necessarily compact. However, for each n with

0 *£ « < r, assume that the induced /?"-fold cover of A has finitely generated

homology with rational coefficients, and that H^(A; Zp) and H^(Ä,Zp) are finite.

With these hypotheses we have

Proposition 1.4. x(^) = x(^)-

Proposition 1.5. fy(A)*z ßj(A;Zp)for allj.

Proposition 1.6. 7/^4 is connected, then ßx(A) *z ßx(A, Z ) - 1.

Propositions 1.4-1.6 correspond to 1.1, 1.4 and 1.5 of [8]. They are proved in [8] in

the case that A is compact, but Gilmer's proofs go through in the present generality

once we note the following facts.

(1) The Smith homology groups HS\Ä) used in [8] are finite. This follows by

induction from the long exact sequence

- H&Ä) - 77f(i) - HrU) - flî-iU") -.

and the observation that 77^(^4) = HJ(A, Zp) which is finite.

(2) The arguments of Thomas and Wood [26] used in [8] apply in the present

context, for compactness is never used in the relevant section (§7) of [26].

(3) The proof of Proposition 1.1 in [8] uses the fact that the Euler characteristic

multiplies under finite covers. This fact is proved by a spectral sequence argument in

our situation (i.e. finitely generated rational homology) in Spanier [21].

2. The basic approach. The problem at hand is to find invariants beyond those of

Stoltzfus and Sumners for nonsimple knots, i.e. to find algebraically but not

geometrically doubly slice knots. The odd-dimensional case is simpler and motivates

the approach to the even-dimensional case, so we discuss it first.



572 DANIEL RUBERMAN

Observation. If (S"+2, A") is doubly slice, then any cyclic covering of S"+2

branched along A imbeds in S"+3. This is easy to see: the branched covering of

(Sn+2, A) extends to a branched covering of the unknotted (S"+3, S"+x). But this

latter is just S"+3. So obstructions to codimension-one imbeddings give rise to

obstructions to double null-concordance. This approach was used by Gilmer and

Livingston [9], who showed

Theorem 2.1. Let M3 be a rational homology 3-sphere. If M G S4, then HXM = G,

+ G2 with (1) G, ~ G2, (2) \c = 0, and(3)for all <b: HXM ̂ Zd(d= a power of the

primep) with <b}C¡ = 0 or ^ = 0, \a(M, ¿>)| +ßx(M, </>) < ßx(M; Zp).

They used Theorem 2.1 to give examples of slice knots in S3 which are algebrai-

cally doubly slice, but whose 2-fold covers do not imbed in S4.

In the same spirit, we have

Theorem 2.2. Let M2k + X be a rational homology sphere. If M G S2k + 2, then

H*(M) = G, + G; (* * 0, 2k + 1) with (1) Gk s G'k, (2) A|Ct = A|C, = 0, and (3)

Vd>: HxM^Z/d (d = pr) with rf»^ = 0 or ¿.„^ =0, we have \a(M, d>)|<

ßk(M; Z ). (7« condition 3, d>+ is defined by considering <b as a map ¿>: M -» BZd and

taking the induced map on homology.)

Theorem 2.2 provides examples in every odd dimension of algebraically but not

geometrically doubly slice knots. The condition that <j>^c = 0 for * > 1 can be of

some use because it restricts the possible characters for which one must compute

o( M, 4>). This principle is used in [20] to study the problem of imbedding connected

sums of lens spaces and imbedding punctured lens spaces. In that paper, the fact

that the linking form splits hyperbolically restricts the characters considerably.

The even-dimensional case starts from a similar observation. If (S2?+2, K) is

doubly slice, then (Xx, dXx) = (Xx, S2q X R) C (B2q+2 X R, S2q+X X R). The

reason is as above: the Z-cover of X extends to the Z-cover ofS2^3 — S2q+X X D2,

which is B2q+2 X R. Consider now the special case where A" is fibered with fiber M0;

set M - MQ U B2q+X. Then Xx = M0 X R, so that if K is doubly slice, then

(M0 X R, dM0 X R) C (B2q+2 X R, S2q+ ' X R). Capping off, we then have M X R

C S2q+2 X R, and it seems as though one should "cancel the R-factor" to obtain

M G S2q+1. Theorem 2.1 or 2.2, applied to the fiber A7, would then be an

obstruction to A being doubly slice.

Something like this turns out to be true, although we do not actually show that the

capped-off fiber imbeds in S2q+2. Roughly speaking, for (S2q+2, K) a knot with

77^(^,0) = 0, if A is doubly slice then one has the conclusion of Theorem 2.1 (if

q = 2) or Theorem 2.2 (if q > 2) with Xx playing the role of M. However, in (3),

o(M,<¡>) is replaced by a(M, </> °/') where ¿>: HX(XX) -» Zd is a character and i:

M0 -> Xx is a lift of M0 to the cover Xx. This provides infinitely many new examples

of non-doubly slice knots in every even dimension.

The same idea of using the Casson-Gordon invariants of a Seifert surface is

applied in the final section. There we find new criteria for a knot to be ribbon, and

new obstructions to amphicheirality and invertibility. For ribbon knots, all the

invariants on M, coming from characters on Xx, must vanish. To detect invertibility
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and amphicheirality, we examine the effect of changing the orientation of the knot

and of the ambient sphere on the Casson-Gordon invariants.

3. The odd-dimensional case. In this section, we investigate the imbedding of

(2k + l)-dimensional manifolds in S2k+1, and use these results to find new nondou-

bly slice knots in S2k+ ' (k > 1). The main tool is Theorem 2.2 which we now prove.

Proof (of 2.2). If M is imbedded in S2k+2, it separates S2k+2 into two

components W and W. For * ¥= o, 2k + 1, let G* = ker77„(A7) - HJ/W) and

G; = ker77„(A7) -» H^(W). It is easy to see that A|C> = 0, and, likewise, that

A|C. = 0. It follows from the Mayer-Vietoris sequence that H^M) — G* + G*, and

from duality that Gk = G'k. (See [9 or 10] for the argument.)

Suppose, say, that <¡>t^ - 0. Then <f> extends to a character <f>: HX(W) -* Zd, so we

can use W to calculate a(M, <j>). By definition a(M, <j>) = d(W) — a(W); since

Hk + X(W;Q) = 0,o(rV) = 0. There is the obvious inequali ty that | ö(W)\^ßk + x( W).

By Proposition 1.5, ßk + x(lV) «s dim Hk+x(W; Zp). But the Mayer-Vietoris sequence

with Z -coefficients shows that

Hk+x(W;Zp) + Hk+x(W';Zp) = Hk+l(M;Zp),

so

\o(M,x)\<dimHk + x(M;Zp).

Theorem 2.2 provides examples of non-doubly slice knots in S2k+X. A similar

method was used in the classical dimension by Gilmer and Livingston so we confine

ourselves to k > Y We will see shortly that the 2-twist spins of these knots are not

doubly slice, completing the main goal of this paper. Here is the construction, which

works in any dimension.

Let (S" + 2, J) (n > 1) be a knot with ttx(S"+2 - J) = Z and * a base point on J.

Imbed J X [-1,1] in 5"+2 by using a normal vector field; since « > 1 this is unique.

Let q be an integer, and form the knot K = K(J,q) by connecting * X {-1} to

* X {1} by a 1-handle that links J X {0} q times. The 1-handle should be imbedded

with no twisting, i.e. so that the framing on the resulting S1 extends over a disc. This

imbeds F"+x s S" X Sx - D"+x inS"+2; let A = dF.

Note the following properties of A(7,47).

Proposition 3.1. (a) A(7,0) is the unknot. (b) K is a slice knot, (c) If J is slice then

A is doubly slice, (d) A is algebraically doubly slice.

Proof, (a) If q = 0, then 5' C F bounds a disc D2 in S"+2 - F which we can

surger to get A= 3D"41.
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(b) Even if q j= 0, we can ambiently surger the Sx in B"+3 to form a slice disc for

K.

(c) If J is slice, we can surger it in, say, 7i"+3 and the Sx in 7?"+3 (here

S"+3 — 7?"+3 Ui?"+3). The traces of these two surgeries fit together to form a copy

of 7J>"+2 C Sn+3 whose intersection with S"+2 is exactly F. Hence, K = 3Fis doubly

slice.

(d) For « even this is easy: J is always shce [16] so K(J,q) is doubly shce, hence

algebraically so. For « odd it is just as easy. The Seifert form is empty (hence

hyperbolic!) since « > 1.

Since K(J, q) is doubly shce for n even, we confine ourselves to n odd. It seems

plausible to conjecture that the converse to (c) holds, i.e. that if K(J, q) is doubly

shce, then J is shce. Using Theorem 2.2 we obtain a weak version of this converse—if

A" is doubly slice then certain concordance invariants of J must vanish.

Definition. Let (S2k+X, J) be a knot or link and V a Seifert matrix of /. Set

w = ¿i*t/im Define op/q(J) = sign((l - up)V + (1 - o>~p)V).

Theorem 3.2. Suppose 2q + 1 = pr (p a prime) and let (S2k+X, J) be a knot

(k > 1). If K(J, q) is doubly slice, then

(1) Ifk is even as/2q+x(J) = 0(0<s<2q+ 1).

(2) If k is odd

2S-ax/2(J) = 0        (0<s<2q+l).vW-O + 22*-2^2q+ 1

Proof. Let M = the two-fold branched cover of (S2k+X, A), and suppose K is

doubly shce. As noted in the introduction, M must therefore imbed in 52*+2. So we

can apply Theorem 2.2 to M. By definition, K has its Seifert surface F = S2k~ ' X Sx

— D2k; if F denotes F pushed into B2k+2 except along A", we can write M = dW

where W = 2-fold cover of (B2k+2, F).

Sx =  3h

9h2k = J #Jp

The well-known cut and paste description of W [13] shows how to build W as a

union of two (2k + 2)-balls glued along copies of F. The analysis (given in [1] for

k — 1) of Akbulut and Kirby applies as well in any dimension and yields the

following "framed link" picture of W: W = B2k+2 U h2 U h2k. The handle h2k is

added along the knot J #Jp (Jp = J with reversed orientation) and h2 is added

along a circle S1 which links J #Jp exactly 2q + I times. See the above figure.

Hence HX(M) s Z2q+, = Zpr generated by a meridian ¡x of J # Jp. Apply Theorem

2.2 to A/—the only way to split up HX(M) into G, + G\ is for G, = Zpf and G\ = 0.

So take the character <?>: 77,(37) -» Z , defined by <f>(ju) — '• Since K is doubly shce,
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M imbeds in S2k+2 and so, by Theorem 2.2, \a(M, jt»|< dim Hk(M; Zp) = 0 for

all s. It will be shown in Theorem 3.5 that

a(A7, s<p)

°s/2q+\(J#Jp)    (A: odd),

os/2q+x(J #Jp) + 22k'22q ~ 2*^ * ox/2(J #Jp)     (keven).
2q+ 1

But J and Jp have the same Seifert surface, except with reversed orientation, hence a

Seifert form for Jp is just the transpose of that for J. Taking the transpose does not

affect the signatures; by additivity

°s/2q+l(J#JP) = 2°s/2q+\(J)      and      al/l( J # JP ) = 2<Jl/2( J ) .

so the theorem follows.

Corollary 3.3. In each S2k+X (k > 1) there are infinitely many slice knots, which

are algebraically but not geometrically doubly slice.

Proof. The different signatures os/2q+x are independent so we can construct

infinitely many (different) K(J, q).

To complete the proof of Theorem 3.2 we need to see how to compute the

Casson-Gordon invariants of manifolds such as M, which arose in its proof. The

answer is provided by Theorem 3.5 below which shows how to compute o(M, tb)

when the covering M -» M extends to a branched covering rather than an un-

branched one. The technique is due to Casson and Gordon [5] who consider the case

k — 1 ; we will consider k > 1.

Lemma 3.4. Suppose Ñ2m -* N2m is a branched Zd-cover of the closed manifold N

with generator t of the covering translations corresponding to the character d>: HX(N) -*

Zd. If the branch set F2m~2 has trivial normal bundle, then VO < r < d,

d(N, r<f>) = a(N) - 22m~2^—^Lo(F).

Proof. Let sign(g, A?) denote the g-signature [2] of the Zd-action on Ñ. The

argument in [5, Lemma 2.1] is valid for any m (including m odd) and shows that

1 d~x

ö(N, r<b) = a(N) + - 2  («"" - l)sign(is, N)       (u = e2"/d).

s= 1

Since v(F, Ñ) is trivial, the G-signature theorem says

sign(ís, Ñ) = 22m-2itan(TTs/d)a(F).

This proves the lemma when m is even, where a(F) = 0. For m odd, we have

<j2m-2 d-l

d(N,r<b) = o(N)-^-io(F) 2   (w-"-l)cot^.
s= i

Now

n— 1 __ n— 1 / ^ , n— 1

2a    (u       - 1) COt -j  =   2,   COSI —-1 I COt —r - I  ¿i   sin ~j~ COt -J
TTS

sin    A   cot
S=l " J=l v      " ' " s=\
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It is easy to verify that the real part vanishes; the imaginary part is

"v,    .    2trrs        its        _ ,/ r     \ r]       l\
2  sin — cot - =-2c/  --  -   --

s — I

by a formula of Eisenstein (see [28, p. 103]). Since r < d, this is just d — 2r, so

d(N, r<p) = o(N) - 22m-2^-^o(F).

Theorem 3.5. Let L2m~x = {Lj} be a link in S2m+X (m > 1) and let W = B2m+1

U [h1] U {h2m}, where the handle h2m is attached along Lj and {h2} is some

collection of2-handles. Let M — dW, and suppose </>: HX(M) -> Zdis the character that

gives 1 on the meridian of each L¡. Then V0 < r < d,

°r/d(L)        (modd),

a(M,r<t>) = \ , „2b,_,d-2r       ,r,        , ,
ar/d(L) + 22m  2—j-ox/2(L)        (m even).

Proof. Let 7^ be any Seifert surface for L, and let F = F0UL {cores of the h2m).

Then the cover of m induced by r<j> extends to a cover W ' -»"' W branched along F;

note that v(F) is trivial. Novikov additivity for a( , ) and the previous lemma imply

that a(M, r<j>) can be calculated using this branched cover: i.e.

a(M, r<b) = a(W, r<b) - o(W) + 22m~2 d ~2r o(F).

Now W splits up into B U 77, where B = tt-xB and 77 = Tr-X({h2] U {h2m}). It is

easy to see that 77 makes no contribution to a(W). Hence a(W, r<¡>) = ö(B, r<j>) =

ar/d(L) by the well-known interpretation of ar/d(L) as an eigenspace signature.

Since m > 1, there is no middle-dimensional homology (i.e. Hm + x(W) — 0) so that

a(W) = 0. Finally ax/2(L) = a(F) if m is even, and so the theorem follows.

4. Infinite cyclic covers. The purpose of this section is to use the Casson-Gordon

invariants to study double null-concordance of even-dimensional knots. Recall the

main geometric idea from the introduction. Xx, the Z-cover of S2k~2 — K X D2,

resembles, in some sense, a (2 k + l)-manifold cross R. If K is doubly slice, then it

appears that this (2k + l)-manifold imbeds properly in B2k+2. Hence, the obstruc-

tions to codimension-one imbeddings developed in §2 might be obstructions to

double null-concordance. In order to make this idea work we investigate infinite

cychc covers in order to see that they have Casson-Gordon invariants just like

compact manifolds (at least in certain situations).

For this section, (Yx, dYx) will denote an infinite cychc cover of a compact

manifold (Y", 37"), and p will be a prime number.

Theorem 4.1 (Milnor [18]). Let F be a field, and suppose Ht(Yx; F) and

H,(dYx, F) are finitely generated. ThenHn_x(Yx,jdYx, F) s H"-x(Yx,dYx, F) ^ F

and the cup product pairing Hk(Yx; F) X H"~x~k(Yx, dYK; F) -> F is nonsingular.

In applying this theorem, we will make use of the following two facts, the first

essentially due to Milnor and the second to Casson and Gordon.
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Lemma 4.2 [18]. IfHJY) s H^S1) or H„(SX X S"~x) then H+(YX; F) is finitely

generated for all fields F.

Proof. Milnor shows this for H^Y) s 77^,(5'), but in the second case, Y = S1 X

B"~x Us,xs„-2 X where now H+(X) = H„(SX) so the result follows.

Lemma 4.3 [4, Lemma 6]. If there is a prime p such that 77„t(700, Z ) is finite, then

H^(Yœ,Q) is finitely generated.

If H^(YX; F) and 77„[(3700; F) are finite dimensional then the conclusion of

Theorem 4.1 will be summarised by saying (Yx, dYx) satisfies duahty over F. This

can be given the usual formulation in terms of cup product with a generator of

Hn_x(Yx, 37^; F) (an "F-fundamental class"). Using duahty we can think of a

nonsingular intersection product on homology with the usual properties. So if Y is

(4/c -I- l)-dimensional, then Yx has a signature o(Yx). Suppose </>: 77,(7^) -> Zpr is a

character which induces the cyclic cover Yx -> Yx.

Proposition 4.4. If HJ/Yx;Zp) and H¿/eYx, Zp) are finite, then Yx satisfies

duality over Q (and hence over C).

Proof. Casson and Gordon [4, Lemma 4] show that Yx is a Z-cover of a finite

complex; since a cover is a local homeomorphism that complex must be a compact

manifold with boundary. Lemma 5 of [4] says that 77^,(7^; Zp) and 77^(37^; Zp) are

finite, so by Lemma 4.3, H^(Yœ; Q) and 77^(37^; Q) are finite dimensional. Hence

(Yx, dYx) satisfies duality over Q.

Suppose now « = 2/c + 1, that 77^,(7^; Z ) and 77„,(3700; Zp) are finite, and that

we have a character <f>: HX(YX) -* Zp,. Proposition 4.4 implies that Hk(Yx;C) is

finite dimensional and supports a Hermitian form made from the intersection form

just as in the compact case. Hk(Yx; C) splits into eigenspaces of the action of Zpr and

so we get signatures ö(Yx). These can be used to define Casson-Gordon invariants

o(dYx, </>)—see below. The signatures ö(Yx) are connected to the corresponding

invariants of compact manifolds. To explain this we need the concept of a section.

IT

Proposition 4.5. Suppose Yx -» Y" is a Z-cover of the compact manifold Y with

Yx and dYx connected. Then there is a compact connected submanifold (N"~x,dN) G

(Yx,dYx) such that

( 1 ) N separates Yx,

(2) for all fields F over which (7^,37^) satisfies duality, [N,dN] represents an

F-fundamental class in 77n_1(700, 37^; F).

Proof, it: Yx -» Y is classified by a map /: Y ^> Sx. After a small homotopy,

1 E Sx will be a regular value for/and fory¡3y. Let M = /~'(l). Since Yx and 37^

are connected, the classes [/] E 77'(7) (= [7, S1]) and i*[f] G Hx(dY) are primi-

tive and so there is a circle C = 37 such that C ■ 3M = i(C) ■ (M) — 1. Tubing

together the components of UM, and then of M, gives a connected submanifold

(N,dN) which hits C (and i(Cy) exactly in one point and which is hence dual to/. It

follows that 7M can be built by cutting (7, 37) along (N,dN) and gluing copies of
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7 - N end to end. Thus (1) is proved. To get (2) note that the lift (N,dN) G

(7^,37^) intersects a line (i.e. tr'x(C)) in one point and hence is nontrivial in

homology. Since 77„_,(700, 37^; F) = F, which is a field, [N, dN] is a generator.

Definition. A submanifold N C Yx satisfying Proposition 4.5 will be called a

section of Yx.

Note that a relative version of the argument of Proposition 4.5 shows that if we

have picked a section A7 of 37^ there is a section N of Yx extending M, that is,

N = dM. The utility of a section is that it enables one to calculate o(Yx) and

d(Yx,(b) when the latter is defined.

Lemma 4.6. (a) If N"~x is a section of Yx and Yx satisfies duality over the field F,

then i„: 77/N; F) -* 77,(7^; F) is onto.

(b) If Yx satisfies duality over Zp then i„: 77,(N; Zpr) -> 77,(7^; Zpr) is onto.

Proof. The first part is the familiar statement used in surgery theory that a degree

one map is onto in homology. More formally, let p. = iJ(p.N) be an F-fundamental

class. Given an element b G Hj(Yx; F) there isa zë H"~X~J(YX; dYx; F) with

z n jti = b. Then b = z f) p. = z n /^u^ = i%(i*z n p.N) so im is onto. For/ = 1, the

long exact sequence of (Yx, N) says that 77,(7^, N; F) = 0. If now F = Zp (as in

part (b)) induction on r using the Bockstein exact sequence

- Hx(Yx,Zp) - 77,(7^, N; Zp,) - 77,(7^, N; Zpr-,) -

shows that 77,(7^,, N; Zp,) = 0 Vr. Hence (b) is proved.

So a character d>: 77,(7^) -» Z r yields a character <p ° i on HX(N); the next

theorem relates the signatures associated to (N, d> o /) and (7^, d>) and is the central

tool of this chapter.

Theorem 4.7. (a) Suppose Yx -> F2A:+1 is a connected Z-cover with H^(YX, Q) and

H*(dYx; Q) finitely generated. Then for any section N of Yx, a(Yx) — o(N).

(b) Suppose further that HJJx;Zp) and H^(dYx;Zp) are finite. Then for all

characters ¿>: 77,Yx -* Zp,, &(YX, <b) = &(N, ¿> ° i).

Proof. For all of part (a), Q-coefficients are assumed; part (a) is obvious for k

odd (both sides are zero) so assume k is even. By the previous lemma, H^(N) -»

H+(YX) is onto. A standard argument of surgery theory [3] says that a(Yx) - a(N)

= a(K), where o(K) - signature of • on kerO'„: Hk(N) -» 77^(7^)). Since A is a

section, it separates Yx into two components, A and B. The various inclusion maps

are summarised in the following diagram.

7i/" V,

H¿N) '-* 77,(7j

h\ Si2

HAB)
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Claim, (i) ker / = ker/, + kery2 (+ = internal direct sum),

(ii) The intersection form vanishes on ker/, and ker/2. This claim immediately

implies that a( A) = 0 and hence that a(Yx) — a(N).

Proof of Claim. First consider the relative Mayer-Vietoris sequence of (Yx, N)

= (A,N) U (B, N). This is

Hq(A,N)

0 = Hq(AC\B,N)^       + -^'Hq(Yx,N)^Hq_x(AnB,N)=0.
Hq(B,N)

So the inclusions 7, and 72 are injections. Now compare the long exact sequences of

(A, N) and (YX,N):

Hq+X(A,N)      I     HqN     -       77^        -      Hq(A, N)
j\

l II -l'i lix

Ha+i(Yx,N)     i     77„A     -     Hq(Yj     -     Hq(Yx, N)

In the bottom line, i is onto, so / is the zero map. Since 7, is injective, a diagram

chase shows that/, is onto. The same argument applies to B, and so all the sequences

split, and we obtain that 3: Hk + X(YX, N) — ker/, 3,: Hk+X(A, N) -» ker/,, and 32:

Hk + X(B, N) -» kerj2 are all isomorphisms. Statement (i) now follows from the

above Mayer-Vietoris sequence for q = k. Statement (ii) is a standard fact: if

ixc - ixd = 0 then c — 3C and d = dD where C and D are (k + l)-chains in general

position. C n D = arcs U circles; the arcs join algebraically cancelling pairs of

points in c n d. Therefore, c ■ d = 0 and the claim is established.

The proof of (b) is basically the same. Since 77^(7^; Zp) and 77^(37^; Zp) are

finite, Ht(Yx;C) is finite dimensional so d(Yx,4>) is therefore defined. Because of

Lemma 4.6(b), Ñ is connected and is, in fact, a section of 7^. All the exact

sequences in the proof of (a) split into exact sequences of eigenspaces and so the

same proof shows that o(Yx, ¿>) = ri(N, d> o /).

Part (a) is essentially well known and dates back to Novikov's work on the

rational Pontrjagin classes [19]. I am indebted to Larry Taylor for suggesting the

relevance of such a proposition to this work.

Now let Yx -> Y2k be a Z-cover of the closed manifold 7 where 77^(7^; Zp) is

finite and let </>: HXYX -» Zpr be a character. Suppose further that for some « there is

a compact manifold A and a Z-covering Ax -» A with the following properties:

(l)9(^00-»^) = n(700-7).

(2) There is a character^ on Ax such that d(Ax,\p)n ■ (Yx,<¡>).

(3)H,(Ax,Zp)is finite.

Definition. Under these hypotheses the Casson-Gordon invariant of (Yx, <b) is

o(Yx,<t>) = (d(Ax,<b)-(Ax))/n.

Of course, defining such numbers and calhng them invariants does not automati-

cally make them invariants.
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Theorem 4.8. If there is one manifold A satisfying (l)-(3) then the number

o(Yx, <b), defined using A, depends only on Y and the character <j>.

Proof. By additivity of the signature and eigenspace signatures, the theorem will

follow if we can show that a(Ax,<b) - a(Ax) = 0 whenever Ax -> A2k+X is a

Z-cover of a closed manifold A. (Here d>: HXAX -» Zp, and we assume Hj(Ax; Z ) is

finite.) A has a section A2* and by Theorem 4.7, ö(Ax, <b) = 5(N, c/> ° i) and

o(Ax) = a(N). But now the bordism argument [8, §1] that the usual Casson-Gordon

invariants are well defined says that ä(N, <j> ° /') — a(N) = 0.

For a given (Yx,<b), if there is an (Ax,<b) satisfying (l)-(3) then we say that

o(Yx, <t>) can be defined. It is conceivable that o(Yx, </>) can always be defined but

this is far from obvious. Note that when a(Yx,4>) can be defined, it is equal to

a(N, <f> o /) where N is any section of Yx.

There is a somewhat simpler invariant for knots in S4 which is always defined. It

is essentially the ju-invariant of a Seifert surface for A"; however, we must be a little

careful about framings.

Definition. Let (S4, A) be a knot, (Bs, D3) any slice of K, and Ax the Z-cover

ofTi5 - D3 XT)2. Thenft(A") = a(/l00)(modl6).

We must show this is well defined.

Theorem 4.9. p.(K) does not depend on the choice of slice disc.

Proof. Suppose we had two shces D and D'. They fit together to give a knot

(Sj J), with Seifert surface Vj. The Z-cover of 7 is Ax U -A'x so o(Ax) - o(A'x)

= o(V0) by Theorem 4.7. But V0 is a spin-manifold, so by Rochlin's Theorem

16 | a(V0). Hence, a(Ax) = a(Ax)mod 16.

Any Seifert surface M0 lies in the exterior of K and hence in R4 = S4-point.

Hence, A70 has a framing F0 which is the restriction of the unique framing on R4.

Then one can use the above argument to show that p.(K) — p.(M, F0) for any Seifert

surface.

We are now in a position to find some non-doubly shce knots. The following

notation will be in use for the rest of this section. (S2k+2, A") is a knot with Z-cover

A^; the boundary of Xx is S2k X R which we identify with A X R. Let 7 be the

result of surgery on K; then 7 has an infinite cyclic cover Yx which equals

Xx U B2k+ ' X R. The knot A" is a shce knot [16], and for a slice D2k+ ' C B2k+3 we

set^ = B2k+3 - D2k+X X D2 and Ax = the Z-cover of A. Note that d(Ax -*A) =

Yx -> 7 and that by Lemma 4.2, 77,(7^; F) and 77^(^1^; F) are finitely generated

for any field F.

The essence of the technique is contained in the following result which gives a new

criterion for double null-concordance for a knot in S4. Recall [9] that if M3 C S4,

then M has a framing F for which it(M, F) = 0. In the same spirit, we have

Theorem 4.10. 7/A" is doubly slice, then p.(K) = 0. Equivalently, any Seifert surface

has a framing F0 for which n(M, F0) = 0.
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Proof. By the previous result, we can use the Z-cover of any disc to calculate

ju( A). So choose Ax = Z-cover of one disc making up the unknotted S2 whose shce

is K. The Mayer-Vietoris sequence shows that /',: H2(YX; Q) -* H2(AX; Q) is onto.

But it is easy to see that the intersection form vanishes identically on image (/„,).

Therefore p,(K) = o(Ax) = 0. The second statement follows from the remark after

Theorem 4.9.

Corollary 4.11. There are algebraically but not geometrically doubly slice knots in

S4.

Proof. Let A be 5-twist spin of the trefoil knot. A" is a fibered knot with fiber

A70 = Poincaré homology sphere. Since M has no homology, the linking form is

empty (hence hyperbolic) so A is algebraically doubly shce. But ii(A7) ¥= 0 so A is

not doubly shce.

In a similar way we can reformulate the obstructions of Gilmer and Livingston to

imbedding M3 in S4 as obstructions to a knot in S4 being doubly shce.

Theorem 4.12. Let K be a knot in S4 and suppose HX(YX; Q) = 0. If K is doubly

slice, then HX(YX) = G + G' (as A-modules) where (1) G = G', (2) L,G = £,<-, = 0 (L

is the Levine form) and (3) for all characters ¿>: 77,(7^) -* Zpr vanishing on G or G',

o(Yx,<b) is defined and satisfies

(*) \o(Yx,*)\ + ßx(Yx,<t>)<dimHx(Yx,Zp).

Proof. If A is doubly slice, then Yx G S4 X R, which then separates into

Ax U A'x. Note that Ax and A'x are both Z-covers of homology circles, so that

HX(AX; Zp„) is finite for all n as is HX(A'X; Zp„). If we let

G = ker[Hx(Xx)-*Hx(Ax)]

and G' — the other kernel, then the Mayer-Vietoris sequence shows that HX(XX) =

G + G' over A. Stoltzfus' argument [22, 23] that A is algebraically doubly shce says

exactly that (1) and (2) must hold.

Suppose tj>|C = 0, then </> extends over Ax, and so o(Xx, <j>) is defined and equals

d(Ax,<¡>) — a(Ax). Gilmer and Livingston [9], in a similar situation with Yx

replaced by an honest closed 3-manifold and Ax replaced by a compact 4-manifold,

used duahty over C and a Smith theory argument to conclude that (*) holds. But

duahty holds, and we noted in the introduction that the relevant results about finite

cychc covers (Propositions 1.4-1.6) are valid in the current context.

In practice it is generally easier to calculate the Casson-Gordon invariants of a

section than to calculate a(Yx, <f>). So Theorem 4.12 can be viewed as a bound on

a(M,<j>° i) where M0 is any Seifert surface for A. If A" is a fibered knot with fiber

M0, then Yx = M X R, and Theorem 4.12 specialises to

Corollary 4.13. Suppose K G S4 is a fibered knot with fiber M0. If K is doubly

slice, then the conclusion of Theorem 4.12 holds with Yx replaced by M.
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Corollary 4.13, which presents an obstruction to imbedding A7 X R in S4 X R, is

formally the same as the obstruction to embedding M in S4 found by Livingston and

Gilmer.

It is well known [29] that 2-twist spinning the rational knot q/m (m odd) gives a

fibered knot in S4, denoted r(m; q), whose fiber is a lens space L(m; q, 1).

Corollary 4.14. Let r(m; q) and r(m; q') be twist-spun rational knots. Then

(a) t # -t' is algebraically double slice iff for some c, q±xq' = c2 mod m (i.e. the

fibers are homotopy equivalent preserving orientation).

(b) If m is a prime power, then r # -r' is doubly slice if and only if r = t'.

Proof, (a) This follows from the calculation of the linking form of a lens space:

(q/m) + (-q'/m) is hyperbolic if and only if q±xq' is a square mod m. Since the

action of t on 77,(L # -L') is multiphcation by -1, any splitting of the linking form

of the fiber is i-invariant and so gives rise to a sphtting of the Levine form.

(b) Gilmer and Livingston show that for m = prime power, (l)-(3) of Theorem

4.12 imply that the fibers L and 7/ are diffeomorphic preserving orientation. Hence

the original rational knots are the same, so t = t'.

At this point it should be fairly apparent how to find obstructions to double null

concordance in all even dimensions: we should translate the nonimbedding Theorem

2.2.

Theorem 4.15. Let K be a knot in S2k+2 with HX(YX; Q) = 77^(7^; Q) = 0. 7/A" is

doubly slice, then 77,(7«,) = G* + G'* (over A) with (1) Gk s G'k, (2) L,c = L^ = 0,

and (3) for all characters ¿>: 77,(7^) -» Zp, with <#>„. vanishing on G^ or G^, o(Yx, </>) is

defined and satisfies \o(Yx, <b)|< dim 77^+ X(YX,Zp).

Proof. The proof is the same as that of Theorem 2.2. If K is doubly slice, then

Yx G S2k+2 X R, and we can use one component of S2k + 2 X R — Yx to define and

evaluate a(Yx, </>). But by the Mayer-Vietoris sequence and Smith theory (Proposi-

tion 1.5), a(Yx, t¡>) is bounded by dim Hk+X(YX, Zp).

Again, one can interpret Theorem 4.15 as giving a bound on a(M, d>) for A70 any

Seifert surface of K. Recall the knots K(J,q) G S2k+X constructed in §3. Taking the

2-twist spin of K(J, q) gives a knot L(J, q) G S2k+2.

Corollary 4.16. 7/L is doubly slice and 2q + 1 = prime power then

V2<?+.(-/) = 0       (kodd),

' or/2q+x(J) + 22k-2lq+q\~2rox/2(j) = 0        (k even).

Proof. The fiber M of L is the 2-fold branched cover of S2k+ ' branched along A".

The above expressions give the Casson-Gordon invariants of M and hence of Yx.

But Yx has no middle-dimensional homology, so these must vanish.

Note that L(J,q) is algebraically doubly shce. So with correct choice of J,

Corollary 4.16 combines with Corollary 3.3 and the examples of Gilmer and

Livingston to yield
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Theorem 4.17. 7« every dimension, there are slice knots which algebraically but not

geometrically doubly slice.

It should be pointed out that these results do not settle a related issue. This arises

when one uses double null-concordance to define a group CH„. The obstructions

defined by Sumners and Stoltzfus provide homomorphisms onto algebraically de-

fined groups CH£(Z) and CHe(Q/Z) in odd and even dimensions, respectively

(e = ±1). One might suppose that Theorem 4.17 says that the kernels of these maps

are nonzero, or even infinitely generated. However, this is not so. The problem is in

how CH„ is defined (cf. [23]): (5"+2, A") = 0 in CH„ if there is a doubly shce knot

K' such that K # A' is doubly slice, or in other words if K is stably doubly slice.

It is conceivable that a knot which is shown not to be doubly slice by our methods

might actually be stably doubly shce. In view of the general viewpoint of this paper

the following question seems the right place to start.

Question. If N" imbeds in S"+ ', and N #M G S"+x, does A7 imbed in Sn+I?

Remark. T. Cochran and J. Levine have recently pointed out that the ju-invariant

must vanish for stably doubly slice knots in S4. Hence the kernel of Stoltzfus' map

CH2 -» CH+1(Q/Z) is nontrivial.

5. Further applications. In this section we give some further applications of the

Casson-Gordon invariants to high-dimensional knot theory. The first is to the study

of ribbon knots and the second is to amphicheirahty and invertibility of knots.

Definition. A ribbon in S"+2 is an immersion /: Dn+X -» S"+1 with only

transverse double points, and such that S(f) = {D") U {D?} where 7), n ¿T = 0

V i, /, and D¡, Dj have disjoint images if i ¥=j. Furthermore, f(D¡) = f(D¡) and

D¡ G int D"+ ' while the D" are properly imbedded.

The boundary of a ribbon is imbedded and will be called a ribbon knot. The

fundamental geometric fact about ribbon knots is the following proposition, which is

quite well known.

Proposition 5.1. Let (Sn+2, K) be a ribbon knot. Then K is a slice knot. In fact, K

bounds an (imbedded) disc Dn+X in Bn+3 such that Bn+3 - Dn+X X D2 has a handle

decomposition with only 0-, 1- and 2-handles.

Proof. f(D¡) hes on two intersecting sheets, and it is in the interior of one of

them. On that sheet, push a small regular neighborhood of f(D¡) into 7?"+3. Under

the radial Morse function on B"+3, the resulting D"+x has only 0 and 1-handles; the

dual decomposition of the exterior is then as described.

Another way of stating the conclusion is to say that B"+3 — D"+x X D2 is built

from its boundary (= surgery on A) by adding (« + 1)- and (« + 2)-handles and an

(« + 3)-handle. The other geometric fact we need about ribbon knots is the

following theorem, due to Yanagawa for « = 2.

Theorem 5.2. A ribbon knot in S"+1 has a Seifert surface diffeomorphic to
#kS" X Sx - Dn+X.
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Proof. We show how to replace each singularity f(D") of a ribbon by an

imbedded 1-handle. The construction is completely local and is summarised by the

following pictures of a standard model (Figures (a)-(f)):

n+1 n+1

(a) (b)

Remove the ball Bn+2 pictured in (b). The local pictures on the two sheets of

D"+2 now look like:

(c) (d)

The boundaries of the holes left by removing B"+2 n/ (int D"+x) in the sheets

(Figures (c) and (d)) are both diffeomorphic to 5"; if we see how to add an annulus

S" X I to the picture we will have removed the singularity/(£>") at the expense of

connect-summing with S" X Sx. But the spheres are unlinked inside Bn+2: S"

bounds a disc in the interior while S2 sits on the boundary and bounds a disc. Hence

we can isotop Figure (e) to look like Figure (f) where it is obvious that one can add

the annulus S" X I.
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This geometric picture gives a strong obstruction to a knot being ribbon in terms

of the invariants defined in §4.

Theorem 5.3. Suppose K G S2q+2 is a ribbon knot. Then

(a) For all characters t>: 77,(7«,) -» Zp,, a(Yx, </>) is defined and is zero.

(h)Forq= 1, u(A) = 0.

Proof, (a) Let A = the exterior of the shce for A built in Proposition 5.1. Since

A = Y U handles of index >2q + I, Ax - Yx U handles of index > 2q + 1. It

follows that 77,(7«,) ^77,(^1«,) so that any character on Yx extends over Ax which

can be used to define o(Yx,<¡>). In §4 it was observed that whenever a(Yx, <f>) is

defined, it equals o(N, <b ° /') for N any section of Yx, e.g. a Seifert surface for the

knot. By 5.2 we have that a(Yx, ¿>) = or(#t S2q X Sx, <b ° i). But a(#k S" X Sx, x¡¿)

= 0 for any ^, because (#kSn X S\¿>) = d(t\kD"+x X S1,^) and hlkDn+x X Sx

has no signatures.

(b) The same argument applies: u(A) = p.(#k S2 X Sx, F0) for F0 some framing.

But #k S2X Sx = 9(b,t D3 X Sx) and any framing extends over \\k D3 X Sx. There-

fore ii( A) = 0.

Examples. We have constructed many examples of knots with nontrivial Casson-

Gordon invariants; it follows that none of them are ribbon. For instance, none of

the 2-twist spun rational knots are ribbon because some Casson-Gordon invariant of

a given lens space is nonzero. These examples are all detected by the method of Hitt

[12] who observes that 77,(7) must be torsion free if AT is a ribbon knot. Examples in

S4 not detected by Hitt's method arise from the /¿-invariant as in 5.3(b) above. For

example, the 5-twist spin of the trefoil, whose fiber is the Poincaré homology sphere,

cannot be ribbon.

As a final application, we extend the results of Färber [6] and Hillman fll] on

invertibility and amphicheirality of even-dimensional knots. Both of these authors

use the Farber-Levine linking form to detect such symmetries; we use the Casson-

Gordon invariants. All knots in this section are considered as oriented knots, and

there is a fixed orientation on the ambient sphere. Recall that oriented knots are

equivalent if they are isotopic, or equivalently if there is an orientation preserving

diffeomorphism of Sn+2 taking one onto the other so that the orientations agree.

Definition. rK = image of K (and its orientation) under a reflection in Sn+2.

Kp = K with its orientation reversed, and -K = rA"p is the usual concordance

inverse. A" is invertible if it is equivalent to A~p, and + (or -) amphicheiral if it is

equivalent to rK (or -K ).

Hillman [11] shows that the Levine form is an obstruction to amphicheirality and

invertibility, and that in the odd simple case it is the complete obstruction. In the

nonsimple case, as one might expect, it is no longer the sole obstruction. Our results

are stated for fibered knots only, but they extend to cover the nonfibered case as

well. If A" is a fibered knot and d>: M -> M, the action of the monodromy on the

capped-off fiber, then </>„, = / defines a A = Z[t, t'x] module structure on HJ(M).

As a A-module, Hm(M) can be identified with 77,(7«,) since Y   « M X R.
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Theorem 5.4. Let K be an even-dimensional fibered knot with fiber M0 and

monodromy t.

(a) If K is invertible, then there is a A-antiautomorphism 8 (0(tx) = t~x6(x)) of

77,(A7) such that (i) X(6x, By) = -X(x, y) and (ii) V x: 77,(A7) -» Zd, o(M, x) =

-o(M,x°n
(b) If K is ( + ) amphicheiral, then there is a A-antiautomorphism B of 77,(A7) such

that (i) X(0x, Oy) = X(x, y) and (ii) V x: 77,(A7) - Zd, o(M, X) = o(M, X ° 0).

(c) If K is ( — ) amphicheiral, then there is a A-automorphism B such that

(i)  X(6x, By) = -X(x, y) and (ii) V X: HX(M) - Zd, a(M, X) = -°(M, X ° B).

Remark. Parts (i) of (a)-(c) are the obstructions observed by Hillman [11].

Proof. We prove the criterion for invertibility; the other two are similar. Consider

an isotopy of A" onto Kp and let f(S2q+2, K) -> (S2q+1, Kp) be the diffeomorphism

at the end of the isotopy; / lifts to a diffeomorphism F of 7«, = M X R. Now / is

orientation preserving, so it reverses the meridian of A", hence B — F, reverses the

action of T. In other words, B is an antiautomorphism of 77,( M ).

Look now at F(A7) C A7 X R; we can assume it is disjoint from a copy of

M G M X R. Then M and F(M) cobound a manifold V which is an «-cobordism.

The map induced on the homology of M by retracting V onto M is exactly F,. Since

/ preserved the global orientation but reversed the meridian it follows that the

restriction of the retraction to the boundary reverses the orientation of M. Part (i)

follows immediately since switching the orientation of M switches the linking form.

Part (ii) also follows since if W is a manifold which one uses to calculate a(M, if),

(i.e. d(W, d>) = n ■ (M, X)) then W U « • V will calculate that a(-M, X ° Fj) =

a(M, x). But a(-M, x ° F„) = -a(M, X ° F,).

Parts (b) and (c) are proved along the same lines; one needs only to keep track of

whether F preserves or reverses the action of t and preserves or reverses the

orientation of M.

Many of the knots investigated in the previous sections can be shown to be

noninvertible or non-( — )amphicheiral using Theorem 5.4.

Example. Let L G S2k+2 be the 2-twist spin of the knot K(J, q) constructed in

§3. L is fibered with fiber M= the 2-fold branched cover of K(J,q), and the

monodromy is the canonical covering translation t: M -» M. Recall that 77,(A7) =

Z2q+, with generator M = a meridian coming from the surgery picture as described

in §3. The following lemma calculates r, on 77, A7; it is elementary but does not

seem to be widely known.

Lemma 5.5. If N -> S"+2 is the 2-fold branched cover of a knot K and t: N -> A the

canonical covering translation, then r,: Hj(N) -» 77,(A) (0 <j < n + 2) is multiplica-

tion by -I.

Proof. By Zeeman's twist-spinning theorem, X - Sx X, N0 is a knot complement

and so has the homology of a circle. The Wang sequence reduces to

0 -» Hj(N)'"^'Hj(N) ^0   for 1 <j < « + 1.
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But t has order 2, so 0 = t2 - 7 = (i, - 7)(i, + 7). By the above sequence, r, — I

is invertible, so t, = -I.

So in our case (i.e. r, = r^1 = -7) there is no distinction between A-automor-

phism and antiautomorphism. For instance, 6 = id is a A-antiautomorphism satisfy-

ing 5.4(b). So we have no obstruction to A being ( + ) amphicheiral. However, if J is

chosen correctly, then A is neither (-) amphicheiral nor invertible: Let x: 77, A7 -»

Z2q+X be the character taking m to 1. It was shown in §3 that the Casson-Gordon

invariants of ( M, x ) are

°r/2q+\(J) (kodd),

a(M,rX) = \ ^2k-22a+ 1 -2        , n        ,, v
V2<,+.(-/) + 2 2<7 + 1    °W2ÍJ)       (kewen).

If L were invertible or (-) amphicheiral, then for some automorphism 8 of 77,A7,

a(A7, x) = -o-(A7, x» 8) = -o(M, rX) for some r. Hence, if J is chosen so that

ax/2(J) > 0 and ar/2 + X(J) > 0 for all r, the resulting L cannot be invertible or (-)

amphicheiral.

There are also examples in dimension four.

Example. Let A be the 2-twist spin of the rational knot j. A" is fibered with fiber

L0(5,1) and t: L(5,1) -» L(5,1) induces multiplication by -1 on 77,(L(5,1)). The

linking form is given by A(g, g) = j, so there are indeed automorphisms 6 such that

X(6g, 8g) = -X(g, g): they are given by 8x(g) = 2g, B2(g) = 3g. Since f. = -1, Bx

and 82 are antiautomorphisms as well. If d>: 77,(L) -* Z5 takes g to 1, then one

calculates easily that a(L, </>) = -3/5, o(L, <b ° 8X) = a(L, 2<b) = -7/5 and

a(L, d> ° 82) = o(L, 3c/)) — 7/5. Hence, K cannot be invertible or (-) amphicheiral.

Once again, there is no obstruction to A being ( + ) amphicheiral. Other more

involved computations with twist-spin knots have revealed many knots which satisfy

our criterion for ( + ) amphicheirality. We close with a conjecture that would explain

the results of those computations.

Conjecture. Any twist-spun knot is ( + ) amphicheiral.
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