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GRADINGS OF B„ AND C„

OF FINITE REPRESENTATION TYPE

BY

IBRAHIM ASSEM1 AND OSCAR ROLDAN

Abstract. It was shown by Bongartz and Gabriel that the classification of simply-

connected algebras (i.e. finite-dimensional, basic, of finite representation type and

with a simply-connected Auslander-Reiten graph) can be reduced to the study of

certain numerical functions, called gradings, operating on a tree. Here, we classify in

. jrms of their bounden species the simply-connected algebras arising from gradings

of the Dynkin trees B„ and C„. and show that these are exactly the tilted algebras of

types B„ and C„, respectively.

In [5] Bongartz and Gabriel defined the notion of grading of a tree and proved

that there exists a bijection between the isomorphism classes of graded trees of finite

representation type and the isomorphism classes of finite-dimensional basic con-

nected algebras of finite representation type with a simply-connected Auslander-

Reiten graph.2 They also describe the gradings of finite representation type for the

Dynkin graph A„. Here, using the methods and results of [2], we describe these

gradings for the Dynkin graphs B„ and C„. We obtain the following two theorems:

Theorem (1). The following assertions are équivalant:

(I) The finite-dimensional algebra A arises from a grading of finite representation

type of the tree B„.

(II) The bounden species of the algebra A satisfies the properties (ß) of [2] (see also

(1.10) below) and, moreover, does not contain a full connected subspecies of one of the

forms:

(a) E" <- E <- E — E — ...  — E'-t-F-i-E

(b) E-«-F-<-vE — E —  ...  — E' ■«- E «- E

.--o-.v ,-0-^
(c) É -<- E «- E — E — ...  — E'-<- E +•>
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(d) f * E *\ - E -  ...   - E' +•  E -»- "E

(e) e'+E-«-^ — E — ...  —  E' ■<- E -<- È

(0     E «- E -<- E — E   ...  — E' ->- F -* "E — E ■«- E «- NE

P    + ,"0^
(g)     F — E — ...  — E -* E —  .. .   E ->- E *- E

(h)     F — E — ...  — É *• E — .. .   Ë" -»• E -► *E

»v/zere £, 7% ¡ti are ai /'« [2], and we assume that there is no other relation between the

relations shown.

(Ill) A is a tilted algebra of type B„.

Theorem (2). The following assertions are equivalent:

(I) The finite-dimensional algebra A arises from a grading of finite representation

type of the tree C„.

(II) The bounden species of the algebra A satisfies the properties (y) of [2] (see also

(1.10) below) and, moreover, does not contain any full connected subspecies of one of

the forms:

(a) f' «- F +■ F — F — . ..   f -<- E * "F

(b) f* E -«-> — F — ...   F *■ F -<-*F

(c) F' *■ F * F — F —  ...  F' *■ F *■ \

(d) E *■ F -*- F — F — ...   F' -*- F +- F

,--o—, 0
(e) tf -*- F ■«- F — F —  . ■,  F * F -e F

(0      F' ■*- F *■ " F — F — ...   F' -> E -+ "F — ...   F'-t-F-t-F

,-F

(g)      E — F — F — ... — F •*■ F — ...  r + F*ï

,-F

(h)     E — F — F — ... — F-f-F — ...F'-s-F -v% F

where E, F, tt are as in [2] and we assume that there is no other relation between the

relations shown.

(III) A is a tilted algebra of type C„.
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Observe that the existence of complete slices in tilted algebras [10] gives directly in

both cases that (III) implies (I).

We apply our results to show that the algebras whose trivial extensions are of

finite representation type and Dynkin class B„ (respectively, C„) are precisely the

iterated tilted algebras of type B„ (respectively, C„). A similar result has been

obtained for A„ by Hughes and Waschbüch [15].

For the convenience of the reader, the main results of [2 and 5] will be recalled in

§1. In §2, we prove Theorem (1), and §3 will consist of Theorem (2), together with

the stated application.

1. Preliminaries.

1.1. Let k be a commutative field, and A a finite-dimensional /c-algebra. By a

module is meant a finite-dimensional right A -module. The simple A -modules will be

denoted by S(i), where i runs through a fixed index set and we shall let P(i) and I(i)

be, respectively, the projective cover and the injective hull of S(i). The support

Supp M of the module M is the set of all i such that S(i) appears as a composition

factor of M.

Let 2 = (FjUMj)ijeI be a ^-species [9]. We shall denote by 7(2) its tensor

algebra, and by G2 the associated (oriented) valued graph [7]. An ideal R G rad2 T(2)

is called relation ideal, and the algebra A = T(~Z)/R is then said to be given by the

bounden k-species (2, R) [2]. For each pair (/', /) of elements of 7, the F¡ — Fj

bimodule ,7? = F¡RFj is a relation on 2. A representation of 2 [7] is bound by 7? if

the associated r(2)-module is annihilated by the ideal R.

1.2. We shall use here, without further reference, properties of the Auslander-

Reiten sequences and irreducible maps (cf. [4]). The Auslander-Reiten graph YA of the

algebra A has as a set of vertices T0, the set of isomorphism classes of indecomposa-

ble A -modules, and there is an arrow (oriented edge) a: [M] -> [N] whenever there

is an irreducible map from M to N, this arrow being endowed with a valuation

(da, d'a) defined as follows: let Irr(M, N) denote the bimodule of irreducible maps

[12], then da = dim^Nlrr(M, N) and d'a = dimIrr(A7, N)EaáM. We shall let T,

denote the set of all arrows. Note that, if t = D Tr is the Auslander-

Reiten translation, each arrow a: [M] -> [N] with N nonprojective is paired with an

arrow aa: [tN] -» [M]. A topology is defined on YA by considering it as a

two-dimensional cell complex [11].

T^ becomes a modulated graph [8] if to each vertex i — [M]is associated the skew

field F,■ = End M/rad End M, and to each arrow a: i-*j where i — [M] and

j = [N], we associate the bimodules jM¡ = lrr(M, N) and ,-Af- = Homf CM,, F¡).

Finally, we let the bilinear forms ej: ¡Mj ®jM¡ -* F¡ be the evaluation maps.

1.3. Following [14], a translation species (Y0, Yx, F, N, r, X) is defined by

(1) a translation quiver (ro, Yx, t) [5];

(2) a map F associating to each vertex i G T0 a skewfield F¡;

(3) a map N associating to each arrow a: i -*j an F¡ — Fj bimodule N(a), finite

dimensional on both sides;

(4) a map associating to each nonprojective vertex / an isomorphism F¡ -^ FT¡;
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(5) a map associating to each arrow a: i ->j, with/ nonprojective, a nondegenerate

bilinear form

X«: FN(oa)Fi ®FN(a)Fj -*FjFJFj

(where N(aa) is considered as a left 7y-module by means of the isomorphism

Fj -> Fv).
The bilinear form xa determines an element c{ G N(aa) ®F N(a) as follows: let

xx,x2,...,xm be a basis of FN(a), and |,,£2,...,£m the dual basis of N(aa)F with

respect to the bilinear form xa; then c{ = 2^, £, ® x, is called the canonical element

[8].

Let i, j G ro, and T = (i -» /, -»i2 -» • • • -* /m = /) be a path in (T0, T,). We have

an F¡ — Fj bimodule,

N(9) =N(ax) ®Fi| A(a2) ®Fi2 • • ■ »^ | N(am),

and hence an 7j — *Fj bimodule N(i, j) = ©rf #(<??), the sum being taken over all

paths from i toj. We shall also agree to set AC??,) = F¡ if Í?, is the trivial path at the

point /'. We can thus define the tensor category ® Y of Y to have ro as set of objects,

and N(i, j) as set of morphisms from /' to/. The mesh category ()Y of Y is the factor

category of <S> Y modulo the ideal generated by the elements 2c/, the sum being

taken over all arrows i -*j with nonprojective target/.

Thus, the Auslander-Reiten graph 1^ of the algebra A yields, in an obvious way, a

translation species, called the Auslander-Reiten species of A [14].

1.4. In what follows, we shall limit ourselves to finite-dimensional, basic, con-

nected algebras of finite representation type with a simply-connected Auslander-

Reiten graph. Such algebras will be called simply-connected algebras.

Let A be a simply-connected algebra. Then, following Bongartz and Gabriel [5],

we can associate to 1^ a (nonoriented) valued graph Gr(YA) as follows: the vertices

of GriT^) are the r-orbits of the isomorphism classes of indecomposable /I-modules,

and the valued edges correspond to the a-orbits of the arrows of YA: if a: [M] -» [N]

is an arrow in YA, there exists an edge aza between tz[A7] and tz[A] in Gr(r,,)

endowed with the same valuation (da, d'a). Since da = d'aa, this definition is not

ambiguous. Clearly Gr(YA) is homotopically equivalent to 1^ and, in particular, is a

tree.

The natural modulation on YA induces on Gr^) a modulation 911(1^) as follows:

to each vertex / = tz[A7] of Gr^), we associate the skew field F¡ =

End M/rad End M, and for each edge between i = tz[A7] and/ = tz[ N] (where we

assume, without loss of generality, that the representatives M and N are chosen such

that N is not projective, and there is an arrow a: [M] -» [ A]), we putyM, = Irr(M, N)

and jMj = lrr(rN, M). Finally, the bilinear form of 911(1^) is again the evaluation

map.

1.5. Definition [5]. Let (T, d) be a valued (nonoriented) tree. A grading of Tis a

function g: T -> N such that

(Gl)g-'(O)^0;

(G2) g(i) — g(j) = 1 (mod2), whenever i, j are neighbours in T.
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We shall define a natural grading gA on the tree Gr^) associated to the algebra

A: let (T0, T|,t) be the underlying translation quiver of YA, then there exists a

unique morphism of translation quivers pr^: (ro, Yx, t) -* ZA2 such that

Minx6r pr^(x) = 0 [5]. Let us put gA(x) = prA(P(i)), where P(i) is the unique

indecomposable projective such that i = rz[P(i)]. Clearly, gA is a grading.

1.6. To the valued tree (T, d), graded by g and modulated by 911 =

(F¡, ¡Mj, e'j)ijeT, we can associate a translation species ß = ß(7-,9it,g) =

(fi0,0,, K, N, t, e). Let

o0 ={(«,i) enxr|i(«-g(¿))eN},
(d,j,dj¡)

and for each valued edge i    -*   j, define families of valued arrows

(dij,dj¡) (dj^dij)

(«,/)     ->    (n+1,/)    and    («,/)    ->    (n+1,/),

with «EN, whenever both endpoints lie in ß0.

Thus, we obtain an infinite-valued graph endowed with a translation: the projec-

tive vertices are the pairs (g(i), i), with /' E T, the translate of a nonprojective is

defined by t(«, ;') = (« — 2, i). The mapping K is defined by K(n,i) — F¡, the

mapping A by A((«, i), (n + 1, /)) =,A// and A((«, j), (n + 1, ;')) —¡Mlt while the

bilinear forms e are given by the ej

Let («, i) E ß0, and define v(n, i) to be the set {/ E T\ dtj i= 0 and g(j) < «}. It

is obviously possible to define inductively on ß a unique mapping a: ß0 -» N(Cardr>

such that:

(a) For every projective vertex (g(i), i) such that all jGv(g(i),i) satisfy

d(g(i) — 1, /) > 0, we have

d(g(i),i) = 8i+      2      d,jd(g(i)-l,j).
jŒv(gU).i)

Here, S, is the Kronecker delta-function.

(b) For every nonprojective vertex («, /') such that all / G v(n, i) satisfy

d(n — 1, /) > 0 and, moreover, 2jeHnJ)d¡jd(n — 1, /) — d(n — 2, i) > 0, we have

d(n,i)=     2     d,jd(n-l,j)-d(n-2,i).
JBv(n.i)

(c) For every other («, /') E ß0, o*(«, i) = 0.

If (T, 91L, g) = (Gr(r„), 91(1^), gA), the uniqueness of d implies that d =dim,

where dim is the mapping associating to each vertex [A7] of YA its dimension vector

dim M. By analogy, d is called the dimension map of ß. Now let Y = Y(T ̂ g) be the

full subspecies of ß defined by

T0= ((«,/) E ß0 | d(n,i)>0).

Definition (1). The grading g is admissible if Y contains all the projective vertices

(g(/),/)ofß.

Definition (2). The grading g is of finite representation type if it is admissible and

T is finite.

For instance, gA is of finite representation type and Y = r(Gr(r/,).9H(r^),g„) can De

identified to YA.
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1.7.  Let (7,911, g) be a modulated tree endowed with a grading of finite

representation type, and consider the algebra

A=AIT*.,=   ©   Hom<>r((g(/),/),(g(/),y)).,(7\91l,g)
/er

We have the following theorem.

Theorem (Bongartz-Gabriel). The map (7, 911, g) -» A(T,<m.,g)induces a bijec-

tion between the isomorphism classes of modulated trees equipped with a grading of

finite representation type and the isomorphism classes of simply-connected algebras.

Indeed, the proof of [5], done under the assumption that k is algebraically closed,

carries over to the general case with only the obvious changes.

1.8. Example. Let F,G be two skew fields, finite-dimensional over the common

central subfield k, and such that, moreover, dim Fc = 3. The lower triangular matrix

algebra

F 0
F G
F    F

has the following Auslander-Reiten graph:

131

(where modules are represented by their dimension vectors). Thus Gr(YA) is here the

Euchdean graph

G12:    ho-
(3,1)

-o-o j

and   the   grading   gA   is   given   by   gA(h) = 5,   gA(i) = 0,   gA(j) - 1.   ß

Q(cmta), wnrh,gA) is here given by

(5,h) (Z,h) (9,h)

and r = YA. In fact, A is tilted of type G12.

1.9. Let A be a finite-dimensional ¿-algebra. A module TA is called a tilting module

[10] if

cri)pdr,<i;
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(T2) Ext^(7, 7) = 0;

(T3) there is a short exact sequence 0 -» AA -> TA -> TA -* 0 with 7' and 7" direct

sums of summands of TA.

A tilting module TA is splitting if every indecomposable B-module NB, where

B = End TA, is such that either A ®B 7 = 0, or Tor,s( A, 7) = 0. A finite-dimen-

sional ¿-algebra B is iterated tilted (called "generalized tilted" in [3]) if:

( 1 ) There exists a sequence of algebras A0,Ax,...,Am = B with A 0 hereditary.

(2) There exists a sequence of sphtting tilting modules T}'} (0 < i< m — 1) such

that End Tj'j = Ai+l.

If m < 1, B is called ri/rea1 [10]. Tí is said to be of type A for a (nonoriented) valued

graph A if A0 is the tensor algebra of an oriented valued graph with nonoriented

underlying graph A [6].

For example, it is not hard to check that the iterated tilted algebras of type F4 are

precisely the simply-connected algebras given by admissible gradings of F4.

1.10. Let us now recall briefly the main results of [2]: Let A be a finite-dimen-

sional ¿-algebra, and YA its Auslander-Reiter graph. A point x of YA will be called a

border point if:

(1) There exists at most one arrow a of source x.

(2) There exists at most one arrow ß of target x.

(3) If a and ß both exist, then ß = era.

Definition. A ¿-species 2 = (FiUMj)i jeI with relation ideal R is said to satisfy

the properties (ß) if it satines:

(ßl) The bounden graph G of (2, 7?) is a tree.

(ß2) There is a vertex /'„ such that F¡ = F, and for all i ¥= i0, F¡ — E, where E and

F are two skew fields, finite-dimensional over the common central subfield k, and

such that dim EF = 2. Also, if ¡Mj ¥= 0, then iMj = FEE if i = z'0,,. Af. = EEF if/ = z0,

and ¡Mj = EEE otherwise.

(ß3) i0 has at most two neighbours, and, if it is so, then i -» z'0 -*j and there is a

relation (ft) on the subspecies

EEF     FEE

E -> F -> E

given by an epimorphism p.: EEF® FEE -» EEE.

(ßA) All relations are of length two, and the only relations besides (ft) are the zero

relations.

(ß5) Each vertex of G has at most four neighbours.

(ß6) If a vertex / has four neighbours, then G contains a full connected subgraph

of the form

/', i2

\ ¿

I
/ \

h U

with the zero relations , M, ® ,M¡ and , M, ® ,M■.
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(jS7) If a vertex / has three neighbours, then G contains a full connected subgraph

of one of the forms

»2 '2

Î I

ix     «-     /     <-    i3        ix     <-     /     «-    i3

with the zero-relation , A/, ® ¿Af,.

Then we have

Theorem (1). For a finite-dimensional k-algebra A, the following statements are

equivalent:

(a) A is iterated tilted of type B„.

(b) A is given by a bounden species satisfying the properties (ß).

(c) A is simply connected and YA satisfies:

(Yx) There are at most two arrows in YA with a prescribed source or target. For any

arrow a: [M] -* [A] in YA, we have da<2 and d'a < 2. Moreover, there exists a

unique T-orbit % ofYA, entirely consisting of border points, such that da = 2 if and only

if[N] G®>andd'2 = 2ifandonlyif[M] G%.
(Y2) If PA is an indecomposable projective A-module and [R] -» [P] is an arrow of

YA, there is at most one arrow of target [R], Dually, if IA is an indecomposable infective

module and [1] -> [J] is an arrow of YA, then there is at most one arrow of source [J].

Definition. A ¿-species 2 = (F¡,¡M¡)¡,e/ with relation ideal 7? is said to satisfy

the properties (y) if it satisfies the properties (ßl), (/34), (ß5), (ß6) and (ßl) (now

renamed respectively (yl), (y4), (y5), (y6) and (y7)) and:

(y2) There is a vertex i0 such that F¡ = E, and for all i ¥= i0, F¡ = F, where E and

F are two skew fields, finite-dimensional over ¿, and such that dim EF = 2.

Moreover, if ¡Mj ¥" 0, (A/. = FEE for j = i0, ¡Mj — EEF for i — i0, and ¡Mj = FFF

otherwise.

(y3) The vertex i'0 has at most two neighbours i and j and, if it is so, then

i -» j'0 -*j and there is a relation (tt) on the subspecies

F^E       E^F

F -» E -» F

defined by an epimorphism tt: FEE ® EEF -» FFF.

Then we have

Theorem (2). For a finite-dimensional k-algebra A, the following statements are

equivalent:

(a) A is iterated tilted of type C„.

(b) A is given by a bounden series satisfying the properties (y).

(c) A is simply connected, and YA satisfies property (Y2) of Theorem (1) and:

(Y'x) There are at most two arrows in YA with a prescribed source or target. For any

arrow a: [M] -* [N] in YA, we have da<2 and d'a < 2. Moreover there exists a unique

T-orbit %' ofYA, entirely consisting of border points and such that da = 2 if and only if

[M] G 9)', and d'a = 2 if and only if[N] G <&>'.
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2. Gradings of B„ of finite representation type.

2.1. Our object is to describe the gradings of finite representation type of the tree

B„

(1,2)
o-o-

n-1

A ¿-modulation 91L of B„ is always defined by two skew fields E and F, both finite

dimensional over the central subfield k and such that, moreover, dim EF = 2. We

shall prove the following theorem:

Theorem. The following assertions are equivalent:

(I) A = A(B g^ g) for a grading g of finite representation type on the modulated tree

(B„, 9H).
(II) The bounden species (2, R) of A satisfies the properties (ß) of (1.10) and,

moreover, does not contain any full connected subspecies of one of the forms:

,--0--, ,--v--^
(a) Í+E + E — E — ...  — if «- F -<- "E

(b) E''* F **E — E — ... — É * E *"e

(c) Ë" -<- E -<- E — E — ... — É +- E -*- F

(d) F «- E -<- E — E — ... — É«-E-<-E

,--o~^ ,-o--^
(e) E" + E +"e — E — ... — E — ... — E' * E *\

,-0--, ^-P-, ,--a--
(0      E' -<- E -<- "e — E — ...&•*■ T -»-"E — ... — E' * E *■ "F

,'E

(g)     F — E — ...   É -> E — if -<- E -<- E
,°    ♦ .-0-

--E

P'   + ,-0-.
(h)     F — E — ...  É «- E — ...£->■ E ->-VE

where E, F, p are as in [2], and we assume that there is no other relation between the

relations shown.

(Ill) A is a tilted algebra of type B„.

(2.2) Lemma. Let the modulated tree (B„, 9H) be graded by a grading g of finite

representation type. Then the associated algebra A = >4(B ̂  j is iterated tilted of type

B„
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Proof. The Auslander-Reiten graph T,, of A can be identified to the full

simply-connected subgraph T of ß = ß(B„,gt,g), which is, moreover, finite since g is

of finite representation type. Let [M] E ro: there exist at most two arrows of source

(or target) [A7]. This follows from the fact that every point of B„ has at most two

neighbours, and from the definition of ß. On the other hand, the valuation on an

arrow a: [M] -* [A] is inherited from B„, hence dimIrr(A7, A)EndM < 2 and

dimEndA,Irr(A7, A) «s 2. Moreover dimIrr(A7, A)EndA/ = 2 if and only if [A7] be-

longs to the T-orbit of the unique projective (g(l), 1) of endomorphism ring F. By

definition of ß, this is a T-orbit consisting entirely of border points, and we shall

denote it by <S. Similarly, dim^ Nlrr(M, A) = 2 if and only if [A] E %.

Let now PA he an indecomposable projective ^-module, and [R] -» [P] an arrow

in T,. Then there exists at most one arrow of target [R]: for, if [A',] -+ [R] and

[X2] -> [R] are two arrows, the four points [P], [R], [Xx] and [A^] belong to

different T-orbits, hence the vertex tz[7<] of Gr^) has three neighbours in Gr^),

which is impossible, since Gr(YA) = B„. Similarly, if IA is an indecomposable

injective, and [7] -» [/] an arrow of Yx, there exists at most one arrow of source [J].

The result then follows from (1.10).

2.3. It follows immediately from this lemma that (2, R) satisfies the properties

(ß). Proposition (4.2) of [2] shows that, to construct (2, R), we can use the prefactor

and postfactor sets of projective points of Y. Let / = (g(i), i) and/ = (g(j), j) be

two projective points. There is an arrow i -»_/" in G2 if and only if one of the

following two conditions is satisfied:

(1) /' = (g(i), i) belongs to the maximal sectional path {(m, h) | h >/, m — h =

g(j) — j] and, moreover, no other projective I — (g(l), I) lies on this path between/

and i.

(2) i — (g(i), i) belongs to the composite of the two maximal sectional paths

{(m,h)\h<j, m + h = g(j)+j) and {(m, h) \ m - « = g(j) +j - 2}, and,

moreover, no other projective / = (g(l), I) lies on this path between/ and i:

In the first case, the arrow i -» j is called a ( + )-arrow, in the second, a (-)-arrow.

This allows us to construct G2. The species 2 of A is defined by:

(Ml) Fx = F and F, = Efori^l.

(M2) ¡Mj equals EEE if i, j =h 1, FEE Hi— 1 and EEF if/ = 1.

We now describe the relation ideal R by its minimal generators:

(Rl) All relations are of length two.

(R2) If we have i -» / -> j (I ¥= 1) and i: -» / is a ( + )-arrow (respectively, (-)-arrow),

while / ->/ is a (-)-arrow (respectively, ( + )-arrow), we have a zero-relation ¡Rj =

,m, ®>,:
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(R3) If we have i -* 1 -*j, then necessarily i -» 1 is a ( + )-arrow and 1 -»/ is a

(-)-arrow. In this case, ,./?■ is the kernel of an epimorphism p: ¡Mx ® xMj = EEF

Moreover, the properties (ß) imply that G2 is a tree such that every vertex is the

source (or the target) of at most one ( + )-arrow and one (-)-arrow.

2.4. Lemma. Let g be a grading of finite representation type on the modulated tree

(B„, 911). Then the bounden species (2, R) of the associated algebra A contains no full

connected subspecies of one of the forms:

(a )    E' -<- E ■*- E — E — ...   Í+E+'e

---H-, ,«"0-^
(b) E + F + E — E — ...   e" *■ E * E

(c) e'-«- E«-E — E — ...  e'+E + F

,*--0-,, ,~~0—%
(d) f'+E + E — E — ...  E «- E ■«- E

,-0-., ,-0-,
(e) FT-«- E -<- E — E — ...  i!*■ E -«-"e

(0     e'-«- E *-\ — E — ...   E'-* F +\ — ...  — E' *■ E *■ E

(g)    F — E — ...   E + E — ...   E-í-E-f-E

(h)    F — E — ...   E -<- E — ...  E ■+ E -»■ E

w«eve // « assumed that there is no other relation between the relations shown.

Proof. Let us first observe that the cases (b), (d) and (h) can be deduced,

respectively, from (a), (c) and (g) by passing to the opposite algebra. We shall thus

assume that (2, R) contains a full connected subspecies of one of the forms (a), (c),

(e), (f) or (g), and show that in each case an injective module lies on the left of a

maximal sectional path of YA ending at a projective, from which we shall deduce the

contradiction Gr^) ¥= B„.

(a) Suppose that (2, R) contains a full connected subspecies of the form

E.     * E.     ■*• E.     — E.—...— E' * F. *"E.

h     h     H       h ^-2      \-i     \
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where t > 4, E¡ = E for/ ¥" t — 1 and F<i_| = F. Yet us define P¡_(it) to be the

unique submodule of P(i,) with support Supp P, _ (i,) = Supp P(i,) n Supp 7(/_,).

Obviously, 7, _(/) is indecomposable. Dually, we can define 7'2(j,) by Supp7'2(/1)

= Supp7(z,) n Supp7(/2). This is an indecomposable image of I(ix). Let us now

consider the representation A7 defined by

SuppA7= {/'2,i3,...,/,_,} U {SuppI(ix) D Supp7(z2)}

U {Supp7(;,)n SuppP(/_,)};

the coordinate vector spaces are Aí¡ — EF, M¡ = EE © EE if 2 <j < ; — 2 is such

that ij belongs to Supp7(1,_,), and Mh = EE if « E Supp A7\Supp7(/,_,), and the

maps between the coordinate vector spaces are the obvious ones. It is clear that A7 is

indecomposable except if {z2, i3./',_,} C SuppP(i,_x) and, moreover, the only

arrow of target i2 has source i3, in which case A7 A P(i,_x) © 7(/_,). On the other

hand, it is easy to see that 7'2(/,) is a submodule of M, while P¡ (/,) is an image of

A7. Thus we have an oriented path in YA defined by the sequence of maps

(or

/(/,) - iH'i) - ■ • • - M -* ■ • • - /»,. _,(/,) - /»(,,)

/(/,) - /'*(*,) ----- P(i,-i) ----- 7   ,(/) - P(i,)

if A7 is decomposable).

Since HornA(P(/',_,), 7(/',)) ^ 0, P(i,-X) belongs to the set of prefactors of P(i,).

On the other hand, /',_, = 1 implies that [7(/,_,)] E %, hence there exists a

sectional path £ of source [P(i,-X)] and target [7(/',)]. Since A7, : t^ 0, [A7] E £, and

since I(ix)ii_l = 0, 7(/,) lies on its left.

Let us show that this implies Gr(YA) ¥= B„. By hypothesis, /',_, = 1. Consequently,

£ induces a full connected subgraph G0 of Gr(YA) of the form

(1,2)
o-o o- * • •  -o-o

W1    2      3 h     h

where « = tz[7,   (i,)]. Since the injective module 7(/',) lies on the left of £, no

module of the form tsI(íx) (s > 0) lies on £, and hence ix £ G0. On the other hand,

the oriented path 7(/,) ->-» M ~*-» /J¡,_,(Í'/) (°r ^Oi)-* ^OZ-i) -

• • • -> 7,:_(/,) if A7 is decomposable) induces a path of Gr(YA) of the form

i.,   o-o- ... -o—-o h.

Clearly, this path cannot contain it, and is not a subgraph of G0, hence there exists

1 « / < « such that
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1K%

2\

it

is a full connected subgraph of Gr^), which gives the wanted contradiction.

(c) Let us now assume that (2, R) contains a full connected subspecies of the

form

—-0—•«„ _-0-«...
E".    -*- E.    *■ "E.    ■— E.    — ...  — e". *■ E. -<- >

Xl        *2        x3 X4 \-2        Vl        \

where 7] = 7 and £, = E for / ^ i. Let us define M to be the indecomposable

representation of support

SuppA7= {i2>...,/,_,} U {Supp/(i,) n Supp/(/2)}

U {SuppP(i,)n Supp/»(/,_,)},

and such that Mh = EE for all « E Supp M, the only mappings between the

coordinate vector spaces being the obvious ones. The rest of the proof of case (a)

applies here.

(e) and (f) We now consider the case where (2, R) contains the full connected

subspecies

---o-— „_ ,_—o--—.„
eT   ■*■ E.   «-"e.   — ... —e'.       ■*■ z_,       *\.

*1 *2 X3 \-2 \-l \

(where, if / 3s 7, we may have a 4 </ < / - 3 such that / = 1 and then we are in

case (f))- We shall construct the module A7 as follows:

SuppA7= {/2./,_,} U {Supp7(/1) n Supp/(/2)}

U {Supp7(/)nSupp7(/_1)}.

(i) If 1 E Supp A7, we put Mh = EE for all h E Supp A7, with the obvious maps.

(ü) If we have a 4 <j < t - 3 such that / = 1, we put A7, = EF and Mh = EE if

« E SuppAf, « ¥= 1. The maps between the coordinate vector spaces are the identity,

the zero maps, and jh: A7, <S>FEE -» EE.

(iii) If 1 E Supp 7(/, ) n Supp 7(z2), we put Mx = EF and Mh = EE if h E Supp Af,

« ^ 1, the maps between the coordinate vector spaces being the obvious ones.

In all the previous cases, M is an indecomposable module lying on the prefactor

set of P(i,), while 7(/'|) lies on its left. Let us observe that this prefactor set consists

in general of three sectional paths. In all cases, however, we obtain a contradiction.
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If there exists a sectional path joining [7(/',_,)] to [P(ij)], this contradiction is

obtained as in (a). Otherwise there is a path from [7(/,_,)] to [P(i,)] consisting of

two sectional paths factoring over [A] E <$, and the sectional path £ from [A] to

[P(i,)] induces a full connected subgraph G0 of Gr^) of the form

U,2)
u o- • • •-o-o

12 h it

where « = tz[P¡ _(/,)], the latter submodule being defined as in (a). Assume that

/', E G0. Then there exists an i^O such that [rsI(ix)]Gt. This, however, is

impossible, since the existence of a chain of irreducible maps tsI(íx) — • ■ • -» 7(¿,)

->-» A/-» • • • -» 7(/) implies that [7(/,)] E £, in particular I(ix)¡i_l ¥= 0, a

contradiction. Thus /', Í G0 and the proof proceeds as in (a),

(g) Finally, assume that we have a full connected subspecies of the form

,--Ei.

/ + „---0—-_
F.    —  E.  — ...E. ->-E.    — E.      .. .—e' ■*- E.       -<- ~~E.

*1 *2 ^-1        Xs is+l xt-2        Vl \

where / > 4, F¡ = 7 and Eh = E for h ¥= ix. We define A7 by

SuppA7= {/,,/2,...,/,_,} U {Supp7(0 n Supp/(/,)}

U {Supp7(z,_1)n Supp7(z,)}

and put A/, = F, Mh = EE for « E Supp M, « ^ 1, together with the obvious maps

between the coordinate vector spaces. As in (a), we have that I(i's) lies on the left of

a sectional path ending at P(i,), hence the contradiction Gr^) i= B„.

2.5. Lemma. Let A be a tilted algebra of finite representation type of type A, where A

is a tree. Then the natural grading gA of Gr^) is a grading of A of finite

representation type.

Proof. This follows at once from the existence of complete slices [10].

2.6. Proof of the theorem. We have already shown that (III) implies (I) and that

(I) imphes (II). In order to complete the proof of the theorem, it suffices to show

that (II) imphes (III).

2.6.1. Let A be an algebra whose bounden species (2, R) satisfies the conditions

of (II). In order the show that A is tilted, we shall construct a complete slice in YA.

Let sx,... ,sm be the set of sources of G2, and P(sx),... ,P(sm) be the corresponding

indecomposable projective yl-modules. Define j to be the full connected subgraph of

I^ consisting of those points [A7] such that if there exists an oriented path from [ A7]

to [7(s,)], for some /', then this path is sectional.

Since 1^ has no oriented cycles, and no indecomposable projective ,4-module lies

on the right of the subsection S, it suffices to show that no indecomposable injective
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A -module lies on the left of S. Indeed, this will imply that 5 intersects each T-orbit,

and therefore, that 5 is the required complete slice [1].

Thus let 7(0 and P(s) be, respectively, an indecomposable injective and an

indecomposable projective A -module, with 5 a source, such that there exists an

oriented path in YA: [I(i)] -* [A/,] -» [Af2] -»•••-» [A7J -> [P(s)]. Our aim is to

show that such a path is sectional (thus, [7(0] ES). We may obviously assume that

i is a sink.

2.6.2. Let w be the (nonoriented) path of G2 joining /' and s, and Aw the algebra of

the subspecies with graph w, together with the inherited relations. We shall also let

7W(0 and Pw(s) be, respectively, the restrictions of 7(0 and P(s) to w, considered as

/I-modules via the natural embedding [13]. Thus we have homomorphisms of

.4-modules

IWU) - /(/) - Mx -* • • • - Mm - P(s) -. Pw(s).

We claim that it might be assumed that Supp A7y n w ^ 0 for all 1 «£/ < m. Let us

denote by Ga the branch of the tree G2 attached at the vertex aofw:

If Supp Mj (1 w = 0 for some 1 < / < m then there exist «, < « 2 such that all Mh

(«,<«<«2) have their supports not intersecting w while the supports of Mh and

Mh intersect w. Since the Mh are indecomposable, there exists a vertex a G w such

that Supp Mh] + X G Ga. For the same reason, Supp Mh G Ga for all «, < « < h2.

However Hom^Af,,, A7A +1) =£ 0 and Y\omA(Mh _,, A7A ) ^ 0 imply that a

belongs to the supports of Mh and Mh , and thus HomA(P(a), Mh ) ¥= 0,

HomA(P(a), Mhj) ^ 0. Now, either there exists no indecomposable A -module A

such that both A, ^ 0 and Aa ¥= 0, and the set of those indecomposable A -modules

A7 with Afa =r= 0 is given by a rectangle in YA :

P(a)<

►Ka)

(then, clearly, if Mh and Mh lie in this rectangle, so do all the A7A, for «, < « < h2,

a contradiction), or else there exists such an A, and the set of those indecomposable
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A -modules A7 with Ma ¥= 0 is given by the region Ya of YA shown below:

P(a)'

Ka)

Then there exist sectional paths a, and o2, lying entirely within Ya, or source [Mh ]

(respectively, target [Mhj]) and target [Lx] on ß (respectively, source [L2] on <3n). We

have two cases:

(i) L2 lies on the left of Lx. Then necessarily the sectional paths a, and o2 intersect

at a point L, say, and the oriented path of YA given by [Mh¡] -» • • • -> [L] -* ■ • • -*

[Mh ] lies entirely within Ya (and thus the supports of all its modules intersect w).

(ii) L2 lies on the right of Lx, say L2 — t~pLx with/? > 0. Then the oriented path

of T^ given by

K] [LA >[*-%] >[t-'L1]=[L2] -K]
lies entirely within Ya.

This completes the proof of our claim.

2.6.3. We may thus consider the induced path of YAw given by [Iw(i)] — [A7[] -»

[A72] -» • • • -» [A7^] -* [Pw(s)]. The path w has necessarily one of the following two

forms:

(a)

V1 W

(b)

V1 W8

where only the zero-relations are represented by dotted lines. Then, by the condi-

tions (II):

(i) There is no relation between / and ij+, for all 1 </ < r — 1.

(ii) There is no zero-relation between i0, ¿, and between ir, ir+x, but there may be

the relation (/x) and in the direction opposite to the adjacent zero-relation.

(hi) Two consecutive zero-relations are oriented in opposite directions.

(iv) Nonoriented edges can be oriented arbitrarily.

We may thus write w = UrJ=0Wj where Wj is the full connected subpath

1j- •',+.-
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Let Aj be the algebra given by the bounden species of Wj. For / ^ 0, r, Aj is

hereditary of type An and A0, Ar are either hereditary of type A. or tilted of type B„

(if and only if 1 belongs to w0 or wr, for then, A0 or Ar has an indecomposable

sincere representation [10]). Every indecomposable A „-module is in fact an indecom-

posable ^4 .-module for some 0 <j < r, and YA^ has the following form:

(a) (b)

wherein r,j+| = {[S(i>+1)]}[l].

The existence of an oriented path of 1^ from Iw(i0) to Pw(ir+X) implies that r > 1,

for, otherwise Aw has an indecomposable sincere representation Mw, and hence we

have nonzero mappings Pw(ir+X) -» Mw and Mw -» 7w(/0), which gives a contradic-

tion. Also, w cannot be of type (b), or of type (a) with r > 1. Consequently, w has the

following form:

h    al    a2

Moreover, the oriented path from 7w(z'0) to Pw(i2) in YA factors necessarily through

the simple module Sw(ix) which is injective when considered as an yl0-module, and

projective when considered as an Ax-module. We claim that no a, (1 < t < mx) is a

source, and dually, no b, (1 < t < m2) is a sink. This imphes that all arrows are

oriented to the left, and also, that if 1 E w, then either i0 = 1 or i2 = 1.

Indeed, assume inductively that no as is a source for s < t, while a, is a source:

'r+r •1>
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we then have a sectional path in 1^  given by a sequence of irreducible maps

LUo) - !À"i) - h(a2)-► K(oj) = Sw(a,),

and thus we have no oriented path from Iw(i0) to Sw(ix). The proof of the second

assertion is dual.

2.6.4. We have proved that the path w has the form

b i„=s
m2        2

In particular, BomA(I(i), I(j)) ¥= 0 and YlomA(P(j), P(s)) =£ 0, whence I(j) be-

longs to the postfactor set of 7(0, and P(j) to the prefactor set of P(s).

We claim that either there exists a sectional path from 7(0 to 7(/) or from P(j) to

P(s). In the first case the existence of oriented paths from 7(0 to P(s) and from

P(s) to I(j) implies that P(s) lies on this path, and hence the path from 7(0 to P(s)

is sectional. The second case is dual.

A simple combinatorial argument shows that the graph G2 has the following

form:

where 1 E Ga, Gb  for 1 < r < m,, 1 < r < m2. We have three cases to consider

according as 1 belongs to G,, G- or Gs. The cases 1 E G, and 1 E Gs are dual.

Let us assume that 1 EG,, and that there is no sectional path from 7(0 to I(j) (in

particular, i ¥= 1). Then there exists an indecomposable A -module MA such that

[A7] E %, HomA(I(i), M) ¥> 0 and Hom^M, 7(/)) # 0. Obviously,

HomA(I(i), A7) ̂  0 implies HomA(M, 7(0) = 0. Thus A7, = 0, AT, ¥= 0 and also

A7, ¥= 0 (because [A7] E %). But this contradicts the fact that the support of an

indecomposable module must be connected. Thus, in this case, there is a sectional

path from 7(0 to 7(/).

Finally, suppose that 1 E G, and let w' be the (nonoriented) path of G2 joining 1

and/. If there is no sectional path from 7(0 to I(j), there exists an indecomposable

module MA such that [A7] E % HomA(I(i), M) =£ 0 and Hom^Af, 7(/)) ¥= 0.

V1 m        1

- \

b,
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Now it is easy to see that [A7] E % implies that dim Ma < 1 for any a G G2, and

also A7, ¥= 0. Thus dim A7, = 1, dim A7y = 1, whence dim A7a = 1 for all a E w'. But

this means in particular that there is no zero-relation on the path w'. However, in

this case, we can construct an indecomposable module NA such that HomA(P(s), N)

=/= 0 and HomA(N, 7(0) ^ 0, which will give an oriented path from P(s) to 7(0, a

contradiction. Let us define A as follows:

A'..

EE if a G w, a =£j,

EE® EE if a G w',a=£ I.

EF if a = 1,

0 otherwise.

The maps between the coordinate vector spaces are the canonical inclusion [{,]:

EE -> EE® EE, the projection [0 1]: EE@ EE-+ EE, the map

[!?]
<b : EF ® FEE —» EE © EE —» EE ffi EE,

or its adjoint d> (cf. [6 or 7]). It is easy to see, using the methods of [6], that A is

indecomposable, and it is clear that Hom/((7(s), A) ¥= 0 and Hom/4(A, 7(0) ^ 0.

We have thus completed the proof of our claim and, hence, of the theorem.

3. Gradings of C„ of finite representation type.

3.1. For the tree C„:

(2,1)
o-o-o- ... -o-o

12 3 n-1        n

a modulation 91L is again given by two skew fields E, F, finite-dimensional over the

central subfield k and such that dim EF = 2. We have the following theorem.

Theorem. The following assertions are equivalent:

(I) A = A(C   % g) for a grading g of finite representation type on the modulated tree

(C„, 911).
(II) The bounden species (2, R) of A satisfies the properties (y) of (1.10) and,

moreover, does not contain any full connected subspecies of one of the forms:

(a) F' ■*■ F -*- F —  F   — ...  f * E -MF

--'"—->, •~~°~"^
(b) F'-«- E «-NF —  F  — ... F *■ F *■ F

(c) F' *■ F *■ "V —   F   — ...  F *■ F *■ E

(d) e' *■ F *■ F — F  — ... F *■ F «- F

(e) /*■ F * F —  F   — ...  F' «- F ■*- >
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(0      F -«- F -*- F —  F   — ... F ■»■ E -*■ F — ...  F *■ F ■*• >

fi   + „--°--,
(g)     E — F — F — ...  — F + F — ...  f+V+*V

fi   + „--o--,
(h)     E — F — F — ... — F ■*■ F — ...F + F+F

Wiere £, 7,7r are as in [2], a«c7 we assume that there is no relation between the

relations shown.

(Ill) A is a tilted algebra of type C„.

The same method can be used as in the case B„. An alternate proof would use the

(easily seen) fact that there is a one-to-one correspondence between tilted algebras of

types B„ and C„, given by simply interchanging the skew fields E and 7.

3.2. The above results can be used to find the finite-dimensional algebras whose

trivial extensions are of finite representation type and Dynkin class A = B„ or C„.

This problem has already been considered for A = A„ by D. Hughes and J.

Waschbiisch [15] who showed that these are exactly the iterated tilted algebras of

type A„. We shall here imitate their proof (and use their notations).

Corollary. The finite-dimensional algebra A is iterated tilted of type B„ ( respec-

tively, C„ ) // and only if its trivial extension algebra A [X DA is of finite representation

type and Dynkin class B„ (respectively, C„).

Proof. By the main result of [15], the trivial extension algebras of finite represen-

tation type and Dynkin class B„ (respectively, C„) are exactly the trivial extensions of

tilted algebras of the corresponding type. Thus, let B be an arbitrary tilted algebra of

type B„ (respectively, C„), we construct the algebra B following the method ex-

plained in §3 of [15]. Namely, we take countably many copies {(G2, m) \ m E Z} of

the graph G2 of the bounden species (2, R) of B together with the following

additional arrows: for each maximal nonzero path in a copy of G2,

(/,,»!)-►(/'„ m)       (is G G2, 1 < j <t,m E Z),

add a new arrow (/',, m + 1) -» (/,, m) together with the following relations:

(a) For 1 < 5 < t,

and

(i„m)^(i,+ i,»i-l)       (i„m)M(is+l m) ® ■ • • ® (i,m-I)-™(i,+ ,m-l)

(/,,m)-R(<„m-2)       (i,,m)-W(i,,m-l) ® '    ' ® (i,,m- l)M(i,.m-2)-

(b) If there is a/ E G2,/ ¥= /',_,, such that there is an arrow (/, m) -» (i,,m), then

(j,m)R(il,m~l) = (j,m)M(i„m) ® (i„m)M(it,m-l)'
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and, dually, if there is a/ E G2,/ ¥= i2, such that there is an arrow (/',, m) -» (/, m),

then

(i,,m+l)/v(y,m)        (i,,m+l)JK,(il,m) w (i,, m)1Y1(j,m) '

and all possible ¡u, tt and commutativity relations.

Then, since apphcation of the "reflection operator" S, of [15] to an iterated tilted

algebra of type B„ (respectively, C„) again yields an iterated tilted algebra of the

same type, the algebras of complete y-slices through B are precisely the iterated tilted

algebras of type B„ (respectively, C„).
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