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TIME-ORDERED OPERATORS. II

BY

TEPPER L. GILL1

Abstract. In this paper, we substantially improve on the work of [Gl]. After

constructing the general mathematical foundations for linear time-ordered evolution

equations, we apply our results to show that both the perturbation expansion and

the Feynman diagram method are mathematically sound. We provide a remainder

term so that the expansion may be considered exact at all orders. We then show that

time-ordered operators naturally induce an operator-valued path integral whenever a

transition kernel is given.

Introduction. This is a natural extension of the program begun in [Gl]. In this

paper we make a number of substantial improvements in the work reported there. In

§§1 and 2, we construct the mathematical foundations for the general theory of

time-ordered linear evolution equations. In §3 we show that the time-ordered

evolution operator provides a natural approach to generalized additivity of un-

bounded operators. We show that the evolution operator for the sum of two

generators of contraction semigroups exists almost everywhere without imposing any

domain conditions, and we prove a number of general theorems of the perturbation

expansion type. We also show that whenever a transition kernel exists, the time-

ordered evolution operator naturally induces an operator-valued path integral.

Preliminaries. As in [Gl], we assume that a is any uniform faithful reasonable

norm on ®tJ5(t), where B(t) is a separable Banach space for each t E [0, T],

T > 0. The closure of <8>B(t) with respect to a is a Banach space of type v, and we

denote it by <S>"7?(t). In order to simplify our work, we assume B(t) = B for each

t. The general case will cause no great problem.

We assume that unless otherwise stated, all operators of the form Ä(s) are

strongly continuous operators in the conventional sense, while those of the form

A(s) are time-ordered. In either case we always assume that they are infinitesimal

generators of contraction semigroups at each point in time. D(s) is the domain of

Ä(s) while D(s) is the domain of A(s). D = <g)"D(s).

Let {Qm | m G N) be a sequence of partitions of [0, T] such that hmm^001 Qm\= 0,

(mesh) set P„ = [0, i) n Qm, where n is the number of partition points of [0, /] in

Qm with 0 < t < T. This is done for later convenience. We assume that for each

n G N, a P„ exists, and we will use one distinct, fixed set {P„ | n G N}.
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618 T. L. GILL

The Riemann-complete integral is not used in order to simplify the presentation.

It is clear what the appropriate generalization should be.

1. Let

.   ,      ex.plzA(t)\ — I
(1.0) Az(j) = —n—K—^-,       z>0,

and recall that Az(t) is a bounded linear operator defined on B(t) for each t and

s-limzl0Az(T) — A(t). Set

Qz[t,0] = i àtjA*(Tj),       Q*n[t,0] = 2 p dTE[Tj,T]A*(r).
7=i 7=1   O-i

Define Q{[t, 0] and Q{[t, 0] by

(1.1) n=0   '
°°    ( AT i    _

Q{[t,0]=e~^2 ^-ßil'.O],
n = 0

Theorem 1.1. (1) limj^ß^O] = lim^^ß^O] = Qz[t,0] exists and Q:[t,0]

= Qz[t,s] + Qz[s,0],0<s<t.

(2) i-limziooz[r,0] = Q[t,0] exists, is densely defined, and Q[t,0] = Q[t,s] +

Q[s, <]■

Proof. First let us note that from (1.0) we have |M**(t)|| < 2/z, from which it

follows that \\Q„[t,0]|| =£ 2t/z, and the same for Qz„[t,0] independent of n. Using

this, it is easy to see that max(||(2x[/,0]||, ||ßx[f,0]||) =£ 2t/z independently of X, so

that Q{[t, 0] and Q{[t, 0] are bounded linear operators.

Proof of (1). Let X, and X2 be arbitrary. Then

llßx,['.0] - Gí2[/,0]||<— 2 -^\\\e-^T-X\e-^T\
n = 0

since \X"xe~x'T - X"2e~KlT\^ 0 as A,, X2 -> oo for each n, and we see that the family

{6\[?»0]|A > 0} is a Cauchy sequence and hence has a unique limit. The same is

true for the family {ßA[r,0]|A > 0}. In order to show that these two limits are

identical, note that c-continuity of the family [A(t) \ t G [0, T]} implies the same for

{Az(t)\tG[0,T]],z>0.

IIÔA[',0]-ôA[',0]||<e-^2 ^j- 2 p dT\\E[rj,,]Az(r)-Az(rj)\\.
n = 0       "•       j=\    b-l

c-continuity on [0, T] implies c-uniform continuity, hence given e > 0, 3 5 > 0 such

that Atj <8=> \\E[Tj, r]Az(r) - Az(Tj)\\ < e/t, r G [*,_„ tj). Since |PJ- 0, 3 N 3

n> N => ktj<8Vl <j < «; hence



time-ordered operators 619

HßJM]-ßiM]||< 2 ^—^ i pmE[rJlr]A'(r)-A'M\
n = 0 "•       j=l    0-1

oo ( \T\n     n

+     2    e-*T&P- 2 p dr(e/t)
n = N+l 7=1    0-1

< 2 e-XT^T- Î P ¿í||£lt,,tK(t)-^(t,)|| + £.
n=o "•   7=ro-i

Let

A - oo - lim [\Q'[t,0] - ÖxE'.0]ll = llô'Ml - Ö'[i,0]|| < e.
\-*oo

As e is arbitrary we see that Qz[t,0] = Qz[t,0]. Let 0 =s s *s t and let k = k(s) be

such that tk+x > s > tk, 1 < k < n. For each n, set

oil',*] = 2 tojA'irj),       Q:n[s,0] =  2 Wir,).
j=k ;=l

Then

oo (XT}"

QiM=  2e-^-^-(Qz[t,s] + Qz[s,0])
n = 0

= Ql[t,s] + Q{[s,0] =»ß*[f,0] = Qz[t,s] + Qz[s,0].

Proof of (2). The proof of (2) is similar to that of Theorem 4.3 in [Gl] and hence

will only be outlined. Let <b G D. Then

\\Q"[t,0]* - ß2'[r,0]*|| « ||ßz'[i,0]<i, - ßA'[i,0]</>||

+\\Qx2U^h - ßz1i,0]<i,|| + ||ßi'[r,0]* - Qi>[t,0]*\\.

Choose Xx such that

(A) X > A, => ||ß"[f,0]* - ßi'[i,0]*|| < e/3,

and À 2 such that

(B) X < X2 => ||ß^[r,0]4» - ßx2[r,0]<i»|| < e/3,

HßA'Mto-ßHf.OMl^e-^S ^TT" 2 Mj\\AzÍTj)<¡> - A^(tj)^>\\.
n=0 j=l

Since Az(tj)<¡> -* A(Tj)<f>, z |0,3 z0 such that

0 < z < z0 =» ||¿*(t,)* - ¿(t,>|| < e/6t.

Hence, if 0 < z,, z2 < z0 then

M*(t7)* - ¿*'(t,>|| < ||^(Ty.)* - ¿"(t,>|| + ||¿(t,> - ^(t,.)¿>|| < e/3?,

so that

\\Ql>[t,0]*-QzAt,0]4>\\<e-^Z í^2Aíy(i)<f
n=0 '       7=1
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Combining this with (A) and (B), we see that for z,, z2 < z0,

\\Qz,[t,0]<b-Qzi[t,0]<t>\\<e,

so that lim,iOßz['>0]<i) = Q[t,0]<¡> exists. It is easy to see that ß[r,0]<i> = Q[t, j]d» +

ß[i,0]<f>.    Q.E.D.
Let us set

„=o     "■     \j=\ I
s

since Az(tj) -*A(-rj), it is easy to see that

limß£[f,0]<i. = ßx[i,0]<i>,       V<bGD.
¿10

Theorem 1.2. (1) limAjOOßA[f,0]<i> = Q[t,0]<¡>, that is (from Theorem 1.1)

lim limQ{[t,0]<b= lim lim Q{[t,0]<¡> = ß[i,0]<f>.
A-»oo z 10 z 10 X->oo

(2) Q[t, 0] has a closure which is the generator of a strongly continuous contraction

semigroup on <8>"7?(t).

Proof of (1). Use the above remarks and Theorem 1.1 to see that since

llßxkO]* - ß[i,0]d»|| < ||ßA[i,0]d» - ßA[?,0]<|»||

+ \\Qi[t,0]* -ßz[r,0]d>|| + \\Qz[t,0]<b - ß[f,0]*||,

we may choose z so that the first and third terms are small, then choose X so that the

second term is small, hence limA-00ßA[r, 0]<#> = Q[t, 0]<i>.

Proof of (2). Let d> G D and J^ be a duahty map for </>. We know that Qn[t, 0] is a

generator for each n so that Re(ß„[i,0]d>, J^)< 0 Vn (i.e., ß„[r,0] is dissipative).

Now

Re(ßA[/,0]<i,,^)=   lime-X7-2 ^-Re(e„[i,0]f 7,).
w-°°        „=o    "•

Hence Re(ßA[i,0]d>, 7<(>>< 0 so that ßA[r,0], being densely defined and dissipative,

has a closure which is the unique generator of a contraction semigroup on ®*B(t).

Since limÄ_00ßA[r, 0]<í> = Q[t, 0]<#>, we have

Re(ß[i,0]*,/#)=Re<ßx[/,0]*,^)+Rfi((ß[r,0]*-ßA[/,0]*),/+).

As the first term is < 0 we get

Re(ß[r,0]*, J+)< Re((ß[r,0]</> - ßx[',0]*), /,).

Letting X -» oo, we get Re(ß[i,0]d»,/,,,)< 0 so ß[i,0] has a closure which is

dissipative and densely defined. We complete our proof by showing that the range of

(X - Q[t,0]) is <S>"B(r) for X > 0. The proof of this part is identical to that of

[Gl, Theorem 4.3] (see also Lemma 4.2).    Q.E.D.

Definition 1.1. We call Q[t, 0] the time-ordered integral of the family {A(t) | t G

[0, /]} and write it as

(1.2) Q[t,0] = J'A(r)dT.
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We also denote ßz[i,0] by

(1.3) Qz[t,0]=  i'Az(r)dr.
Jo

The notation is partially justified by

Theorem 1.3. e'xQz[t + e, t] -*Az(t) as elO in the sense that

lim —
eiO   £

= 0.

Proof. Since

Qz[t + e,t]- ['  eE[r,t]Az(t)dT
Jt

im   2 e-XT^- 2 EUj,t\Az(t)Mj=  f'+edTE[r, t]Az(t),
n=0

then

7=1

(XT)'Q{[t + e,t]-   2 e-XT^r~ 2 àtjEfo, t]Az(t)
n=0 /=!

^ i e-^i^ni ^ àtpz{Tj) _ E[Tjt]A2{t)¡
n=0 "■      7=1

Since \\Az(tj) - £[ry, t]Az(t^\ = \\Äz(tj) - Äz(t)\\, where the norm on the left is in

L[C3>"2?(t)] and that on the right in L[B] (recall that L[B] is the space of bounded

operators on B), we have

Qz[t + e,t]- f'+eE[T,t]Az(t)dr
Jt

=   lim
\->oo

00 .(XT)'
Q{[t + e,t]-   2 e-XT^T- 2 àtjE[Tj, t]Az(t)

"■     7=1

.(XT)

n = 0

n     n

lim   2 e-XT^f- 2 MjWÄ'iTj) - Ä'(t)
*-°°„=0 «•     y=]

f+e\\Äz(r)-Äz(t)\\dr.
Jt

Hence

Qz[t + e,t]- ('  eE[j,t]Az(r)di
Jt

< - Í'+)\Az(t) - Äz(t)\\ dT -* 0,       eiO.   Q.E.D
e J,

Corollary 1.1. V</> G D, e~xQ[t + e, t]<f> -*A(t)<¡>.

We now define Uz[t, 0] and U[t,0] by

(1.4) t/z[f,0] = exp{ß*[/,0]},       U[t,0] = exp{Q[t,0]}.
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Theorem 1.4.

(1) Uz[t,0] = Uz[t,s]Uz[s,0] = Uz[s,0]Uz[t,s],

(2) s-limUz[t,0] = U[t,0]
riO

0<S<t.

and

(3)

(1.5)
U[t,0] = U[t,s]U[s,0] = U[s,0]U[t,s].

3/ 8í

where (1.5) is defined in the strong chronological sense.

Proof. (1) and (2) follow from Theorem 1.1. To prove (3) note that Qz[t, t] = 0

and

k = 0
k\

since

Uz[t + e,0] - Uz[t,0]        Uz[t + e, t] - I
Uz[t,0]

|  Q'[t + *,t]k

k=0
k\

Uz[t,0]

Qz[t + e,t]    |   Qz[t + e,t]   S   Qz[t + e,t]k-X

e e ¿2 k\
Uz[t,0]

-*Az(t)U2[t,0]

by Theorem 1.3, we have

dUz[t,0]

dt

Taking strong hmits on both sides gives

dU[t,0]

Az(t)Uz[t,0].

dt
A(t)U[t,0].   Q.E.D.

Let us close this section by noting that U[t, 0] can also be obtained as the strong

limit of exp{ßA[r, 0]}. Since this result will be used later, and also because it has

some independent interest, we prove
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Lemma 1.1.

Proof.

U[t,0] = i-limexp{ßA[/,0]}.
A — 00

||t/[/,0]*-Gxp{ßx[/,0]}*||

•i[ d

'o
-i

do{ [^exp{(l -ü)fi[í,0]}exp{^A[í,0]}<í»

|f,^[exp{(l-t;)ß[/,0]}exp{üßA[i,0]}][ß[i,0]d»-ßA[/,0]4>]
II •'o

Cdv\\Q{t,0]<¡> - ßx[i,0]*|| = ||ß[?,0]d> - ßx[i,0]d»||.

This last term approaches zero as X -* oo by Theorem 1.2.   Q.E.D.

2. As is generally the case, the desire for a nice method and approach has the

effect of submerging motivation, thus making simple ideas appear abstract and

uninviting. The previous section provides us with almost all the tools required for a

general study of linear evolution equations. Already we can resolve a number of

fundamental issues such as:

(1) conditions under which the sum of two generators is a generator; and

(2) conditions under which the perturbation expansion is mathematically justified.

We will provide quite satisfactory answers to these questions in §3; however, there

are two disadvantages inherent in the approach used in §1 (other than a lack of

motivation for the method). The first, and most severe, is the fact that the present

approach hides the natural connection between time-ordered operators and path

integrals (of the "sum over histories type") as envisioned by Feynman [Fl].

The second disadvantage is the fact that we can only approximate U[t,0] in the

strong sense. As will be seen in subsequent work, this can create certain complica-

tions in relating our approach to conventional attempts.

Let us define Un[t,0], Unz[t,0], Un[t,0], Unz[t,0] by

(2.1)

t/„[r,0] = exp   2^tjA(Tj) \,
,7=1

t/;[i,o] = exPm^) ,

(2.2)

Un[t,0] =exp    2 p E[Tj,r]A(r)dT  ,

Uj[t,0] = expj 2 p E[Tj,r]Az(T)dr\
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With the above expressions, define Ux[t,0], Ux[t,0] by

Ux[t,0]=e-"% ~T^Un[t,0],

(2.3)
n = 0

n\

Ux[t,0] = e-"2  ^Un[t,0].
n = 0

Similar definitions give Ux[t,0] and Ux[t,0].

THEOREM 2.1. (1) \\Ux[t,0}\, \\Ux[t,0]\\ « l._
(2) hmx^0Oi/x[f,0] = U[t,0] and limx^xUx[t,0] = U[t,0] exist. Both limits are in

the uniform operator topology.

Proof. (1)

(2)

oo (XT)"

\\ux[t,o]\\< 2 e-^^-\\u„[t,o]\\
n = 0

Ht/A,[i,0]-£/X2[r,0]||<  2 |XV-x'r-X"2e^2T|^r.
n = 0 ' •

Since each term in the series -» 0 as Xx, X2 -» oo, we see that {Ux[t,0] | A > 0} is a

Cauchy family in the uniform operator topology, so that limx^0Oi/x[f,0] = U[t,0]

exists. It is straightforward to prove the same results for Ux[t,0].   Q.E.D.

Theorem 2.2. U[t,0] = U[t,0].

Proof. It is clear from §1 that

s-hmUnz[t,0] = Un[t,0]    and    s-limUnz[t,0] = Un[t,0],
z 10 z10

so it suffices to prove Uz[t, 0] = Uz[t, 0].

w:[t,o]-u:[t,o]\\ =

We now use the fact that

u exp\p E[Tj,T]Az(T)dr\ -   ][ exp{A/,^(T,)}

7=1        ^O-i >       7=1

7=1 7=1

(in our case | ex< |, | ey> |«s 1) to obtain

(2.4)

n   j— 1 n

2   II ex,(ex> ~eyj)   II   e'J
7=1 i=l i=7+l

w:[t,o]-u„z[t,o]\\< 2
7=1

explp E[Tj,r]Az(rj)dr] - exp{A^(Ty)}
I tj-1 i
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Let us consider the^'th term in (2.4):

(2.5)

•j-\

625

exp|^ E[Tj,T]Az(r)dr^- exp{A/y.^(T,)}

f^dvl-^expLp E[TJ,r]A%T)dj}exp{(l-v)àtJA'(Ti)}

Çdv explvp £[Ty,T]^z(T)íÍT

X í p E[tj, t]Az(t) dr - A/,.^(T,)exp{(l - c)átjA'(rf)}
l Vi

p(E[rJ,r]Az(r)-Az(rJ))dt

O-i

<p ||£[t7,t]^2(t)-^(t7.)IUt.

O-i

As in §1,

(2.6) \\E[rJt r]Az(r) - Az(tj)\\ = ||Íz(t) - i'(Ty)||,

so that using (2.6) and (2.5) in (2.4), we have

(2.7) W„z[t,0] - t£[/,0]||«   2 P \\Äz(r)-Äz(TJ)\\d,.
7=1  O-i

Choose TV such that

»>7Y=>||^(T)->lZ(Ty)||<-^

which can be done since Äz(t) is continuous; this means that for n > N,

(2.8) \\Unz[t,0]-Unz[t,0]\\^  2 P dri^f-)^e(z).
7=1 "'.-i

Now

OO       / \ T-.\«

(XT)*(2.9)     ||t/xz[í,0]-í7xz[?,0]||^e-^2 ^^M'.O]-t/*[r,0]||
n\

n = 0

N     /•. rr,\n

= e-x,2 (hlLmti0] _ U:[tM
n = 0

+e-      2     ̂ lllffM] - £&M]||.
n = N+l

n\
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Use (2.8) in the second part of (2.9) to get

— N   (XT)"
l|I/x['.0] - £/xz[í,0]|| < e'XT 2 ^—r-Wiït^] - Unz[t,0]\\ + e(z).

n = 0       n]

Letting X -» oo we get

(2.10) \\Uz[t,0]-Üz[t,0]\\^e(z).

Since e(z) is arbitrary we see that

Uz[t,0] = Uz[t,0]       Vz>0.

Hence U[t,0] = U[t,0].   Q.E.D.

It is intuitively clear that the above U[t,0] and that defined in (1.4) are the same.

However, a direct proof requires some additional work.

Let us set Ar„ = t — tn_x in our definition of Un[t,0], for each n.

Lemma   2.1.   Suppose   rn = rn(X)   satisfies   limx-00Tn = lim^^r,, = t.   Then

2^=o^~Xr((A£)"/n\)A(rn) converges strongly in the chronological sense to A(t); that is

oo (XT)"

lim   2e-XT^-f-\\A(Tn)4>-E[rn,t]A(t)<t>\\ = 0   forcbGD.
*-°° „=o "•

Proof. It suffices to prove the result for Az(t). Now

||£[t„, t]Az(t) - A'(rJ\ = \\Äz(t) - Äz(rn)\\.

SinceÄz(t) is continuous, given e = e(z), 37V such that n s* N => ||/îz(r) — ̂ z(t„)|| <

e(z). Thus

2e'XT^-\\Az(rn)-E[rn,t]Az(t)\\
«=o

N (XT)"

l^T^-\\Az(rn)-E[r„,t]Az(t)\\ + e.
n

n = 0

Letting A -» oo we get

00 (XT)"

lim   2e-xrl-7Lll^(TJ-£[T«'í]^(0ll^e-    Q-E.D.
*-°° „ = 0 "•

Theorem 2.3. (1)

-^r1 = 2 ^-xrlrr-^(TB)t/z[/,o]

and

dt ~n n\
n = 0

(2.11) d-<^-=Az(t)Uz[t,0].

(2)

n = 0
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and

(2.12) ^=A(,m,0l

In (2.11) the derivative is in the chronological sense and in (2.12) it is in the strong

chronological sense.

Proof of (1). Let TV be arbitrary and define Vx[z, [t, 0]] by

V?Mt,0]]=   2 e-^^Uj[t,0].

Since Aí„ = í — r„_,, it follows that

91^

8/

N    / \ t \ "

and

Wp       dVf*
dt i)t

e'XT2 ££LA'(Ta)U:[t,0]
n = 0

1 (XT\"
2     e-"A-^-\\Az(rn)Unz[t,0]\\

n = /V,+ l

(A/2-7V,-l)(-)e2'/z-X7      sup      t£Ç-.

This  last  term  can  be  made  small  if  Nx   and  N2  are  large,   so  dUx/dt =

limN^x(dVx/dt) exists with bound

317/

dt
«=0

To see that dUx/dt c-converges to ,4z(i)t7z[r,0], first note that the limit exists with

bound (2/z)e2'/z.

8(7;_A_e-xr|  lMÏ.E[^t]A.{t)u.[tt0]
n = 0

n\

= e-x,
00    (XT\"
2 ^-{Az(rn)Uz[t,0]~E[rn,t]Az(t)Uz[t,0]}

n = 0

00 <XT\"

2 e-^^-\\Az(,n)Uz[t,0]-E[rn,t]Az(t)Unz[t,0]\\

n = 0

+ I *-^£lK*[v'M'(0)(lffM] - Uz[t,0])\\
n = 0

n\

00       /\tt\'1

=Se 2t/z-\T

n = 0

(xry
n!

\Az(rn)-E[rn,t]Az(t)

W«,n+ ~e-XT 2 ^-T-W„z[t,0] - Uz[t,0]\\.
n=0



628 T. L. GILL

The first term -» 0 by Lemma 2.1, the second by definition of Uz[t, 0], so that

3i/z       ,.     dUf , .     .     .

-w = xlZ^r=A^u[t'0]

in the chronological sense. The proof of (2) now follows from strong limits.   Q.E.D.

We may now use the uniqueness of the initial value problem (in the strong sense)

to conclude that the evolution operator obtained in this section is the same as that

of§l.

3. In [Gl] it was shown that the time-ordered sum of two generators of contraction

semigroups is a generator almost everywhere in the weak operator topology. The

result depended on the assumed reflexive nature of the underlying space. The fact of

the matter is that under the most natural conditions the tensor product of two

reflexive Banach spaces need not be reflexive. This result goes back to Shatten [5],

the father of the subject. (See also Grothendieck [Gr].) Later work by Holub [H]

provides conditions on two Banach spaces if the crossnorm is either X (least) or y

(greatest). Holub also provides other interesting results.

If X is a reflexive infinite-dimensional Banach space, for example, then both

X<S>XX* and X<S>yX* are not reflexive. A special case of this general result was

known by Shatten and Grothendieck. Except for the small contribution of Gill [G2],

very little is known about infinite tensor products of Banach spaces. This means that

the theorem proved in [Gl] can be depended on only when all the underlying spaces

are Hubert with the unique Hubert space crossnorm completion of von Neumann.

In this section we remove the space restrictions and strengthen the result from the

weak to the uniform operator topology.

Let us suppose we have two families of time-ordered operators [Ax(t)\t G[0, T]]

and {A2(t)\t G [0, T]] with domains 7),(t) and 7)2(t) for each t. We assume that

both families are strong c-continuous generators of contraction semigroups. If P„ is a

standard partition of [0, t], let r¡, Sj G [r,_i, tj] and define

Un°[t,0] = expj 2 àLtj[Ax(rj) + A2(Sj)]

U=i

(3.1) Unx[t,0] = expl 2^Mtj)\,

Uj[t,0] = exp\ 2 tojA2(sj)

Since we have not assumed any relationship between Dx(t) and D2(s), Uj[t,0] is

well defined except when tj = Sj for some j, otherwise Up[t, 0] = Ux[t,0]Uj[t,0] =

Un2[t,0]Ux[t,0]. Define U¿[t,0], i = 0,1,2, by

(3.2) Ui[t,0] = exp(-XT) | i^Uj[t,0].
n = 0

Theorem 3.1. (1) hmx^xUJ[t,0] = U°[t,0] exists a.e.

(2) U°[t,0] = Ux[t,0]U2[t,0] = U2[t,0]Ux[t,0] a.e.
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Proof. (1) is clear; to prove (2) let 7 = 7, U 72: 7,, 72 dense in [0, T]\ 7, D 72

empty. Choose t- G /„ Sj G 72 so that U„°[t, 0] and Ux[t, 0] are well defined. Then

Uxx[t,0]U2[t,0] = exp(-2XT) 1  ̂ «Ml
n

le'
n = 0

2\T y

k=0

m = 0

(XT

m !

k

k\
Ux[t,0]

2
1=0

(XTjjjjjj
(n-k)\

(xry
/!

Uj[t,0]

uñ2-k[t,o]

oo ( \7*\n     n

= 2 e-^^r- 1 íl]u¿[t,o]uj_k[t,o].
n = 0 k = 0

Set Pn = PkU P„-k, where we count points in Pk and Pn_k as distinct (which is

required since the Tj and Sj are distinct). We now have

(3.3) Ux[t,0]UJ[t,0]- 2XT2 ̂ P^üj[t,o].
n = 0

n\

The " " is used to denote the use of a different family of partitions Pn; however, it is

still true that lim„_001 Pn |= 0. Comparing (3.3) with (3.2) we see that

(3.4) Ul[t,0]UJ[t,0] = Ujx[t,0].

The same calculation gives

(3.5) í/x2[/,0]í/A'[í,0] = 40A[í,0].

It should be observed that the same Ty and Sj appear on the right-hand side of both

(3.5) and (3.4). Computing the limit gives our result.   Q.E.D.

In passing, let us note that the method of §1 could have been used to prove the

above result in a few lines since

exp{ßx[r,0] + ßx2[/,0]} = exp{ßA[?,0]}exp{ß2[i,0]}

= exp{ßA2[r,0]}exp{ßA(i,0]}.

The reason for such a roundabout approach is partially revealed if we go back to

Ux°[t,0] in (3.2) and assume that Ary = l/n, 1 *sy < n, so that

(3.6) £tf[/,0] = e-"-2   '
n\

n«p{^i(T^)} nexp{^42(5,)

This certainly reminds us of the Trotter-Kato product formula which is fundamental

to conventional studies on the addition of unbounded operators (cf. Chernoff [C]).

The fact that Theorem 3.1 does not depend on the respective domains might give the

impression of some underlying pathology; however, those unaware of the possibili-

ties will be surprised (and inspired) by the work of Chernoff. In the most innocent of

cases he shows that generalized additivity of unbounded operators may occur even if

the domains only have the zero function in common. The exact relationship with the

Trotter-Kato product formula requires the construction of a certain symmetric

Banach space which is a generalization of Fock space and will be discussed at a later

time.
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Let us recall that L[<S)"e,0TXB(r)] is the space of bounded operators on

®T"e[0 T]B(t). Since limx^00I7x'[/, 0] = U'[t, 0] = U'[t, 0] exists when t} G 7„ ¡j G 72,

and since L[®Tae/ß(T)] is complete, we conclude that t/'[r,0] G L[^&iB(t)],

i — 0,1,2. This result is quite nice since it implies that d> ®t&iB(t) (which is

separable) may be used as our state space (film) for the study of the evolution

equation

(3.7) ^p- = A(t)4>(t),       <b(0) = 4>.

This is also pleasing from a physical point of view since it may be interpreted to

mean that the physical information about a system is already contained in a

countable number of time slices. This result is also related to the sample path

approach to random functions (cf. Loeve [Lo,pp. 500-501]).

It has recently been shown in two nonoverlapping examples by Goldstein [Go]

and Dorroh [Dr] that the standard assumption of a dense common core for all times

/ in the study of linear evolution equations cannot be expected to hold. They

constructed unique solutions to the Cauchy problem (3.7) for <f> in a dense subspace

(in the conventional sense) with solutions depending continuously on the initial data,

and in the Goldstein example, (ltD(t) = {0}, while in the Dorroh example D(t) D

D(s) is a nowhere dense set of s =£ t. In our approach we assume no special

relationship between respective domains.

We now obtain a number of other results in the foundations of linear evolution

equations.

Theorem 3.2. Suppose </> G D[AN(s)], 0 < s < t. Then

U[t,0]<b = expipA(T) dr\<t>

may be represented as

N-l

(3.8)    U[t,0]<j> =   2   f'dTkpdrk_x--- pdTxA(rk)---A(rx)<b + RN[t,0]<b,

where R N[t, 0] satisfies

**['>0] = Cdv(l -v)Nexp[vf'A(T)dr)

(3.9) °   T T      [    ° J

XÍ drN-- f2drxA(rn)--A(rx)4,.

Proof. We know from Theorem 1.2 that

(3.10) Qz[t,0] = f'Az(T)dr   and    Q[t,0] = ('a(t) dr
Jo Jo
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are both generators of strongly continuous semigroups of operators s-lim.i0ßz[/,0]

= ß[f,0]. Now

(3.11)

"-' (Qz[t,o])k<t> , ,.,,.„    .,w.„.f.^.r. ftll tßiii.o]);v

A: = 0

(This result may be found in [HP, p. 354].)

Let us consider the case k = 2. We have

t=n *' •'O -v •

2(ßz[^,o]r,_i
-2!        *"2 ff'AZ(Tx)dTxAZ(T2)dl'CO *.

The term on the right can be split up by considering x, < t2, t, > t2:

lfpA*(T2)A'(Tx)dTxdT2+U'f'A*(Tx)AZ(T2)dT2dTv
2 ^o -Oj ■'O-'t,

The region of integration is the square 0 « t, < i, 0 < t2 < r. We have divided it

into two equal triangles: 0 < t, < t2, 0 < t2 < t and t2 < t, < t, 0 < t2 < r. Let us

rewrite the second integral as (interchange order of integration)

U'pdrxdT2Az(rx)Az(r2)

and replace t, -» t2, t2 -» t, so that

(Qz[t,o])\_rn
2!

<(>=['pAz(T2)Az(rx)dTxdT2
•'O-'O

The result for all k follows by induction; taking strong limits proves our theorem.

Q.E.D.
In Theorem 3.1, let us replace A2(r) by eA2(r), e > 0, so that U°(t,0] becomes

Uj[t,0] = exp{jf'[^,(T) + eA2(r)]}dr = Ux[t,0]UJ[t,0]    a.s.

The following is a result of Feynman.

Lemma 3.1.

(3.12) j-£UJ[t,0]U=fyx[t,T]A2(r)Ux[T,0]dT.
d

Proof.

f£UJ>[t,0] = Ux[t,0]fEUt2[t,0]   a.s.

since f¿eA2(r) dt = ej¿A2(r) dr = eß2[/,0], and as ß2[/,0] is a generator by Theo-

rem 1.2, we have

j¡ue2[t,o] = Q2[t,o]uj[t,o].
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Hence

d Uj[t,0] |e=0 = t/'[i,0]ß2[i,0]t/2[/,0] U   a.s.

It.

de

= exp{j\(T)Tr} j\(r) d

We may split the right-hand side into regions with t < f and t > f to get

feUJ[t,0]{^^^exp[¡\(f)dry2(j)exp^Ax(r)d^dT.    Q.E.D.

If we combine Theorem 3.2 with Lemma 3.1, we get

Theorem 3.3. 7/d> G D[A%(s)], 0 < s =£ /, then

(3.13) i/°[f,0]*=   2  i'drk---p2dTxUx[Tk+x,Tk]A2(rk)Ux[rk,Tk.x]A2(r^x)
k=o Jo Jo

■ • • Ul[r2, tx]A2(tx)Ux[tx, rQ]<b + RN[',0]<>   a.s.

where t0 = 0 and rk+x = t, 0 *£ k < A/ — 1, a«i/

(3.14) Aw[/,0]*=y1ífo(l -ü)/Vexp{ü|^2(T)í/T}y'í/TA,

X Tdr, [/'[ t„+i, tw]^2(tJí7,[ta,, tw_,] • • • Ux[rx,r0].
Jo

(3.13) and (3.14) were incorrectly written in [G4].

Theorem 3.3 is a generalization of the Feynman diagram method, in the sense that it

does not depend on the existence of a propagator function for the evolution U ' [ t, 0], and

we provide a remainder.

Let us now suppose that Ax(t) is a self adjoint generator of a unitary group and

A2(r) does not depend on t, so that the time index simply tells us when it operates.

Define A /(t) by (interaction representation)

(3.15) /1/(t) = C71[0,t]^2(t)c/1[t,0]

and

(3.16) f7'[0, t]Ux[t,0] = Ux[t,0]Ux[0, t] = 7.

Under general conditions, it is not hard to see that A,(t) will be the generator of a

contraction semigroup; however, in physics the case of interest is when A,(t) is a

self adjoint generator of a unitary group and 7?(t) for each t is a separable Hubert

space. This will be true if and only if A2(t) already has this property; replacing

(0, T) by [-T, T] we have

(3.17) S[t,-t] = expi[f'AI(T)dr}

exists and is a well-defined unitary group. S[t, -t] is known as the S-matrix in

physics (field theory), and much effort has gone into identifying conditions under



time-ordered operators 633

which it exists. Combining (3.17) with Theorem 3.2 we get

¡v-i   .. rr2

(3.18)    S[t,-t]<b=   2      ärk--      drxAf(Tk)---Al(rx)(b + RN[t,-t]<¡>-
k=o-< -i

This is the standard form of the perturbation expansion of the S-matrix which is

used for computation in quantum field theory (modulo manifest covariance). There

is one major improvement, namely the inclusion of a remainder term after the A/th

order computation.

Suppose we are given a general transition kernel K[x, t, y, s] which provides us

with a transition of the system in position y at time s to position x at time /. Let us

further assume that this kernel is associated with the family of operators [Äx(t) 11 G

[0, T]} (all of this is assumed in the conventional sense) so that the equation

dv
— = Äx(t)v,       v(0) = vo,
dt

is satisfied by

v(x,t) = f k[x,t,y,0]v0(y)dy=Ux[t,0]vQ.
J ni

If we replace the family {/1,(t)|t G [0, T]} by its time-ordered version (^,(t)|t

G [0, T]}, a natural family of kernels K[x(i), t, x(s), s] is induced. In order to

identify the exact relationship, let us return to (3.1):

(3.19) U„x[t,0] = exp\2jt'J E[rj,r]Ax(r)dr\.

From [Gl] this may be written as

Uj[t,0] = nexp[fJ£[T,,TK(T)¿T
7=1 l Vi

(3.20)

(3.21)

n

= n
7=1

(3.22)

= n
7=1

<g>   Is®{Üx[tj,tj_x])®       <g>   7,
)*ÍS<Tj \ Ty<s«r

®   /,®    /3      t[x(tj),tJ,x(tj_j),tJ.x]dx(tJ_j)
o<i<Ty \ R (0-i)

n

= II /,       dx(tj_x)Krj[x(tj),tj,x(tj_x)tj_x].
7=1  R (0-i)

If we combine (3.22) with our definition of í7a[í, 0] (3.2), we have

oo     /\ rp\n    n

(3.23) Uxx[t,0] =e-XT 2 ^~ n /3       dx(tj_x)

xKj*(í/)'f/»*(0-i)»f/-J-
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Since the left-hand side of (3.23) exists as a bounded linear operator, we can view the

right-hand side as an operator-valued (path) integral. From Theorem 2.1 we know

that limx^xUx[t, 0] exists in the uniform operator topology, and we see that we may

represent Ux[t, 0] as an operator-valued path integral

(3.24) Ux[t,0] = ÍK,[x(t),t,x(0),p]D,[x(0)].
Jx

We may now translate all our theorems in this section into statements about such

path integrals. The important point is that a path integral exists whenever a transition

kernel is available. The details will be presented elsewhere.
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