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ESTIMATES OF CALORIC MEASURE

AND THE INITIAL-DIRICHLET PROBLEM

FOR THE HEAT EQUATION IN LIPSCHITZ CYLINDERS

BY

EUGENE FABES1 AND SANDRO SALSA2

Abstract. In this paper the authors prove unique solvability of the initial-Dirichlet

problem for the heat equation in a cylindrical domain with Lipschitz base, lateral

data in Lp, p > 2, and zero initial values. A Poisson kernel for this problem is shown

to exist with the property that its L2-averages over parabolic rectangles are equiva-

lent to ¿'-averages over the same sets.

Introduction. Let D denote a bounded Lipschitz domain in R" and D+ the

cylinder D X (0, oo). Given a continuous function g on 37) + and compactly sup-

ported there, there exists a unique classical solution, u, of the heat equation

n

Lu(x, t) = 2 Dlu(x> 0 ~ D,u(x, t) = 0   in D+
;=1

with initial-boundary data g. When we fix a point (x, t) G D+ the mapping

g -» u(x, t) is a continuous nonnegative linear functional on C(dD+) and hence

there exists a unique Borel measure, u>x'', on 37)+ so that u(x, t) = /3D gdux''. The

measure ux-' = «¿-' is called the caloric measure (associated with D+ ) evaluated at

(x, t). Because of Harnack's inequality [7] for nonnegative solutions of the heat

equation, for T fixed and positive all the measures (wxT: x G D) are mutually

absolutely continuous.

In this work we examine the relations between the surface measure and the caloric

measure, ux'T, restricted to the lateral boundary, 97) X (0, T), of D X (0, T). Our

main result states that caloric measure and surface measure on 37) X (0, T) are

mutually absolutely continuous. Moreover, if dQ denotes surface measure on 37)

then dux,T(Q, A) = K(x, T; Q, s) dQ ds and for any parabolic surface cylinder A of

37) X (0, T) (see notations below)

1    r V/2      C   r
jÄj//2(*> T; Q, s) dQ ds       < — Jk(x, T; Q, s) dQ ds

where |A| = fA dQ ds and C is a constant depending only on dimension, the Lipschitz

character of 7) and (x, T). C can be taken independent of the points (x, T) provided

these points are allowed to vary over a fixed compact subset of D+ .
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The above result leads to the solvability of the initial-Dirichlet problem for

the heat equation with given lateral data in Lp, p^2. More precisely, if g G

Lp(dD X (0, T)) with p > 2, then there exists a unique solution of Lu — 0 in

7) X (0, T) satisfying the zero initial condition and at almost every point, (Q, s), of

37) X (0, T) converging to g(Q, s) through parabohc cones with vertex at (Q, s) (see

Theorem 3.2).

We point out that for general domains in R"+ ' whose boundary is composed of a

base and a lateral part, S, which is described locally by the graph, xn =

f(xx,...,xn_x,t), with / Lipschitz continuous in the space variable and Holder

continuous of order \ in time, caloric measure and «-dimensional Hausdorff

measure on S may be mutually singular. For details and further references the reader

should see [10].

Before continuing, the authors wish to thank Professor Carlos E. Kenig for the

many helpful discussions related to this paper. These discussions and his work with

David Jerison provided us with the basic ideas and tools needed for the results.

Our paper is divided into three sections. §1 proves the absolute continuity of a>x-T

with respect to surface measure on 37) X (0, T) and establishes the L2-integrability

of the Poisson kernel,

y *    '     d(dQXds)

The main tool of this section is the identity in Lemma 1.1, which is a parabolic

version of the identity 2.1 in [7] for the Poisson kernel of Laplace's equation.

§2 studies the boundary behavior of the Poisson integral,

u(x, t)= f    K(x, t; Q, s)f(Q, s) dQ ds = ffdu>x',
JdD+ JS

for / G L2(dD X (0, £)). The primary result is the pointwise domination of the

maximal function

«•(ßo.Jo) = suPl"l
r<?o.'(j

(YQ s is a parabolic cone with vertex at ô0,^o and contained in 7) X (0, T)) by a

constant times the (parabohc) Hardy-Littlewood maximal function M(f2)(Q0, s0)x/2

where

M(g)(Q0,s0) = sup \ -t— I \g\ dQ ds: Ar is parabohc surface cylinder
r>o[\^r\J^r

of 37) X (0, T) with radius r and center QQ, s0 j

In §3 we combine the results of §2 with the fundamental work of Muckenhoupt in

[9] to conclude the mutual absolute continuity of caloric measure, ux,T, and surface

measure on 37) X (0, T). Another consequence is the construction of the solution to

the initial-Dirichlet problem for the heat equation with zero initial values and lateral

data equal to a given g G Lp(dD X (0, T)),p^ 2.
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Much of the notation we will use is either standard and needs no elaboration or

will be explained at the time it is introduced. For now we wish to give the basic

geometric definitions and objects repeatedly used in this work.

Our primary domains will be the cylinders D+ = D X (0, oo) and DT = D X (0, T)

for T < oo and their corresponding lateral boundaries S — 37) X (0, oo) and ST =

37) X (0, T). Here 7) is a bounded region in R". The letters x and y will denote

points in 7?" and will generally belong to D. x' and j' will denote points in R"~x and

we will often write x = (x\ xn) when we wish to distinguish the nth coordinate of x.

Letters P and Q will denote points on 37), the boundary of 7), and t and s will be

used for time variables.

Definition. We call a bounded domain D G R" a Lipschitz domain if for each

point Q G 37) there exist a ball, B = B(r,Q), with center Q and radius r, and a

coordinate system of R" such that in these coordinates

B n D = B n {(x',xn): xn > <p(x') and ||V«p||£.«»{/l»-i) < m < oo}

and B n 37) = B n {(*', <p(x')): x' 6Ä""1}.

We will assume the radius of the ball, B, and the constant m in the above

definition are chosen independent of Q G 37). This radius, r0, and the number m

define what we will call the local Lipschitz character of D. If in a given estimate the

constant depends only on the dimension, n, m, r0, and the number of coordinate

balls of radius r0 needed to cover 37), then we will say the "constant depends only on

the Lipschitz character of D ".

Finally we set

*,(Ô. 0 = {(y, s):yGD,\y-Q\<r,\t-s\<r2,0<s<T},

A,(ß, 0 = {(P, s):íe dD,\P -Q\<r,\t-s\<r2,0<s<T}.

Ar(g, t) will be called the (parabohc) surface cylinder of ST with radius r and center

Q,t.
Throughout the rest of this paper 7) will denote a bounded Lipschitz domain in

R". If the functions, <p, whose graphs describe 37) locally are C°°(7v"_1), then D is

called a smooth domain.

1. The L2-integrability of the Poisson kernel. In this section we turn our attention

to the absolute continuity of caloric measure with respect to surface measure on

S = 37) X (0, oo ) and to the square integrability of the Radon-Nikodym derivative,

which is the Poisson kernel.

We set

r(*,0 = (4^r/2exp(-|*|2/4/),

the fundamental solution in all space for the heat equation, and, for the bounded

Lipschitz domain, D, we denote by G(x, y, t) the Green's function associated with

D and the heat operator. Specifically for x, y G D and t > 0, G(x, y,t) —

Y(x - y,t)- g(x, y, t) where for x fixed g(x, ■, ■ ) is the unique solution of the

problem

L(g(x, -,-)) = o, g(x,y,o) = o, g(*,ß,0 = r(*-ß,0   (ßeaz>).
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For smooth domains, 7), if NQ denotes the inner normal to 37) at Q, the function,

(dG/dNQ)(x, Q,t — s), is the Poisson kernel for L in D+ , i.e., the potential,

v(x,') = ('(  ^-(x,Q,t-s)f(Q,s)dQds,
J0 JdD ÖISQ

is the solution to the problem Lv = 0 in D+ , v(x,0) — 0, v\s =/. With obvious

abuse of previous notation for K we set

dC
K(x, t; Q, s) = K(x, Q,t-s) =-^-(x, Q, t - s).

Lemma 1.1. Fix x0 G D and t0 > 0. Assume V(y,s) is a Cx vector field defined on

R"+x with values in R" such that V(x0, t0) = 0. For smooth domains, D, the following

identity holds:

pi (V(Q,s)-NQ)K(x0,Q,tQ-s)K(x0,Q,s)dQds
J0   JSD

(1.1) = -pJL[^-7)(x0,y,s)]jG(x0,y,tQ-s)dyds

~Pf   wtr>    ,(x0,Q,s)K(x0,Q,t0-s)dQds,
J0   JäD0V(Q, s)

where

(*o.ß.*) = ü*|-T(r(*o- -.*))(ß)dV(Q,s)y  °'~'   '     dV(Q,s)

and V • N is the standard inner product on R".

Proof. If Q G 37) we can write V(Q, s) — T(Q, s) + c(Q, s)NQ where for each s,

T(Q, s) is a tangential vector field to 37). Since G(x, Q, s) — 0 on S we have

Hence

w^q s) (*, ß, *) = c(Q, s)j§~(x, Q, s) = c(Q, s)K(x, Q, s).

It follows that

S'S   win    A^Q^)K(x,Q,t-s)dQds
,. -x jojzdoV(Q, s)

= f'f c(Q, s)K(x0, Q, s)K(x, Q,t-s)dQds
J0JdD

for x0, x G D and / G (0, T].
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Recall that G(x0, y, s) - Y(x0 - y, s) - g(x0, y, s). Hence the left side of (1.2)

equals

n3r,.n-WrWjT)^Q^)K(x,Q,t-s)dQds
'0 hodV(Q,s)

3g
-f'l   win    Axo,Q,s)K(x,Q,t-S)dQds.

JohDoV(Q, s)

Finally,

f'f   wtn    AxQ,Q,s)K(x,Q,t-s)dQds
JoJdDoV(Q,s)

= f iL\ w(8 \(x°'y>S))G(X>y^'~s)dyds + ai// ,x(*o»*>0-
J0JD   \dV(y,s) ! dV(x,t)

We now substitute in ( 1.2) to obtain

(' ( c(Q, s)K(x0, Q, s)K(x, Q,t-s)dQds
J0JdD

= "/„'//t =^7)(w,*))g(*,.>.,<-s)*.ä

-ÍX-^(x^s)K{x-Q-'-¡)dQ(b-wb)ix«-x-')-

Since 3g(*0, x0, tQ)/dV(x0, t0) - 0 equation (1.1) follows after observing that

c(ß,*)= V(Q,s)NQ.

Lemma 1.2. Assume D is smooth and let m and r0 determine the local Lipschitz

character of D. For QQ G 37), s0 > 0, and 0 < r < r0/4, set

(Qr,tr) = (Qo,Qon + 3r,s0 + 5r2).

There exists a constant c depending only on the dimension n and the local Lipschitz

character of D such that f&ÁQo,So)K(Qr, Q, tr - s)K(Qr, Q, s) dQ ds < cr~"-x.

Proof. Pick 8 = 8(y, s) G C0°°(7r+1) satisfying O<0<1, 0 = 0 outside the set

{(y, s): \y\ < 2, |i| < 2} and 8 = 1 on {(y, s): \y\ < l,|j| < 1}. Consider the vector

field

VAy,s) = e[l^,S-^y       (en = (0,-,0,l)GR»)

and observe that

Q- Qo   s- sA        1
VÁQ,s)-NQ>8(^-^,S—^]j

]/l + m2
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We now apply Lemma 1.1 with V replaced by Vr, x0 by Qr, t0 by tr — sQ + 5r2

and we obtain the inequahty,

1

/l + m2 J*ÂQo.sa
f K(Qr,Q,tr-s)K(Qr,Q,s)dQds

•'A tn.   *-\

uA^^){Qr'y's))G{Q-y^^s)dyds

l0JDÍK(Q^){Qr,Q's)K{Qr'Q'tr~s)dQds = i + ii.

We have

|II| < C ■ sup{\DyY(Qr, Q, s)\: (Q,s)G A2r(ß0, s0)} < c •#■--'.

To get an estimate for 7, notice that

i^f)-^-^"^
= (Ds8r)Dyß - (A/J-T^g- 2 2 (Dy8j)-D2y¡yng.

i=i

By our choice of 8r we have

\Dy8r\<c-r~x,    \D,8r\<c-r2,   \DJ8r\< c-r'2.

Performing an integration by parts in the terms involving Dj   g and using the above

estimates we get

Hl<c Í1/[ r J>hr(Q0, s0)
|VrG(ß„ y, tr - i)||V„g(ßr, y, s)\ dyds

-( G(Qr,y,tr-s)\vyg(Qr,y,s)\dyds\
r    JrkÁQo<'o) J

= c(A+B).

We show how to estimate A, the way to estimate B being analogous. By Schwarz'

inequality

1/2

\A\<Uf \vyY(Qr,y,tr-s)\2dyds)       / |V,g(ßr,j,*)|

+ 7 / Wyg(Qr,y,s)\2dyds\    (/ \vyg(Qr,y,tr-s)\

Since

/ \'/2

1/ \VyY(Qr,y,tr-s)\2dyds\      < cr'"'2
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we have to show that

(/ \Vyg(Qr,y,s)\2dyds)      <cr""/2,

(/ \Vyg(Qr,y,tr-s)\2dyds\      <c-r-"/2.

Since the procedure for estimating both integrals is the same, we will give the details

only for the first one.

We consider

% = {(y, &■ {\y - Qr\2 + \s- tr\Y/2 < <*r)

with a chosen in a way such that ^2r(Q0, s0) n GJir — 0. Now let h = h(y, s) G

C°°(R"+1) with h = 1 outside %r and h = 0 in %r/2. Denote by w = w(y, s) the

solution of the problem

Lw = L(hY),   w = 0onSU [Dx{0]};   hereY = Y(Qr- ■, ■).

We have g(Qr, y, s) = h(y, s)Y(Qr — y, s) — w(y, s), and what we wish to esti-

mate now are the integrals

7, = f \Vy(hY)\2   and   72 = f |vy">\2-

In i2r hY = Y, therefore |Vv(«r)| < c • r""-1 and |7,| < c ■ r"2"-2 • r"+2 = c ■ r">, the

desired bound.

To estimate 72, consider a smooth function <p(y, s) such that 0 < <¡p =£ 1, <p(y, s)

= 1 in ip2r, <p(y, s) = 0 outside tf^+y), witri Y chosen in a way such that 4'(2+y)r ̂  ^r

= 0. Then, from Lw = L(hY) we get

j      <p2wLw=f      <p2wL(hY).
*(2 + T)r <ffc!+T>r

Using integration by parts we have

/       q>2wLw = f        <p2( irD,w2 — wA w\
V'(2 + T)r "fe + ylr

Therefore

= /       «P^V^wl2 - j       <pw2Dty + j       2w<pVy<p ■ Vyw.
"fe-t-T)' 'fe + ï), t(2 + y)r

i      <P2Wyw\2<(      y2w\L(hY)\+ (      <f>\D,<p\w2
^2 + y)r ^(l + yV *<2+T>

+ j       2wm|VJ,(p||V>,w|.

*a+y)r
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Using the estimates | V/p| <cr ' and \D,q>\ < er 2 we get

/       <P2|V,w|2«/       \wL(hY)\ + -( u-

+ \J       <P2|V(,w|2 + 4/       w2.

The latter inequality implies

( Wvw\2<- f w2+ [       \wL(hY)\.
Jh, r  "'«fe, •/^2+Y)r

Since |w|<2r<c/-""_2we conclude that

Jú,r   ' r r

c    -+•>   ]      .    c    „ + 2     1
-Jn+Z—— = er

J4,2r r- r~"      r r''   ¿

which is the desired bound for 72.

Remark. Suppose 0 E 7). Then the arguments of Lemma 1.2 can be used to show

that

Pf K(0,Q,T-s)-K(0,Q,s)dQds^c

where the constant depends only on the dimension, the Lipschitz character of D and

max(l, T). To see this, choose 8 = 8(y) G C0°°(R") satisfying 0 < 8 < 1, 0 = 0

outside the set {y, |_y| < 2}, 0=1 on {y, |_y| < 1} and consider the vector field

VfjLy* s) = ^ç(y) — ̂ ((y ~ Q)/aro)' en where a is chosen in a way such that

VQ(0, s) = 0 for each Q G 37). Now cover the boundary 37) by a finite number of

surface balls Sk = B(ar0, Qk) Pi 37), /c = l,...,N,N depending only on the Lipschitz

character of D and repeat verbatim the arguments in the proof of Lemma 1.2 with

VQk, 0, T instead of Vr, Qr, tr, respectively.

We are now ready to prove the main theorems of this section. These results

assume D is a bounded Lipschitz domain in 7?" containing the origin, 0.

Theorem 1.3. Let wor be the caloric measure in D+ evaluated at (0, T) and

dQ X dt the n-dimensional Hausdorff or surface measure on ST. Then u°'T < dQ X dt

with density in L2(ST).

Theorem 1.4. The limit

^¡-G(0, Öo, T-s0) = lim VyG(0, Q0 + rNQo, T - s0)-NQo

exists for a.e. (with respect to dQ X dt) (Q0, s0) G S. Furthermore, for each Borel set

EGSwe have

u°-T(E) = j'-^-G(0,Q,T- s)dQds.

Proof of Theorem 1.3. Assume first that D is smooth. Since K(x, Q, t) =

(d/dNQ)G(x, Q, t), as a function of (x, t), Q fixed on 37), is a nonnegative solution
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of the heat equation, the Harnack principle [8] implies that

K(0,Q,s)<cK(0,Q,3T-s)   ifse[0,r].

Thus by the above inequality and the Remark following Lemma 1.2 we can write

(Tf K2(0,Q,T~s)dQds= Ci K2(0,Q,s)dQds
Jr,  •'an j0  JdD

cPT( K(0,Q,s)K(0,Q,3T- s)dQds^c,
•'n     ¿An

where the constant depends only on the dimension, the Lipschitz character of 7), and

max(T, 1).

Suppose now that D is Lipschitz and Tí is a ball with center Q G 37) for which

B n 37) = {(/, <p{y')):y' G R"~x,\\V(p\\LX < m).

We can find a sequence of smooth domains, DJ, and a sequence of smooth

functions, <p-, such that (a) <p,--» <p uniformly, (b) V<py-* V<p a.e. in R"x, (c)

||V«p,-||i.« < 2m, and (d) B n {(/, <Pj(y'))} G 37X

Denote by u, the caloric measure associated with Dj and suppose / is a

continuous function on R"+x whose support is compactly contained in B+ = B X

(0, oo). From Lemma 1.2 and the preceding argument in the smooth case

(o.n(/) = rj flQ s)K^q T_s)dQjds
J0  JdD>

<c||/||ta(4)       (S'T=dD'X(0,T))

with c independent of j.

Since coj-T\f) - u>°-T(f) and \\f\]LHsJr, - ||/||^,sr) **j - °° we have co°-r(/) <

cll/ll/.2(s >■ ̂y usm8 a partition of unity of 37) corresponding to a finite covering of

coordinate balls B we obtain the estimate

<o°'r(/Hc||/| L2(ST)-

An application of the Riesz Representation Theorem concludes the proof of (1.3).

Remark. It is clear from the argument in Theorem 1.3 that

K(x,t;Q,s) =
dQ X ds

is zero for s > t.

Proof of Theorem 1.4. Fix (Q0, s0) G ST and let B0 denote the ball of radius r0

and center Q0 for which, in the coordinate system>> = (y', yn), B0 n 7) = 7?0 D {y:

y„ > <p(y')}- Let Y(Q0, s0) denote the parabolic cone with vertex (Q0, s0) given by

{(y,s):c>yn- Q0„>c'\y' - Q'0\ + c"\s - s0\x/2,0 < s < T). Since 7) is Lipschitz

we   can   find   c,   c',   c"   such   that   Y(Q0, sQ) G DT.   Set   d = d(y, s; Q0, s0)

= h-Qo\2 + \s~so\-
From Schauder estimates and Harnack's inequahty [8],

17/7(0, y,T-s)\<c -d-xG(0, Qd, T-s0 + 2d2)
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where Qd = (Q'0, Q0n + d). From Lemma 2.2 of [10] we have

d~"G(0, Qd, T-s0 + 2d2)< cJ°<T>(äd(Q0, s0 - 2d2)).

The last two inequalities imply

\VyG(0, y, T- s)\ < cd-"-xJ°^(à2d(QQ, s0))

<csupr-"-xf K(0,T;Q,s)dQds
r>0 Jb,(Q0,s0)

= cM(K(0,T;-,-))(Q0,so).

Here

7C(0, T; ■, ■ ) = d^°'T)/d(da X dt)

and M is the Hardy-Littlewood maximal operator. By Theorem 1.3 and the Remark

following it M(K(0, T; ■, • ))(Q0, s0) is finite for a.e. (with respect to dQ X dt) point

(ßo> ^o) G S* therefore| Vvg(0, y, T — s) | is nontangentially bounded a.e. (dQ X dt)

on ST. By Lemma 2.6 of [5] we get the first part of the theorem. The second part of

the theorem can be proved by very closely following, with obvious changes, the

argument in [2, Lemma 7(b)]. We omit the details.

Remark. The argument for passing from smooth to Lipschitz domains given in

the proof of Theorem 1.3 can be used directly to extend Lemma 1.2 to Lipschitz

domains. As a consequence if we again abuse the notation for K and set K(x, Q, t)

= (d/dNQ)G(x, Q, t) then

/ K(Q„ Q, tr - s)K(Qr, Q,s)dQds< cr'"'1

with C depending only on the Lipschitz character of D.

2. Boundary behavior of the Poisson integral. In this section we study the parabohc

nontangential maximal function associated with the potential

u(x,t) = ff(Q,s)dux-'(Q,s).
Js

For Q0 G 37) we let B0 denote the ball of radius r0 and center Oo f°r which there

exists a coordinate system of R" so that relative to this system

B0nD = B0n {y = (y',y„):yn><p(y')}-

Also in terms of these same coordinates we describe the (inner) nontangential

parabolic cone with vertex (Q0, s0) by

I\ßo, i«,) = {U s):c>y„-Q0n> c'\y' - Q'0\ + c"\s - s0\x^2,0< s < T)

where c, c', c" are constants depending only on the local Lipschitz character of D

and chosen so that Y(Q0,s0) G D+ .

If u is a function defined on DT we set u*(Q0, s0) = supr(ßo s y\u(y, s)\ and we

call u* the parabolic nontangential maximal function of u at (Q0, s0). Finally, as in
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the proof of Theorem 1.3, we let

M(g)(Q0, s0) = sup-^( \g(Q, s)\ dQ ds
r>0  r JAr

denote the (parabolic) Hardy-Littlewood maximal operator.

Lemma 2.1. Suppose f G L2(S) and u(x, t) = }sf(Q, s) dux''(Q, s). For each

T > 0 there exists a constant c depending on the Lipschitz character of D and

max(T, 1) such that

u*(Qo^o)<cM(f2)(Q0,s0)l/2

for all (Q0, s0) GST=dDX (0, T).

Proof. Clearly we can assume/ > 0. By Harnack's inequality

(2.1) u*(Q0,s0)<csupu(Qr,tr)
r>0

where (Qr, tr) = (Q'0, Q0n + 3/*, s0 + 5r2). As usual c denotes a constant depending

only on the dimension and on the local Lipschitz character of 7).

Set R0 = A0, Rj = A7.\Ay._, where A,. = A2,r(ß0, s0). We fix r with r < r0 (r0

defined in the Introduction) and choose N so that 2N~ xr < r0< 2Nr. Then, we have

u(Qr, tj) < 2 / /(ß- *) d<¿QM + J       /(ß.i) ^(ß"'')-
J=QJKj XnS7-

From Lemma 1.2 of [5] we infer

7 = /        f(Q,s)d¿e^<c-f        f(Q,s)d^'^(Q,s)    (tro = s0 + 5r2).

Theorem 1.1 and Schwarz' inequality give

(2.2) I<c(p°fj2(Q,s)dQds]jV\c{M(f2)(Q0,s0)y/2.

Consider now fR f(Q, s) duiQ"'r). For 7 = 0 we have

/ f(Q, s) defies = [So+5ri        f f(Q,s)K(Qr,Q,s0 + 5r2-s)dQds
JR0 Jmax(0,sQ-r2)J\Q-Q0\<r

Jds
J\Q-Qo\<

PI f(Q,s0 + 5r2-s)K(Qr,Q,s)dQ,

:(/ f2(Q,s)dQds)     [f K2(Qr,Q,s)dQds)

Observe now that K(x, Q, t) as a function of (x, t) for Q fixed on 37) is a

nonnegative solution of Lu = 0. Since s£(0,9r2) we have 20r2 — s > s and

Harnack's inequality implies

K(Qr,Q,s)<cK(Qr,Q,20r2-s)
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with c independent of Q and r. By Lemma 1.2 and the Remark following Theorem

1.4

f K2(Qr,Q,s)dQds
•^3,(00.0)

<c( K(Qr, Q, s)K(Qr, Q,20r2 - s) dQds < cr"""1.
•^3,(60.0)

Collecting the above estimates we obtain

/ \x/2

(2.3) f f(Q,s)dœ^'^cr<'"-x^2 if f2(Q,s)dQds\     .
JKo \JlS.}r(Qo,s0) I

For j = 1,2,..., 6 we proceed in the manner described above. Suppose now that

j > 6. The function h(x, t) = JR f(Q, s)K(x, Q, t — s) dQ ds is a nonnegative solu-

tion of the heat equation vanishing in a neighborhood of Av-2r(Q0, s0). The

boundary Harnack principle in [6] implies

(2.4) h(x,t)<ch(Q2jr,t2jr)

for (x, t) G 4'2J-2r(Qo' Jo) with c independent of y and r.

We choose coordinates in 7?" so that Q0 is the origin and

*2'-»,(ßo. *o) = {(*. ()■ \x[< V~2r,\t- s0\< V~2r2, x = (x', xn)

withx„ > «p(x'),||V<p||L« < m, <p(0) = 0}.

The function

,      .      h(2J-2ry,4^2r2t + s0)

KQvn h'r)

is defined on {(y,t): \y[ < I, \t\ < 1, y = (y',yn), yn > tfOO} where t|/(/) =

(2J~2r)~x<p(2J~2ry'). ü also satisfies the heat equation and |ü| íc on this set.

Moreover,

Ü = 0   on {(y, t): \y\ < l,\t\ <l,y= (/, *(/))}.

Since HVt/'lli.«» = ||V«p||L«> = m and c, the bound for w, depends only on m, ü is

Holder continuous at (0,0) with a Holder exponent and constant depending only on

m. Hence

HQr, K) = h(QVr, tvr)ü(^-2,^JZ-2)   < ch(Q2Jr, t2J,)2-J'

with c and a depending only on the local Lipschitz character of 7).

Now set Cj = 2~Ja. Then

KQr, tj) < cCjf   f(Q, s)K(QVr, QA'r2 + s0 - s) dQds.
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Again, a change of variables and Schwarz' inequality give

f f(Q,s)K(Q2Jr,Q,Vr2 + s0-s)dQds
J^2h(Qo,So)

(2.5) <cCj\f f2(Q,s)dQds)

■if K2(QVr,Q,S)dQds\     .
\^2'*'r(Ö0.0) /

The boundary Harnack principle [6] implies

K(QVr, ß> s) < cK(Q2lr, Q, 5 ■ A'r2 - s)

for s G (0,4 • 4-V2) with c independent of Q, r and j. The above estimate and

Lemma 1.2 give

(2.6) / K2(Q2Jr,Q,s)dQds^c(Vr)
n-1

Now (2.6), together with (2.5), gives

(2.7)     f f(Q,s)dJ^'^ccJ\(V+xr)-"-lf f2(Q,s)dQds
JRj V J^v+>AQa,sa)

with2°°c;< oo.

In conclusion we have, collecting all our estimates,

i1/2
u(Qr,tr)^c\2c^(M(f2)(Q„s,))

This concludes the proof of Lemma 2.1.

In the next lemma we assume 0 G D and we set

M„(f)(Q0,s0) = sup   {0T)(.)n-77 f \f(Q,s)\d^-T\Q,s).
r>o w(U'"(AAßo^o))^r(öo^o)

Lemma 2.2. Suppose f G L2(ST), /s* 0, and u(x, t) = JSrf(Q, s) du{x-'\Q, s).

Then, for (Q0, s0) G ST, we have

cMu(f)(Q0, s0) < u*(Q0, s0) < CMu(/)(ß0, s0)

with c and C depending only on the dimension and on the Lipschitz character of D.

Proof. Clearly we may assume / > 0. The right inequahty in Lemma 2.2 is an

immediate consequence of [5, §2]. For the left one, we have

(2.8) M*(ßo> í0) 3* u(Qr, tj) = jf(Q, s) du«*r,'r)

>f f(Q,s)K(Qr,Q,tr,s)d^T\
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In (2.8) we have set K(Qr, ■, tr, ■ ) = dJQ"'^/d(/°-T) which belongs to LX(S; d^°-T))

by Harnack's inequality. By Lemma ( 1.4) of [5], we have

(2.9) 1 = K(0, Q, T, s) < cK(Qr, Q, tr - s)J°-T>(Ar(Q0, s0))

and from (2.8) and (2.9) the desired inequality follows quite easily.

3. The initial-Dirichlet problem. In this section we prove our main results concern-

ing the mutual absolute continuity of caloric and surface measure and the construc-

tion of a unique solution to the initial-Dirichlet problem in D+ with zero initial

values and lateral boundary values equal to some given Lp data, p>2.

Theorem 3.1. Assume D is a bounded, Lipschitz domain in R" containing the origin.

Let iú0,t denote the caloric measure associated with D+ and evaluated at (0, T). Set

where dQ = surface measure on 37). Then there exists a constant c depending only on

n, the Lipschitz character of D and max(r, 1) so that for any surface cylinder A of ST

the following inequality holds:

il \1/2 1
(3.1)       ^JK2(0,Q,T-s)dQdsj      <c^fK(0,Q,T-s)dQds

where |A| = JAdQds.

Consequently, dQ X ds and co°'r are mutually absolutely continuous on ST—dDX

(0, T).

Proof. Lemmas 2.1 and 2.2 imply that Mu(f) is a bounded operator from L2(ST)

into weak-L2(Sr). Now applying the results in [9] we conclude that Ma(f) is

bounded from L2(ST) into L2(ST) and that (3.1) holds. This in turn (see [1, Lemma

5]) implies that dQ X ds « u°'T on ST. The absolute continuity of wor with respect

to surface measure was already proved in §2.

Theorem 3.2. Assume f G LP(ST; dQ X dt) with p > 2. Then there exists a unique

solution u of the heat equation in DT satisfying

(i) lim,_0+ u(x, t) = 0 uniformly on compact subsets of D;

(ii) for almost every (dQ X dt)(Q0, s0) G ST

lim        u(x,t)=f(Q0,s0)
(x,t)er{Q0,s0)
(x,l)^(Q0,s0)

where Y(Q0, s0) is a parabolic cone contained in DT with vertex Q0, s0 (see the

beginning of §2);

(iii) u*(Q0, sQ) G L»(ST; dQ X dt).

Moreover, we can find u(x, t) satisfying (i)-(iii) and \\u*\\LPISt) < c||/||L,(Sr).
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Proof. Obviously u(x, t) — fs f(Q, s) du>x''(Q, s) is a solution of the heat equa-

tion verifying conditions (i) and (iii) of Theorem 3.2. On the other hand Lemma 2.1

implies that the map / -» u* with u defined as the Poisson integral of/is a bounded

map from LP(ST) -> weak-Lp(ST) for 2<p<oo. When / is continuous and

compactly supported in ST, u is continuous in DT and

lim u(x, t) = f(x, t).
(x,t)eDT-'Q0,s)

Since this class of/'s is dense in LP(ST), 2 =£/? < oo, condition (ii) follows from a

fairly standard argument.

For the uniqueness we may assume u satisfies conditions (i)-(iii) with / = 0 and,

of course, we seek to prove u = 0. We first fix a coordinate ball Br with center Q0

on 37), i.e.

Bro n D = {x = (x', x„): \x\ < r0, x„ > <p(x')}.

For e > 0 and sufficiently small, the function ue(x, t) = u(x', xn + e, t) is continu-

ous in (Br<¡ n D)T and since it is zero initially (condition (i))

»e(x, t) = if ucdo>xB'+        (t < T).
J0  Jd(BronD) °

Condition (iii) and Lebesgue's dominated convergence theorem allow us to conclude

that

u(x, t) = lim«£(x, t) = f   ( uduxj nD)
e-0 •'O   •'3(í,onn) °

Since u is zero on 37) we have

u(x,t)= f   f udux¿' nD)
J0   Jd(BronD)\dD °

It follows that, for 0 < s0 < T,

hm u(x, t) — 0.
(x,t)<EDT^(Q0,s0)

So u is continuous in DT and is zero on 37) X [0, T) U D X {0}. Hence u = 0 in

DT.
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