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A RESTRICTION THEOREM FOR SEMISIMPLE LIE GROUPS

OF RANK ONE

BY

JUAN A. TIRAO1

Abstract. Let gR = fR + pRbea Cartan decomposition of a real semisimple Lie

algebra g R and let g = f + p be the corresponding complexification. Also let a R be

a maximal abelian subspace of p R and let a be the complex subspace of p generated

by a R. We assume dim a R = 1. Now let G be the adjoint group of g and let K be the

analytic subgroup of G with Lie algebra adfl(f). If S'(g) denotes the ring of all

polynomial functions on g then clearly S'(g) is a G-module and a fortiori a

K-module. In this paper, we determine the image of the subring S'(g)* of K-

invariants in S'(fl) under the restriction map/i->/|r + ll (/6 S'(q)K).

1. Introduction. Consider a reductive Lie algebra gR over R, a fixed Cartan

decomposition flR = fR + ^R and a maximal abelian subspace aR of pR. Extend gR

to a Cartan subalgebra fi of the complexification g = ! + p of g R in the usual way.

By <j> we shall denote the set of roots of the pair ( g, h ) and by W^ the corresponding

Weyl group, whereas A will denote the set of roots of the pair (gR, aR) and W¿ the

corresponding Weyl group. Let G be the adjoint group of g and let K be the analytic

subgroup of G with Lie algebra ad fl( f ). If H is a group and V a finite dimensional

//-module over C, let S'(V) denote the ring of all polynomial functions on Vand let

S'{V)" denote the subring of H invariants.

Fundamental for many questions in representation theory is the following Cheval-

ley's Restriction Theorem:

(i) The operation of restriction from g to h induces an isomorphism of S'{ g )c onto

S'(b)w*\

(ii) The operation of restriction from p to a induces an isomorphism of S'( p )K onto

S'(afK
Also we have a theorem of the same nature due to Helgason: If g R is a classical

semisimple Lie algebra (with real or complex structure) then the restriction from b to

a maps S'(i))w* onto S'(a)w\ This does not hold in general for the real forms of the

exceptional Lie algebras E6, En, £g, but in any event, the elements in S'{a)Wtl are all

obtained from rational invariants on b by restriction. In fact we have the following

result of Harish-Chandra and Helgason: Let Q(S'(i))w*) and Q(S'(a)w*) denote the

quotient fields of S'Ci))^* and SYa)^ respectively; then the restriction from b to a

induces a mapping of Q{S'(\))W*) onto Q(S'(a)w*) (for all this see §2.1.5 in [4]).
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This paper is concerned with the determination of the image of the homomor-

phism of S'(q)k into S'(i + a) induced by restriction from g to í + a. In [3] a

suitable element b E S'(q)k is defined and the following theorem of Kostant is

proved: Let S'(fl)* be the localization of S'(q)k by b (i.e. the ring of all rational

functions on g of the form f/bk where f E S'( 8 )* and k E Z) and let S'( f + a )^' be

the localization of S'(t + a)M' by b0 — b]t+a, M' being the normalizer of a in K; then

the restriction from g to I + a induces an isomorphism of S'( g )f onto S'( t + a )^'.

Starting from this result we are able to characterize the image of ^"(g)^ in

S"(f + a)M' in the split rank one case. Thus, from now on we assume that

a R Pi [ g R, g R] is one dimensional. If M is the centralizer of a in AT then M'/M =s W^.

Let T denote the set of equivalence classes of irreducible, finite dimensional

holomorphic representations of K admitting an M-fixed vector. Using results in [2]

we prove that any t E T can be realized as a A^-submodule of homogeneous

harmonic elements in S(p). The degree of these elements, d(r), is uniquely de-

termined by t. Let S¡,(a) denote the homogeneous subspace of S'(a) of degree n,

and let S'( f )T denote the primary component of S'( Î ) of type t. Our main result is

the following.

Theorem. The operation of restriction from g to f + a induces an isomorphism of

S'(Q)Konto

©     ©    {S'(t)? ® S¿a)f\
n»0      tET

í/(t)«h

Let §, % and â denote the universal enveloping algebras over C, of g, f and a,

respectively. Also let §K and %M be the centralizers of K in § and of M in %,

respectively. In many fundamental questions concerning the infinite dimensional

representation theory of a Lie group with Lie algebra g R it would be very important

to know the image of an injective antihomomorphism P: §K -» %M ® &, due to

Lepowsky and Rader (see [5 or 6]), which replaces the famous Harish-Chandra

homomorphism y: §K -» 6£ (see [3]). Our main theorem should prove useful in this

respect.

2. We use much of the notation in [2]. Thus gR = fR + t>Risa Cartan decomposi-

tion of a real reductive Lie algebra g R and g = f + p is the corresponding complexi-

fication. The associated Cartan involution 8 is 1 on f and -1 on p. Also, aR is a

maximal abelian subspace of pR, so that its complexification a is a Cartan subspace

of p. Let G be the adjoint group of g and let KB be the subgroup of all elements in G

which commute with 0. Clearly f and p are stable under the action of Ke. Now if K

denotes the analytic subgroup of G with Lie algebra ad B( f ), then K is the identity

component of Ke. Moreover, if F is the set of all elements of order 2 in the

connected Lie subgroup A of G corresponding to adg(a), then F is a finite abelian

group of order 2d™c(a) which normalizes K and such that Ke = KF (see Proposition

1, p. 761 in [2]).

For any vector space Klet S'(V) denote the ring of all polynomial functions on V,

and for every nonnegative integer /' let S¡(V) denote the homogeneous subspace of
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S'(V) of degree i. Then S'(fl) is a Aymodule: if /ES'(g) and a E K then

afES'(Q) is given by (af)(x)=f(a~Kx), x E g. Let S'(g)* be the ring of

AT-invariant polynomials.

The injection map f + a^f + t> = g induces contravariantly the restriction

homomorphism S'(g) -» S'(t + a). This homomorphism restricted to S'(q)k in-

duces a homomorphism

(2.1) tt: S'(q)K ^ S'(t + a).

In [3] a homogeneous polynomial b E S'(q)k is defined such that b(x + y) = b(y)

for all x E f and y E p. If M' is the normalizer of a in A" then M' operates on f + a

and we may consider S'(t + a)M', the ring of Af-invariant polynomials. Let S'(g)*

be the localization of S'(q)k by b, so that S'(g)* is the ring of all rational functions

on g of the form f/bq where / E S'( g )* and ? E Z. If S'(f + a)^' denotes the

corresponding localization of S'(f + a)M' by ¿>0 = tT(b), then we know that (2.1)

extends to an isomorphism of algebras

(2.2) ,r:S'(fl)£-S'(î + û)£

(see Theorem 6.1, p. 147 in [3]). In particular (2.1) is injective. In this paper we

describe its image when dim a — 1.

First, we recall a few basic facts about S-triples in g. An S-triple is a set of 3

linearly independent elements (x, e, /) in g where [x, e] = 2e, [x, f] = -If and

[e, f] — x. It is called normal in case e, f Ep and x E f. For any y E p let py

denote the centralizer of y in p. Then y E p is called regular if dim py < dim p" for

any m E p. Also ^ E p is regular if and only if dim py = dim a (see Propositions 7

and 8, p. 770 in [2]). A normal S-triple (x, e, f) is called principal if e (and hence/)

is regular. Theorem 3, p. 773 in [2] guarantee that they exist. Now fix a closed Weyl

chamber D C aR. A normal S-triple (x,e,f)is called standard if e + / E D. Let A

be the set of roots of ( g, a ) and let II C A be the set of simple positive roots

corresponding to D. Also let w be the unique element in a n [g, g] such that

(\, w> = 2 for all X E n (obviously w E D). From [2] we know: any normal S-triple

is AT-conjugate to a standard S-triple (Lemma 6, p. 776); a standard normal S-triple

(x,e,f) is principal if and only if e+f= w (Proposition 13, p. 776); any two

principal normal S-triples are AT9-conjugate (Theorem 6, p. 778).

From now on, we shall assume that aRn[gR, gR]is one dimensional, that is, that

gR is of split rank one. Also (x,e,f) will be a principal normal S-triple and

z = x/2.

Proposition 1. ad z: p -» p is diagonalizable with eigenvalues 1,-1 and possibly 0.

Proof. We may assume that (x, e, f) is a standard principal normal S-triple. One

knows that II = {X} and that the root space decomposition of g is of the form

8 = 8° + 8X + 9~x + 82X + 8"2X; here g2X and g"2X can be zero and g° = m + a,

where m, as usual, is the centralizer of a in f. Therefore, the eigenvalues of adw,

w = e + /, in g are 2, 0, -2 and possibly 4 and -4. Now x and w are G-conjugate, so

the eigenvalues of ad x in g are the same as those of ad w. Since dim(pe n [g, g]) = 1,

Pe H [ g, g ] = Ce. Therefore, up to a scalar, e is the unique highest weight vector in
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Ve n [8. 9] of the TDS (three dimensional simple Lie algebra over C) spanned by

(x, e, /). From the representation theory of a TDS now follows that 4 cannot be an

eigenvalue of ad x in p. For the same reason -4 cannot be a lowest weight of x in p.

Q.E.D.
Remark. The multiplicity of ± 1 as eigenvalues of ad z in p is 1 + dim g 2\ This

follows immediately from the representation theory of a TDS and the fact that

[f,P]cp.

Since the polynomial b is A-invariant the closed algebraic set V(b) = {y E p:

b(y) = 0} is stable under the action of K. Regarding its A"-structure in the rank one

case we have the following facts.

Proposition 2. The algebraic set V(b) is irreducible and of codimension 1 in p.

Moreover there are only a finite number of K orbits in V(b). Furthermore if(x, e, f) is

a principal normal S-triple in g, then K- e and K-f are the unique orbits in V(b) of

maximal dimension so that K ■ e U K-f is Zariski open and dense in V(b).

Proof. We know that the ring S'(p)K of A^-invariant polynomial functions in p is

a polynomial ring C[u] in one homogeneous polynomial u (because dim a = 1).

Since b is also homogeneous we may assume that b = ur for some positive integer r.

Therefore V(b) = h~'(0). On the other hand we have a homomorphism of K into the

group of permutations of the set of irreducible factors of u. Since K is connected

each irreducible factor is A"-invariant. This implies the irreducibility of u and hence

of V(b). According to Theorem 9, p. 785 in [2] there are only a finite number of

A"fl-orbits, hence of A-orbits, in m~'(0), and the set of regular elements in w~'(0) is the

unique A"9-orbit of maximal dimension in u'\0).

Since e and/are nilpotent elements b(e) = b(f) = 0 (see Corollary 5.5, p. 147 in

[3]), therefore Ke ■ e = Ke-fis the orbit of regular elements in V(b). Without loss of

generality we may assume that (x, e, /) is a standard principal normal S-triple, so

that w — e + f. In the rank one case under consideration, the abelian group F of all

elements of order 2 in A is of order 2 and F — {1, a} where a = Ad(exp iriw/2). If

we put

u = j(e — f — x)    and    v = {(f — e — x)

then (w,u,v) is a new S-triple. But e — (u — v + w)/2, thus a-e = f. Therefore

Ke-e = KF-e = K-eU K-f.   Q.E.D.
Note that all eigenvalues of z in S'(f) are integers and that if SYfL is the

eigenspace of S'( f ) corresponding to the eigenvalue^' then

S'(f)=   0  S'(t)j.
J = -0O

Moreover S'(g) = S'(f + P) = S'(t) ® S'(p), in other words an element u E S'(a)

can be viewed as a polynomial on p with values in S'(f). In particular b is a

polynomial on p with values in C and u/bq is a rational function on p with values in

S'(l).
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Theorem 3. Let u/bq (u E S'(q)k) be a rational function on p homogeneous of

degree n > 0. Then u/bq is a polynomial if and only if

(2.3) fq{y) E  © S'(t)j
j=-n

for all y E p such that b(y) =£ 0.

Proof. We can write uniquely u — 2uj (finite sum) where Uj is a polynomial

function on p with values in S'(t)■. Clearly u/bq is a polynomial if and only if Uj/bq

is a polynomial for ally.

Since the eigenvalues of z in p are 1, 0, -1 (Proposition 1) there exist

lim   e~'Ad(exptz)-y = y+
f— +00

and

lim e'Ad(exp íz/j» =>>_
r—-oo

for allj E p.

If u/bq is a polynomial on p we have

(2.4) äv>+)=   "m   (e-'Ad(exp/z)-j)=   lim  e(^""^(^).
Ov r^ + oo i^ + oo bH

If m; ̂  0 we can certainly choose y E b such that Uj(y) ¥= 0, then (2.4) implies that

j < n. Similarly, letting t -> -oo we obtain that/ > -«.

Conversely if (2.3) holds and b(y) ¥=Q,y Ep, then

í^oo^(e-'Ad(expíz).>í)=||(7).

But

b(y+)=   lim   (e~'Ad(exp fz)-y) =   lim   b(e~'y) = 0,
Í-* +00 í-> +00

therefore w(j>+) = 0 whenever g > 0. Similarly we obtain that u(y^) = 0, for all

y E p such that ¿>(j>) ̂  0. The element e +/ is AT-conjugate to w, thus e + f is

regular and semisimple, hence 6(e + /) ¥= 0 (see §5 in [3]). Now (e + f)+ = e and

(e + /)_ = /, thus u(e) — u{f) = 0. Therefore u vanishes on K- e U A"/and hence

u is zero on V(b) (see Proposition 2). By Hubert's Nullstellensatz b divides um for

some m. Since 6 is a power of a prime polynomial (see the proof of Proposition 2), it

follows that u/bq is a polynomial.   Q.E.D.

If V denotes a A^-submodule of S'(f) then Vj is the eigenspace of z in  V

corresponding to the eigenvalue/.

Lemma 4. Let f¥^0 be a K-invariant rational function on p with values in an

irreducible K-submodule V of S'( f ). 77ien the following conditions are equivalent:

(i)f(y) E ©;=_n S'(ï)j for ally E p where fis defined;

(ii)F = ®"=_„Vj.
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Proof. That (ii) implies (i) is obvious. So assume (i) and take v =f(y) # 0,

y E p. Then

n

k-v = kf(y) =f(k-y) E © V]   for all Â: E A".
j = -n

Thus the cyclic A^-submodule generated by v is contained in ©"=_„ V¡. By irreducibil-

ity Vcoincides with this cyclic module, hence V = ©"=_„ V-.   Q.E.D.

Now let M be the connected Lie subgroup of G corresponding to ad H( m ), where

m denotes the centralizer of a in f. If the rational function f=u/bq on f,

0 ¥= u E S'(q)k, takes its values in a A"-submodule of S'(i) then the space Vu of

M-invariants in V is different from zero. In fact, since the restriction homomorphism

(2.2) is injective, there exists y E a such that (u/bq)(y) = v ¥= 0. But k-v =

(u/b")(k -y) = (u/bq)(y) = v for all k E M C A.

This observation and the statements of Theorem 3 and Lemma 4 lead us to

consider A"-irreducible submodules F of S'(f) such that VM ̂  0 and V = ©y"=_n V}.

Let T denote the set of all equivalence classes of irreducible holomorphic finite

dimensional ^-modules Vr such that VTM ¥= 0.

Let H be the subspace of the symmetric algebra S(p) over p spanned by all

powers ek, k — 0, 1,2,..., of all nilpotent elements e in p. It is clear that H is a

homogeneous subspace of S{p) and that H is stable under the action of Ke. The

elements in H are called the harmonic elements in S(p). Now let Me be the

centralizer of a in Ke. Then Me = MF (see Lemma 20, p. 803 in [2]). Let T be the set

of all equivalence classes of irreducible holomorphic finite dimensional A"9-modules

Vy such that the space VyM» of A/9-invariants in Vy is different from zero. If Hy is the

set of all h E H which transform under Ke according to y, then H = © er^y

Moreover, in the rank one case, each Hy is A^-irreducible (see Theorem 2.2.9 in [1]).

Since Hy is unique there exists a nonnegative integer d(y) such that Hy is pure

homogeneous of degree d(y). That is, d(y) gives the degree in which y occurs

harmonically in S(p). The remarkable fact is that d(y) can be obtained from the

abstract A"9-module Vy. Indeed, if (x,e,f) is a principal normal S-triple and

z = x/2 then d(y) equals the highest eigenvalue of z in V (Corollary 2.2.5. in [1]).

Proposition 5. Each irreducible K-module VT, t E T, is isomorphic to a K-submod-

ule of a Kg-module Vy of type y ET.

Proof. We may assume that Ke ¥= K; in this case the nontrivial element a E F is

not in K. Given a A^module V of type t E T we define a structure of AT-module on

V X V. Let <p denote the automorphism of Ke defined by conjugation by a. Let

y(k)(x, y) = (kx,<p(k)y)    and   y(ka)(x, y) = (ky, <p(k)x)

for all (x, y) E VX Fand all k E K. Since Ke = KF, cp(K) C A" and K n F= {1},

y is well defined on Ke. Moreover it is easy to check that y is a representation of Ke

on V X V. By hypothesis there exists 0 ¥= x E VM; then (x, x) E (V X V)M» since

Me = MF and <p(M) C M. Thus (V X V)Me ¥= 0. If V X F is A:fi-irreducible we are

done since V is isomorphic to F X {0} as A-modules. If not VX V— W® W

where W and W are irreducible ATfl-submodules ( Ke is a reductive group) and we
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may assume that W = V X {0} and W =* {0} X Fas A:-modules. If WM» ̂  0, Wis

a A"e-module of type y E T containing a A-submodule of type t. If not, fF'M» # 0.

Then we define y(w)H>' = <¡p(«)w' for all w' E W and all u E Ke. The Aff-module

(IF', y) belongs to T and as a A-module is isomorphic to V.   Q.E.D.

The following result is of independent interest and it will be used later in this

paper.

Proposition 6. When f is not abelian (this means essentially gR ¥= §1(2, R)) given a

principal normal S-triple (x, e, f) in g there exist elements E and F in ï and a real

number c such that {ex, E, F) is an S-triple in f.

Proof. Let bR be a maximal abelian subalgebra of gR containing qr. The

complexification h of bR is a Cartan subalgebra of g; let <> be the set of roots of

( g, h ). Let a and t denote the conjugations of g with respect to g R and u = f R + ip R,

respectively. If f is not abelian then there exists a E <t> such that a ¥= a" and a \a = X.

In fact we may assume that gR is simple. Now if a = a" for all a E <¡> such that

a \a = X then dim gx = 1, g2X = {0} and [g\ g"x] C a. Hence gR = mR + ctR + gR

+ g Rx where m R = m n g R and gRx = g±xngR. Furthermore aR + gR + gRAis

an ideal in gR, thus gR = aR + 8R + gRx and fR is one dimensional.

Take a E <¡> such that a" =£ a and a \a = X. Then (a, a") < 0 since a° — a & <j>

(Lemma 1.1.3.6, p. 25 in [4]). The quadratic form B(X, tX) is negative definite on g,

thus we may choose X E g "" such that

B(X, tX) =
2(a,a") - (a, a) '

Let X' = -rX E Qa and put E = X + 6X, F = X' + OX', y = b(X' + aX') E g*

where b2 = (2(a, a") - (a, a))/((a, a) + (a, a")) < 0. Then

[y, By] = b2[X' + aX', OX' + tX']

= b2([X', tX'] + o[X',tX'])

since [A", OX'] = 0 because 0X' E g"a° and a - a" E 0. But

2 H
(2.5) [X', rX'] =-[X',X] = -B(X', X)Ha =---^--,

2(a, a ) — (a,a)

thus

2b2
^^ = 2(a,a°)-(a,a)(g" + ffg»)£fln^^

Moreover

2b2 x( 2b2((a,a) + (a,a°))

2(a,«')-(a,a)   K   " tt) 2(a, a") - (a, a)      ~¿

therefore [y, Oy] = w and (w, y, 6y) is an S-triple. Now if we put x = y + By,

e — (w — y + By)/2, f = (w + y — By)/2 we get a standard normal principal S-

triple, since e + f = w.
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On the other hand if T— [E, F] one can easily verify that (T, E, F) is an S-triple.

In fact,

T= [X+BX, X' + BX'}

2

2(a,a°) - (a, a)
(Ha + BHa) + [X,BX'\ + 8[X,BX'].

Then

.      2(-(a,a) + (a, a")) ,

[T,E]=   \y        '       -f-{X+BX)2(a, a  ) — (a,a)

+ [[X, 8X'],8X] + 8[[X,8X'],BX]

since [[X, BX'], X] = 0, because -3X is not a restricted root. But

[[X,BX'],BX] = -[[BX'.BX], X] - [[BX, X], BX']

2(a,aa) -(a,a)

where we used (2.5) and [BX, X] — 0 since -ae = a" and a" — a E <$>. Therefore

^E^=Tt-^T—i-r(-(a,a) + (a,a°))(X+eX)
2(a, a ) — (a, a)

+ (a,cc°)X + (a,a°)BX) = 2E.

In a similar way we obtain that [T, F] = -2F.

Now

x = y + By = b(X' + aX' + BX' + tX') = b(F- E).

But F — E is A"-conjugate to i[E, F] = iT, thus (~i/b)x is the semisimple element of

an S-triple in f. Since any two principal normal S-triples are A"fl-conjugate the

proposition is proved with c = -i/b.    Q.E.D.

Theorem 7. Let (x, e, f) be a principal normal S-triple in g.

(i) If a,2X — 0 and dim gA > 1 there exist E, F E Í such that (x, E, F) is an S-triple

in f.

(ii) When g2X 7er 0, x/2 is the semisimple element of an S-triple in g.

Proof. By Proposition 6 we just need to compute

b2 =
_ 2(a,a") - (a, a) _ 2(a, a")/ (a, a) - 1

(a,a) + (a,aa)        1 + (a, a0)/ (a, a)

When g2A = 0 Lemma 3 in Appendix 2, p. 33 in [4] gives (a, a") = 0, hence b2 = -1

and we may choose b = -i to get c = 1.

If g2X ¥= 0 the same lemma tells that (a, a") < 0, therefore 2(a, a")/{a, a) = -1,

-2 or -3. But

Q<4(X,X) = 2«(//a + a//J^2  |  2 («,«')

(a, a) (a, a) (a, a)

thus 2(a, a°)/(a, a) = -1. Hence ¿>2 = -4 and we may take b — -2/ to obtain

c = 1/2.    Q.E.D.
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Proposition 8. // V and V, are Ke-modules of type y, y' E Y both of which contain

a K-submodule of the same type, then d(y) = d(y').

Proof. Let W be a A-irreducible submodule of Vy. Then an a IF is also a

A-submodule, hence W C\ aW is equal to IF or to {0} and correspondingly Vy = W

or vy = W ® a IF since IF + a W is a A„-submodule of Vy.

Let (x, e, f) be a standard principal normal S-triple and let z = x/2. If Vy = W

® a W then d(y) is the highest eigenvalue of z in IF or in aW. If z(aw) = d(y)aw for

0 ¥= w E W then (az)w = d(y)w. But az = -z thus zw = -t/(y)vv. If [gR, gR] ^

§I(2,R) then z or 2z is the semisimple element of an S-triple in f and hence the

eigenvalues of z in a A-module are symmetric. Thus d(y) is in any case the highest

eigenvalue of z in W. When [gR, gR] = 51(2, R) f is abelian, W is one dimensional

and d(y) equals the absolute value of the eigenvalue of z in W. In both cases the

proposition follows.    Q.E.D.

Propositions 5 and 8 enable us to define the degree of a A-module VT, tET,

Definition. The degree d{j) of a K-module VT, t E T, is the degree of any

Kg-module Vy, y E T, which contains a K-submodule isomorphic to V7.

Corollary 9. Let FT be a K-module of type r E T and let (x, e, f) be a principal

normal S-triple in g; put z — x/2. Then d(j) equals the highest eigenvalue of z in VT,

when [gR, gR] ¥^ ël(2,R). //[flR, gR] = §I(2,R) then d(r) equals the absolute value

of the eigenvalue of z in VT.

Corollary 10 (to Proposition 5). Let VT be a K-module of type t £ T. Then

d{r) gives the degree in which t occurs harmonically in S(p).

If t denotes an equivalence class of irreducible holomorphic finite dimensional

A-modules let S'(f)T be the set of all/E S'(f) which transform under A" according

to the representation t. Since S'(f) is a completely reducible K module we have

S'(f)= ©TS'(f)T.

Theorem 11. Let u/bq (u E S'(c\)K) be a rational function on p homogeneous of

degree n > 0. Then u/bq is a polynomial if and only if

(2.6) ^(.v)E    ©   S'(f)T

</(t)«:«

for all y Ep where b(y) ^ 0.

Proof. According to Theorem 3 we have to prove that (2.3) is satisfied if and only

if (2.6) is true. Assume (2.3). Right after Lemma 4 we observed that

£(*)E©S'(r)T.

tGT

Now Lemma 4 and Corollary 9 imply that

±(y)E   ©   S'(f)T.
b TET

Conversely if (2.6) is verified then (2.3) follows immediately.   Q.E.D.
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The group M' leaves f + a invariant, thus the Weyl group W = M'/M operates

canonically on the ring S'(f + a)M = S'(t)M ® S'(a) of M invariants in S'(f + a).

Let (S'(f )M ® S'(a))w denote the ring of Weyl group invariant elements in S'(f )M

® S'( a ). We are ready to state and prove our main theorem.

Theorem 12. The operation of restriction from g to f + a induces an isomorphism of

S'(q)k onto

(2.7) ©     ©    (S'(f)>s;(a)r.
n&O     t£T

í/(t)«íi

Proof. We already know that the restriction homomorphism (2.1) is injective and

that its image is contained in S'(t + a)M' = (S'(f)M ® S'(a))w. Theorem 11 now

shows, more precisely, that the image is contained in (2.7). Let v E

©TeT (/(T)«„(S'(í)í/ ® S¡,(a))w- Since (2.2) is an isomorphism of algebras there exist

u E S'(q)k and q > 0 such that it{u/bq) = v. By the A" invariance of u/bq we have

that

£O0e   © S'(!)T
tET

for all y E K- a ( K- a contains the set of all y E p where b(y) ¥= 0). On the other

hand since A'- a is dense in p, u/bq is homogeneous of degree nonp. Then Theorem

11 tells us that u/bq E S'(q)k. This completes the proof of the theorem.   Q.E.D.
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