A RESTRICTION THEOREM FOR SEMISIMPLE LIE GROUPS OF RANK ONE

BY

JUAN A. TIRAO¹

ABSTRACT. Let $\mathfrak{g}_{\mathbf{R}} = \mathfrak{f}_{\mathbf{R}} + \mathfrak{p}_{\mathbf{R}}$ be a Cartan decomposition of a real semisimple Lie algebra $\mathfrak{g}_{\mathbf{R}}$ and let $\mathfrak{g} = \mathfrak{f} + \mathfrak{p}$ be the corresponding complexification. Also let $\mathfrak{g}_{\mathbf{R}}$ be a maximal abelian subspace of $\mathfrak{p}_{\mathbf{R}}$ and let \mathfrak{g} be the complex subspace of \mathfrak{p} generated by $\mathfrak{g}_{\mathbf{R}}$. We assume dim $\mathfrak{g}_{\mathbf{R}} = 1$. Now let G be the adjoint group of \mathfrak{g} and let K be the analytic subgroup of G with Lie algebra $\mathfrak{g}_{\mathfrak{g}}(\mathfrak{g})$. If $S'(\mathfrak{g})$ denotes the ring of all polynomial functions on \mathfrak{g} then clearly $S'(\mathfrak{g})$ is a G-module and a fortiori a K-module. In this paper, we determine the image of the subring $S'(\mathfrak{g})^K$ of K-invariants in $S'(\mathfrak{g})$ under the restriction map $f \mapsto f|_{\mathfrak{k}+\mathfrak{g}}$ ($f \in S'(\mathfrak{g})^K$).

1. Introduction. Consider a reductive Lie algebra $\mathfrak{g}_{\mathbf{R}}$ over \mathbf{R} , a fixed Cartan decomposition $\mathfrak{g}_{\mathbf{R}} = \mathfrak{k}_{\mathbf{R}} + \mathfrak{p}_{\mathbf{R}}$ and a maximal abelian subspace $\mathfrak{a}_{\mathbf{R}}$ of $\mathfrak{p}_{\mathbf{R}}$. Extend $\mathfrak{g}_{\mathbf{R}}$ to a Cartan subalgebra \mathfrak{h} of the complexification $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ of $\mathfrak{g}_{\mathbf{R}}$ in the usual way. By ϕ we shall denote the set of roots of the pair $(\mathfrak{g}, \mathfrak{h})$ and by W_{ϕ} the corresponding Weyl group, whereas Δ will denote the set of roots of the pair $(\mathfrak{g}_{\mathbf{R}}, \mathfrak{a}_{\mathbf{R}})$ and W_{Δ} the corresponding Weyl group. Let G be the adjoint group of \mathfrak{g} and let K be the analytic subgroup of G with Lie algebra ad $\mathfrak{g}(\mathfrak{k})$. If H is a group and V a finite dimensional H-module over \mathbb{C} , let S'(V) denote the ring of all polynomial functions on V and let $S'(V)^H$ denote the subring of H invariants.

Fundamental for many questions in representation theory is the following Chevallev's Restriction Theorem:

- (i) The operation of restriction from \mathfrak{g} to \mathfrak{h} induces an isomorphism of $S'(\mathfrak{g})^G$ onto $S'(\mathfrak{h})^{W_{\phi}}$;
- (ii) The operation of restriction from \mathfrak{p} to \mathfrak{a} induces an isomorphism of $S'(\mathfrak{p})^K$ onto $S'(\mathfrak{a})^{W_2}$.

Also we have a theorem of the same nature due to Helgason: If $\mathfrak{g}_{\mathbf{R}}$ is a classical semisimple Lie algebra (with real or complex structure) then the restriction from \mathfrak{h} to \mathfrak{a} maps $S'(\mathfrak{h})^{W_{\bullet}}$ onto $S'(\mathfrak{a})^{W_{\Delta}}$. This does not hold in general for the real forms of the exceptional Lie algebras E_6 , E_7 , E_8 , but in any event, the elements in $S'(\mathfrak{a})^{W_{\Delta}}$ are all obtained from rational invariants on \mathfrak{h} by restriction. In fact we have the following result of Harish-Chandra and Helgason: Let $Q(S'(\mathfrak{h})^{W_{\Phi}})$ and $Q(S'(\mathfrak{a})^{W_{\Delta}})$ denote the quotient fields of $S'(\mathfrak{h})^{W_{\Phi}}$ and $S'(\mathfrak{a})^{W_{\Delta}}$ respectively; then the restriction from \mathfrak{h} to \mathfrak{a} induces a mapping of $Q(S'(\mathfrak{h})^{W_{\Phi}})$ onto $Q(S'(\mathfrak{a})^{W_{\Delta}})$ (for all this see §2.1.5 in [4]).

Received by the editors October 24, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 22E46.

¹ Partially supported by SUBCYT and CONICET (Argentina) grants.

This paper is concerned with the determination of the image of the homomorphism of $S'(\mathfrak{g})^K$ into $S'(\mathfrak{k}+\mathfrak{a})$ induced by restriction from \mathfrak{g} to $\mathfrak{k}+\mathfrak{a}$. In [3] a suitable element $b \in S'(\mathfrak{g})^K$ is defined and the following theorem of Kostant is proved: Let $S'(\mathfrak{g})_b^K$ be the localization of $S'(\mathfrak{g})^K$ by b (i.e. the ring of all rational functions on \mathfrak{g} of the form f/b^k where $f \in S'(\mathfrak{g})^K$ and $k \in Z$) and let $S'(\mathfrak{k}+\mathfrak{a})_{b_0}^{M'}$ be the localization of $S'(\mathfrak{k}+\mathfrak{a})^{M'}$ by $b_0 = b_{\mathfrak{k}+\mathfrak{a}}$, M' being the normalizer of \mathfrak{a} in K; then the restriction from \mathfrak{g} to $\mathfrak{k}+\mathfrak{a}$ induces an isomorphism of $S'(\mathfrak{g})_b^K$ onto $S'(\mathfrak{k}+\mathfrak{a})_{b_0}^{M'}$.

Starting from this result we are able to characterize the image of $S'(\mathfrak{g})^K$ in $S'(\mathfrak{f}+\mathfrak{a})^{M'}$ in the split rank one case. Thus, from now on we assume that $\mathfrak{a}_R \cap [\mathfrak{g}_R, \mathfrak{g}_R]$ is one dimensional. If M is the centralizer of \mathfrak{a} in K then $M'/M \cong W_\Delta$. Let T denote the set of equivalence classes of irreducible, finite dimensional holomorphic representations of K admitting an M-fixed vector. Using results in [2] we prove that any $\tau \in T$ can be realized as a K-submodule of homogeneous harmonic elements in $S(\mathfrak{p})$. The degree of these elements, $d(\tau)$, is uniquely determined by τ . Let $S'_n(\mathfrak{a})$ denote the homogeneous subspace of $S'(\mathfrak{a})$ of degree n, and let $S'(\mathfrak{f})_{\tau}$ denote the primary component of $S'(\mathfrak{f})$ of type τ . Our main result is the following.

THEOREM. The operation of restriction from \mathfrak{g} to $\mathfrak{k}+\mathfrak{a}$ induces an isomorphism of $S'(\mathfrak{g})^K$ onto

$$\bigoplus_{n\geq 0} \bigoplus_{\substack{\tau \in T \\ d(\tau) \leq n}} \left(S'(\mathfrak{k})_{\tau}^{M} \otimes S'_{n}(\mathfrak{a}) \right)^{W_{\Delta}}.$$

Let \mathcal{G} , \mathcal{K} and \mathcal{C} denote the universal enveloping algebras over \mathbf{C} , of \mathfrak{g} , \mathfrak{f} and \mathfrak{a} , respectively. Also let \mathcal{G}^K and \mathcal{K}^M be the centralizers of K in \mathcal{G} and of M in \mathcal{K} , respectively. In many fundamental questions concerning the infinite dimensional representation theory of a Lie group with Lie algebra \mathfrak{g}_R it would be very important to know the image of an injective antihomomorphism $P: \mathcal{G}^K \to \mathcal{K}^M \otimes \mathcal{C}$, due to Lepowsky and Rader (see [5 or 6]), which replaces the famous Harish-Chandra homomorphism $\gamma: \mathcal{G}^K \to \mathcal{C}$ (see [3]). Our main theorem should prove useful in this respect.

2. We use much of the notation in [2]. Thus $g_R = f_R + p_R$ is a Cartan decomposition of a real reductive Lie algebra g_R and g = f + p is the corresponding complexification. The associated Cartan involution θ is 1 on f and -1 on p. Also, a_R is a maximal abelian subspace of p_R , so that its complexification a is a Cartan subspace of p. Let G be the adjoint group of g and let K_{θ} be the subgroup of all elements in G which commute with θ . Clearly f and g are stable under the action of g. Now if g denotes the analytic subgroup of g with Lie algebra g and g and g are stable under the action of g and it is the identity component of g. Moreover, if g is the set of all elements of order 2 in the connected Lie subgroup g of g corresponding to g and g and g are g and g and g are g and g and g are g and g are g are g and g are g and g are g and g are g and g are g and g are g and g are g are g are g are g are g are

For any vector space V let S'(V) denote the ring of all polynomial functions on V, and for every nonnegative integer i let $S'_i(V)$ denote the homogeneous subspace of

S'(V) of degree *i*. Then $S'(\mathfrak{g})$ is a K_{θ} -module: if $f \in S'(\mathfrak{g})$ and $a \in K$ then $af \in S'(\mathfrak{g})$ is given by $(af)(x) = f(a^{-1} \cdot x)$, $x \in \mathfrak{g}$. Let $S'(\mathfrak{g})^K$ be the ring of K-invariant polynomials.

The injection map $\mathfrak{k} + \mathfrak{a} \to \mathfrak{k} + \mathfrak{p} = \mathfrak{g}$ induces contravariantly the restriction homomorphism $S'(\mathfrak{g}) \to S'(\mathfrak{k} + \mathfrak{a})$. This homomorphism restricted to $S'(\mathfrak{g})^K$ induces a homomorphism

(2.1)
$$\pi \colon S'(\mathfrak{g})^K \to S'(\mathfrak{k} + \mathfrak{a}).$$

In [3] a homogeneous polynomial $b \in S'(\mathfrak{g})^K$ is defined such that b(x+y) = b(y) for all $x \in \mathfrak{k}$ and $y \in \mathfrak{p}$. If M' is the normalizer of \mathfrak{a} in K then M' operates on $\mathfrak{k} + \mathfrak{a}$ and we may consider $S'(\mathfrak{k} + \mathfrak{a})^{M'}$, the ring of M'-invariant polynomials. Let $S'(\mathfrak{g})_b^K$ be the localization of $S'(\mathfrak{g})^K$ by b, so that $S'(\mathfrak{g})_b^K$ is the ring of all rational functions on \mathfrak{g} of the form f/b^q where $f \in S'(\mathfrak{g})^K$ and $q \in \mathbb{Z}$. If $S'(\mathfrak{k} + \mathfrak{a})_{b_0}^{M'}$ denotes the corresponding localization of $S'(\mathfrak{k} + \mathfrak{a})^{M'}$ by $b_0 = \pi(b)$, then we know that (2.1) extends to an isomorphism of algebras

(2.2)
$$\pi \colon S'(\mathfrak{g})_h^K \to S'(\mathfrak{k} + \mathfrak{a})_{h_0}^{M'}$$

(see Theorem 6.1, p. 147 in [3]). In particular (2.1) is injective. In this paper we describe its image when dim a = 1.

First, we recall a few basic facts about S-triples in g. An S-triple is a set of 3 linearly independent elements (x, e, f) in g where [x, e] = 2e, [x, f] = -2f and [e, f] = x. It is called normal in case $e, f \in \mathfrak{p}$ and $x \in \mathfrak{k}$. For any $y \in \mathfrak{p}$ let \mathfrak{p}^y denote the centralizer of y in \mathfrak{p} . Then $y \in \mathfrak{p}$ is called regular if dim $\mathfrak{p}^y \leq \dim \mathfrak{p}^u$ for any $u \in \mathfrak{p}$. Also $y \in \mathfrak{p}$ is regular if and only if dim $\mathfrak{p}^y = \dim \mathfrak{q}$ (see Propositions 7 and 8, p. 770 in [2]). A normal S-triple (x, e, f) is called principal if e (and hence f) is regular. Theorem 3, p. 773 in [2] guarantee that they exist. Now fix a closed Weyl chamber $D \subset \mathfrak{q}_R$. A normal S-triple (x, e, f) is called standard if $e + f \in D$. Let Δ be the set of roots of $(\mathfrak{g}, \mathfrak{q})$ and let $\Pi \subset \Delta$ be the set of simple positive roots corresponding to D. Also let w be the unique element in $\mathfrak{q} \cap [\mathfrak{g}, \mathfrak{q}]$ such that $(\lambda, w) = 2$ for all $\lambda \in \Pi$ (obviously $w \in D$). From [2] we know: any normal S-triple is K-conjugate to a standard S-triple (Lemma 6, p. 776); a standard normal S-triple (x, e, f) is principal if and only if e + f = w (Proposition 13, p. 776); any two principal normal S-triples are K_θ -conjugate (Theorem 6, p. 778).

From now on, we shall assume that $\alpha_{\mathbf{R}} \cap [\mathfrak{g}_{\mathbf{R}}, \mathfrak{g}_{\mathbf{R}}]$ is one dimensional, that is, that $\mathfrak{g}_{\mathbf{R}}$ is of split rank one. Also (x, e, f) will be a principal normal S-triple and z = x/2.

PROPOSITION 1. ad z: $\mathfrak{p} \to \mathfrak{p}$ is diagonalizable with eigenvalues 1, -1 and possibly 0.

PROOF. We may assume that (x, e, f) is a standard principal normal S-triple. One knows that $\Pi = \{\lambda\}$ and that the root space decomposition of \mathfrak{g} is of the form $\mathfrak{g} = \mathfrak{g}^0 + \mathfrak{g}^{\lambda} + \mathfrak{g}^{-\lambda} + \mathfrak{g}^{-2\lambda}$; here $\mathfrak{g}^{2\lambda}$ and $\mathfrak{g}^{-2\lambda}$ can be zero and $\mathfrak{g}^0 = \mathfrak{m} + \mathfrak{a}$, where \mathfrak{m} , as usual, is the centralizer of \mathfrak{a} in \mathfrak{f} . Therefore, the eigenvalues of ad w, w = e + f, in \mathfrak{g} are 2, 0, -2 and possibly 4 and -4. Now x and w are G-conjugate, so the eigenvalues of ad x in \mathfrak{g} are the same as those of ad w. Since dim($p^e \cap [\mathfrak{g}, \mathfrak{g}] = 1$, $\mathfrak{p}^e \cap [\mathfrak{g}, \mathfrak{g}] = Ce$. Therefore, up to a scalar, e is the unique highest weight vector in

 $\mathfrak{p}^e \cap [\mathfrak{g}, \mathfrak{g}]$ of the TDS (three dimensional simple Lie algebra over C) spanned by (x, e, f). From the representation theory of a TDS now follows that 4 cannot be an eigenvalue of ad x in \mathfrak{p} . For the same reason -4 cannot be a lowest weight of x in \mathfrak{p} . Q.E.D.

REMARK. The multiplicity of ± 1 as eigenvalues of ad z in \mathfrak{p} is $1 + \dim \mathfrak{g}^{2\lambda}$. This follows immediately from the representation theory of a TDS and the fact that $[\mathfrak{f}, \mathfrak{p}] \subset \mathfrak{p}$.

Since the polynomial b is K-invariant the closed algebraic set $V(b) = \{y \in \mathfrak{p}: b(y) = 0\}$ is stable under the action of K. Regarding its K-structure in the rank one case we have the following facts.

PROPOSITION 2. The algebraic set V(b) is irreducible and of codimension 1 in \mathfrak{p} . Moreover there are only a finite number of K orbits in V(b). Furthermore if (x, e, f) is a principal normal S-triple in \mathfrak{g} , then $K \cdot e$ and $K \cdot f$ are the unique orbits in V(b) of maximal dimension so that $K \cdot e \cup K \cdot f$ is Zariski open and dense in V(b).

PROOF. We know that the ring $S'(\mathfrak{p})^K$ of K-invariant polynomial functions in \mathfrak{p} is a polynomial ring C[u] in one homogeneous polynomial u (because dim $\mathfrak{a}=1$). Since b is also homogeneous we may assume that $b=u^r$ for some positive integer r. Therefore $V(b)=u^{-1}(0)$. On the other hand we have a homomorphism of K into the group of permutations of the set of irreducible factors of u. Since K is connected each irreducible factor is K-invariant. This implies the irreducibility of u and hence of V(b). According to Theorem 9, p. 785 in [2] there are only a finite number of K_{θ} -orbits, hence of K-orbits, in $u^{-1}(0)$, and the set of regular elements in $u^{-1}(0)$ is the unique K_{θ} -orbit of maximal dimension in $u^{-1}(0)$.

Since e and f are nilpotent elements b(e) = b(f) = 0 (see Corollary 5.5, p. 147 in [3]), therefore $K_{\theta} \cdot e = K_{\theta} \cdot f$ is the orbit of regular elements in V(b). Without loss of generality we may assume that (x, e, f) is a standard principal normal S-triple, so that w = e + f. In the rank one case under consideration, the abelian group F of all elements of order 2 in A is of order 2 and $F = \{1, a\}$ where $a = \operatorname{Ad}(\exp \pi i w/2)$. If we put

$$u = \frac{1}{2}(e - f - x)$$
 and $v = \frac{1}{2}(f - e - x)$

then (w, u, v) is a new S-triple. But e = (u - v + w)/2, thus $a \cdot e = f$. Therefore $K_{\theta} \cdot e = KF \cdot e = K \cdot e \cup K \cdot f$. Q.E.D.

Note that all eigenvalues of z in S'(f) are integers and that if $S'(f)_j$ is the eigenspace of S'(f) corresponding to the eigenvalue j then

$$S'(\mathfrak{k}) = \bigoplus_{j=-\infty}^{\infty} S'(\mathfrak{k})_j.$$

Moreover $S'(\mathfrak{g}) = S'(\mathfrak{f} + \mathfrak{p}) = S'(\mathfrak{f}) \otimes S'(\mathfrak{p})$, in other words an element $u \in S'(\mathfrak{g})$ can be viewed as a polynomial on \mathfrak{p} with values in $S'(\mathfrak{f})$. In particular b is a polynomial on \mathfrak{p} with values in C and u/b^q is a rational function on \mathfrak{p} with values in $S'(\mathfrak{f})$.

THEOREM 3. Let u/b^q ($u \in S'(\mathfrak{g})^K$) be a rational function on \mathfrak{p} homogeneous of degree $n \ge 0$. Then u/b^q is a polynomial if and only if

(2.3)
$$\frac{u}{b^q}(y) \in \bigoplus_{j=-n}^n S'(\mathfrak{k})_j$$

for all $y \in \mathfrak{p}$ such that $b(y) \neq 0$.

PROOF. We can write uniquely $u = \sum u_j$ (finite sum) where u_j is a polynomial function on \mathfrak{p} with values in $S'(\mathfrak{f})_j$. Clearly u/b^q is a polynomial if and only if u_j/b^q is a polynomial for all j.

Since the eigenvalues of z in \mathfrak{p} are 1, 0, -1 (Proposition 1) there exist

$$\lim_{t \to +\infty} e^{-t} \operatorname{Ad}(\exp tz) \cdot y = y_{+}$$

and

$$\lim_{t \to -\infty} e^t \operatorname{Ad}(\exp tz) \cdot y = y_-$$

for all $y \in \mathfrak{p}$.

If u/b^q is a polynomial on \mathfrak{p} we have

(2.4)
$$\frac{u_j}{b^q}(y_+) = \lim_{t \to +\infty} \left(e^{-t} \operatorname{Ad}(\exp tz) \cdot y \right) = \lim_{t \to +\infty} e^{(j-n)t} \frac{u_j}{b^q}(y).$$

If $u_j \neq 0$ we can certainly choose $y \in \mathfrak{p}$ such that $u_j(y) \neq 0$, then (2.4) implies that $j \leq n$. Similarly, letting $t \to -\infty$ we obtain that $j \geq -n$.

Conversely if (2.3) holds and $b(y) \neq 0, y \in \mathfrak{p}$, then

$$\lim_{t \to +\infty} \frac{u}{b^q} \left(e^{-t} \operatorname{Ad}(\exp tz) \cdot y \right) = \frac{u_n}{b^q} (y).$$

But

$$b(y_+) = \lim_{t \to +\infty} \left(e^{-t} \operatorname{Ad}(\exp tz) \cdot y \right) = \lim_{t \to +\infty} b(e^{-t}y) = 0,$$

therefore $u(y_+) = 0$ whenever q > 0. Similarly we obtain that $u(y_-) = 0$, for all $y \in \mathfrak{p}$ such that $b(y) \neq 0$. The element e + f is K-conjugate to w, thus e + f is regular and semisimple, hence $b(e + f) \neq 0$ (see §5 in [3]). Now $(e + f)_+ = e$ and $(e + f)_- = f$, thus u(e) = u(f) = 0. Therefore u vanishes on $K \cdot e \cup K \cdot f$ and hence u is zero on V(b) (see Proposition 2). By Hilbert's Nullstellensatz b divides u^m for some m. Since b is a power of a prime polynomial (see the proof of Proposition 2), it follows that u/b^q is a polynomial. Q.E.D.

If V denotes a K-submodule of S'(f) then V_j is the eigenspace of z in V corresponding to the eigenvalue j.

LEMMA 4. Let $f \neq 0$ be a K-invariant rational function on $\mathfrak p$ with values in an irreducible K-submodule V of $S'(\mathfrak k)$. Then the following conditions are equivalent:

(i)
$$f(y) \in \bigoplus_{j=-n}^{n} S'(f_j)$$
 for all $y \in p$ where f is defined;

(ii)
$$V = \bigoplus_{j=-n}^{n} V_j$$
.

PROOF. That (ii) implies (i) is obvious. So assume (i) and take $v = f(y) \neq 0$, $y \in \mathfrak{p}$. Then

$$k \cdot v = k \cdot f(y) = f(k \cdot y) \in \bigoplus_{j=-n}^{n} V_{j}$$
 for all $k \in K$.

Thus the cyclic K-submodule generated by v is contained in $\bigoplus_{j=-n}^{n} V_j$. By irreducibility V coincides with this cyclic module, hence $V = \bigoplus_{j=-n}^{n} V_j$. Q.E.D.

Now let M be the connected Lie subgroup of G corresponding to $\operatorname{ad}_{\mathfrak{g}}(\mathfrak{m})$, where \mathfrak{m} denotes the centralizer of \mathfrak{a} in \mathfrak{k} . If the rational function $f = u/b^q$ on \mathfrak{p} , $0 \neq u \in S'(\mathfrak{g})^K$, takes its values in a K-submodule of $S'(\mathfrak{k})$ then the space V^M of M-invariants in V is different from zero. In fact, since the restriction homomorphism (2.2) is injective, there exists $y \in \mathfrak{a}$ such that $(u/b^q)(y) = v \neq 0$. But $k \cdot v = (u/b^q)(k \cdot y) = (u/b^q)(y) = v$ for all $k \in M \subset K$.

This observation and the statements of Theorem 3 and Lemma 4 lead us to consider K-irreducible submodules V of S'(t) such that $V^M \neq 0$ and $V = \bigoplus_{j=-n}^n V_j$. Let T denote the set of all equivalence classes of irreducible holomorphic finite dimensional K-modules V_{τ} such that $V_{\tau}^M \neq 0$.

Let H be the subspace of the symmetric algebra $S(\mathfrak{p})$ over \mathfrak{p} spanned by all powers e^k , $k=0,1,2,\ldots$, of all nilpotent elements e in \mathfrak{p} . It is clear that H is a homogeneous subspace of $S(\mathfrak{p})$ and that H is stable under the action of K_{θ} . The elements in H are called the harmonic elements in $S(\mathfrak{p})$. Now let M_{θ} be the centralizer of \mathfrak{q} in K_{θ} . Then $M_{\theta}=MF$ (see Lemma 20, \mathfrak{p} . 803 in [2]). Let Γ be the set of all equivalence classes of irreducible holomorphic finite dimensional K_{θ} -modules V_{γ} such that the space $V_{\gamma}^{M_{\theta}}$ of M_{θ} -invariants in V_{γ} is different from zero. If H_{γ} is the set of all $h \in H$ which transform under K_{θ} according to γ , then $H = \bigoplus_{\gamma \in \Gamma} H_{\gamma}$. Moreover, in the rank one case, each H_{γ} is K_{θ} -irreducible (see Theorem 2.2.9 in [1]). Since H_{γ} is unique there exists a nonnegative integer $d(\gamma)$ such that H_{γ} is pure homogeneous of degree $d(\gamma)$. That is, $d(\gamma)$ gives the degree in which γ occurs harmonically in $S(\mathfrak{p})$. The remarkable fact is that $d(\gamma)$ can be obtained from the abstract K_{θ} -module V_{γ} . Indeed, if (x,e,f) is a principal normal S-triple and z=x/2 then $d(\gamma)$ equals the highest eigenvalue of z in V_{γ} (Corollary 2.2.5. in [1]).

PROPOSITION 5. Each irreducible K-module V_{τ} , $\tau \in T$, is isomorphic to a K-submodule of a K_{θ} -module V_{γ} of type $\gamma \in \Gamma$.

PROOF. We may assume that $K_{\theta} \neq K$; in this case the nontrivial element $a \in F$ is not in K. Given a K-module V of type $\tau \in T$ we define a structure of K-module on $V \times V$. Let φ denote the automorphism of K_{θ} defined by conjugation by a. Let

$$\gamma(k)(x, y) = (kx, \varphi(k)y)$$
 and $\gamma(ka)(x, y) = (ky, \varphi(k)x)$

for all $(x, y) \in V \times V$ and all $k \in K$. Since $K_{\theta} = KF$, $\varphi(K) \subset K$ and $K \cap F = \{1\}$, γ is well defined on K_{θ} . Moreover it is easy to check that γ is a representation of K_{θ} on $V \times V$. By hypothesis there exists $0 \neq x \in V^{M}$; then $(x, x) \in (V \times V)^{M_{\theta}}$ since $M_{\theta} = MF$ and $\varphi(M) \subset M$. Thus $(V \times V)^{M_{\theta}} \neq 0$. If $V \times V$ is K_{θ} -irreducible we are done since V is isomorphic to $V \times \{0\}$ as K-modules. If not $V \times V = W \oplus W'$ where W and W' are irreducible K_{θ} -submodules (K_{θ}) is a reductive group and we

may assume that $W \simeq V \times \{0\}$ and $W' \simeq \{0\} \times V$ as K-modules. If $W^{M_{\theta}} \neq 0$, W is a K_{θ} -module of type $\gamma \in \Gamma$ containing a K-submodule of type τ . If not, $W'^{M_{\theta}} \neq 0$. Then we define $\gamma(u)w' = \varphi(u)w'$ for all $w' \in W'$ and all $u \in K_{\theta}$. The K_{θ} -module (W', γ) belongs to Γ and as a K-module is isomorphic to V. Q.E.D.

The following result is of independent interest and it will be used later in this paper.

PROPOSITION 6. When \mathfrak{k} is not abelian (this means essentially $\mathfrak{g}_{\mathbf{R}} \neq \mathfrak{Sl}(2,\mathbf{R})$) given a principal normal S-triple (x,e,f) in \mathfrak{g} there exist elements E and F in \mathfrak{k} and a real number c such that (cx,E,F) is an S-triple in \mathfrak{k} .

PROOF. Let $\mathfrak{h}_{\mathbf{R}}$ be a maximal abelian subalgebra of $\mathfrak{g}_{\mathbf{R}}$ containing $\mathfrak{a}_{\mathbf{R}}$. The complexification \mathfrak{h} of $\mathfrak{h}_{\mathbf{R}}$ is a Cartan subalgebra of \mathfrak{g} ; let ϕ be the set of roots of $(\mathfrak{g},\mathfrak{h})$. Let σ and τ denote the conjugations of \mathfrak{g} with respect to $\mathfrak{g}_{\mathbf{R}}$ and $\mathfrak{u}=\mathfrak{k}_{\mathbf{R}}+i\mathfrak{p}_{\mathbf{R}}$, respectively. If \mathfrak{k} is not abelian then there exists $\alpha\in\phi$ such that $\alpha\neq\alpha^{\sigma}$ and $\alpha|_{\mathfrak{q}}=\lambda$. In fact we may assume that $\mathfrak{g}_{\mathbf{R}}$ is simple. Now if $\alpha=\alpha^{\sigma}$ for all $\alpha\in\phi$ such that $\alpha|_{\mathfrak{q}}=\lambda$ then dim $\mathfrak{g}^{\lambda}=1$, $\mathfrak{g}^{2\lambda}=\{0\}$ and $[\mathfrak{g}^{\lambda},\mathfrak{g}^{-\lambda}]\subset \mathfrak{a}$. Hence $\mathfrak{g}_{\mathbf{R}}=\mathfrak{m}_{\mathbf{R}}+\mathfrak{a}_{\mathbf{R}}+\mathfrak{g}_{\mathbf{R}}^{\lambda}+\mathfrak{g}_{\mathbf{R}}^{-\lambda}$ where $\mathfrak{m}_{\mathbf{R}}=\mathfrak{m}\cap\mathfrak{g}_{\mathbf{R}}$ and $\mathfrak{g}_{\mathbf{R}}^{\pm\lambda}=\mathfrak{g}^{\pm\lambda}\cap\mathfrak{g}_{\mathbf{R}}$. Furthermore $\mathfrak{a}_{\mathbf{R}}+\mathfrak{g}_{\mathbf{R}}^{\lambda}+\mathfrak{g}_{\mathbf{R}}^{-\lambda}$ is an ideal in $\mathfrak{g}_{\mathbf{R}}$, thus $\mathfrak{g}_{\mathbf{R}}=\mathfrak{a}_{\mathbf{R}}+\mathfrak{g}_{\mathbf{R}}^{\lambda}+\mathfrak{g}_{\mathbf{R}}^{-\lambda}$ and $\mathfrak{k}_{\mathbf{R}}$ is one dimensional.

Take $\alpha \in \phi$ such that $\alpha^{\sigma} \neq \alpha$ and $\alpha|_{\alpha} = \lambda$. Then $(\alpha, \alpha^{\sigma}) \leq 0$ since $\alpha^{\sigma} - \alpha \notin \phi$ (Lemma 1.1.3.6, p. 25 in [4]). The quadratic form $B(X, \tau X)$ is negative definite on g, thus we may choose $X \in g^{-\alpha}$ such that

$$B(X, \tau X) = \frac{2}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)}.$$

Let $X' = -\tau X \in \mathfrak{g}^{\alpha}$ and put $E = X + \theta X$, $F = X' + \theta X'$, $y = b(X' + \sigma X') \in \mathfrak{g}^{\lambda}$ where $b^2 = (2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha))/((\alpha, \alpha) + (\alpha, \alpha^{\sigma})) < 0$. Then

$$[y, \theta y] = b^2 [X' + \sigma X', \theta X' + \tau X']$$

=
$$b^2 ([X', \tau X'] + \sigma [X', \tau X'])$$

since $[X', \theta X'] = 0$ because $\theta X' \in \mathfrak{g}^{-\alpha^{\sigma}}$ and $\alpha - \alpha^{\sigma} \notin \phi$. But

(2.5)
$$[X', \tau X'] = -[X', X] = -B(X', X)H_{\alpha} = \frac{2H_{\alpha}}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)},$$

thus

$$[y, \theta y] = \frac{2b^2}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)} (H_{\alpha} + \sigma H_{\alpha}) \in \alpha \cap [\mathfrak{g}, \mathfrak{g}].$$

Moreover

$$\frac{2b^2}{2(\alpha,\alpha^{\sigma})-(\alpha,\alpha)}\lambda(H_{\alpha}+\sigma H_{\alpha})=\frac{2b^2((\alpha,\alpha)+(\alpha,\alpha^{\sigma}))}{2(\alpha,\alpha^{\sigma})-(\alpha,\alpha)}=2$$

therefore $[y, \theta y] = w$ and $(w, y, \theta y)$ is an S-triple. Now if we put $x = y + \theta y$, $e = (w - y + \theta y)/2$, $f = (w + y - \theta y)/2$ we get a standard normal principal S-triple, since e + f = w.

On the other hand if T = [E, F] one can easily verify that (T, E, F) is an S-triple. In fact,

$$T = [X + \theta X, X' + \theta X']$$

$$= \frac{2}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)} (H_{\alpha} + \theta H_{\alpha}) + [X, \theta X'] + \theta [X, \theta X'].$$

Then

$$[T, E] = \frac{2(-(\alpha, \alpha) + (\alpha, \alpha^{\sigma}))}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)} (X + \theta X) + [[X, \theta X'], \theta X] + \theta [[X, \theta X'], \theta X]$$

since $[[X, \theta X'], X] = 0$, because -3λ is not a restricted root. But

$$\begin{aligned} [[X, \theta X'], \theta X] &= -[[\theta X', \theta X], X] - [[\theta X, X], \theta X'] \\ &= \frac{2(\alpha, \alpha^{\sigma})}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)} X \end{aligned}$$

where we used (2.5) and $[\theta X, X] = 0$ since $-\alpha^{\theta} = \alpha^{\sigma}$ and $\alpha^{\sigma} - \alpha \notin \phi$. Therefore

$$[T, E] = \frac{2}{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)} (-(\alpha, \alpha) + (\alpha, \alpha^{\sigma}))(X + \theta X) + (\alpha, \alpha^{\sigma})X + (\alpha, \alpha^{\sigma})\theta X) = 2E.$$

In a similar way we obtain that [T, F] = -2F.

Now

$$x = y + \theta y = b(X' + \sigma X' + \theta X' + \tau X') = b(F - E).$$

But F - E is K-conjugate to i[E, F] = iT, thus (-i/b)x is the semisimple element of an S-triple in f. Since any two principal normal S-triples are K_{θ} -conjugate the proposition is proved with c = -i/b. Q.E.D.

THEOREM 7. Let (x, e, f) be a principal normal S-triple in g.

- (i) If $g^{2\lambda} = 0$ and dim $g^{\lambda} > 1$ there exist $E, F \in f$ such that (x, E, F) is an S-triple in f.
 - (ii) When $g^{2\lambda} \neq 0$, x/2 is the semisimple element of an S-triple in g.

PROOF. By Proposition 6 we just need to compute

$$b^{2} = \frac{2(\alpha, \alpha^{\sigma}) - (\alpha, \alpha)}{(\alpha, \alpha) + (\alpha, \alpha^{\sigma})} = \frac{2(\alpha, \alpha^{\sigma})/(\alpha, \alpha) - 1}{1 + (\alpha, \alpha^{\sigma})/(\alpha, \alpha)}.$$

When $g^{2\lambda} = 0$ Lemma 3 in Appendix 2, p. 33 in [4] gives $(\alpha, \alpha^{\sigma}) = 0$, hence $b^2 = -1$ and we may choose b = -i to get c = 1.

If $g^{2\lambda} \neq 0$ the same lemma tells that $(\alpha, \alpha^{\sigma}) < 0$, therefore $2(\alpha, \alpha^{\sigma})/(\alpha, \alpha) = -1$, -2 or -3. But

$$0 < \frac{4(\lambda, \lambda)}{(\alpha, \alpha)} = \frac{2\alpha(H_{\alpha} + \sigma H_{\alpha})}{(\alpha, \alpha)} = 2 + 2\frac{(\alpha, \alpha^{\sigma})}{(\alpha, \alpha)}$$

thus $2(\alpha, \alpha^{\sigma})/(\alpha, \alpha) = -1$. Hence $b^2 = -4$ and we may take b = -2i to obtain c = 1/2. Q.E.D.

PROPOSITION 8. If V_{γ} and $V_{\gamma'}$ are K_{θ} -modules of type $\gamma, \gamma' \in \Gamma$ both of which contain a K-submodule of the same type, then $d(\gamma) = d(\gamma')$.

PROOF. Let W be a K-irreducible submodule of V_{γ} . Then an aW is also a K-submodule, hence $W \cap aW$ is equal to W or to $\{0\}$ and correspondingly $V_{\gamma} = W$ or $V_{\gamma} = W \oplus aW$ since W + aW is a K_{θ} -submodule of V_{γ} .

Let (x, e, f) be a standard principal normal S-triple and let z = x/2. If $V_{\gamma} = W \oplus aW$ then $d(\gamma)$ is the highest eigenvalue of z in W or in aW. If $z(aw) = d(\gamma)aw$ for $0 \neq w \in W$ then $(az)w = d(\gamma)w$. But az = -z thus $zw = -d(\gamma)w$. If $[\mathfrak{g}_{\mathbf{R}}, \mathfrak{g}_{\mathbf{R}}] \neq \mathfrak{sl}(2, \mathbf{R})$ then z or 2z is the semisimple element of an S-triple in f and hence the eigenvalues of z in a K-module are symmetric. Thus $d(\gamma)$ is in any case the highest eigenvalue of z in w. When $[\mathfrak{g}_{\mathbf{R}}, \mathfrak{g}_{\mathbf{R}}] = \mathfrak{sl}(2, \mathbf{R})$ f is abelian, w is one dimensional and $d(\gamma)$ equals the absolute value of the eigenvalue of z in w. In both cases the proposition follows. Q.E.D.

Propositions 5 and 8 enable us to define the degree of a K-module V_{τ} , $\tau \in T$.

DEFINITION. The degree $d(\tau)$ of a K-module V_{τ} , $\tau \in T$, is the degree of any K_{θ} -module V_{τ} , $\gamma \in T$, which contains a K-submodule isomorphic to V_{τ} .

COROLLARY 9. Let V_{τ} be a K-module of type $\tau \in T$ and let (x, e, f) be a principal normal S-triple in \mathfrak{g} ; put z = x/2. Then $d(\tau)$ equals the highest eigenvalue of z in V_{τ} , when $[\mathfrak{g}_{\mathbf{R}}, \mathfrak{g}_{\mathbf{R}}] \neq \mathfrak{Sl}(2, \mathbf{R})$. If $[\mathfrak{g}_{\mathbf{R}}, \mathfrak{g}_{\mathbf{R}}] = \mathfrak{Sl}(2, \mathbf{R})$ then $d(\tau)$ equals the absolute value of the eigenvalue of z in V_{τ} .

COROLLARY 10 (TO PROPOSITION 5). Let V_{τ} be a K-module of type $\tau \in T$. Then $d(\tau)$ gives the degree in which τ occurs harmonically in $S(\mathfrak{p})$.

If τ denotes an equivalence class of irreducible holomorphic finite dimensional K-modules let $S'(\mathfrak{k})_{\tau}$ be the set of all $f \in S'(\mathfrak{k})$ which transform under K according to the representation τ . Since $S'(\mathfrak{k})$ is a completely reducible K module we have $S'(\mathfrak{k}) = \bigoplus_{\tau} S'(\mathfrak{k})_{\tau}$.

THEOREM 11. Let u/b^q ($u \in S'(\mathfrak{g})^K$) be a rational function on \mathfrak{p} homogeneous of degree $n \ge 0$. Then u/b^q is a polynomial if and only if

(2.6)
$$\frac{u}{b^q}(y) \in \bigoplus_{\substack{\tau \in T \\ d(\tau) \leq n}} S'(\mathfrak{k})_{\tau}$$

for all $y \in \mathfrak{p}$ where $b(y) \neq 0$.

PROOF. According to Theorem 3 we have to prove that (2.3) is satisfied if and only if (2.6) is true. Assume (2.3). Right after Lemma 4 we observed that

$$\frac{u}{b^q}(y) \in \bigoplus_{\tau \in T} S'(\mathfrak{k})_{\tau}.$$

Now Lemma 4 and Corollary 9 imply that

$$\frac{u}{b^q}(y) \in \bigoplus_{\substack{\tau \in \mathbb{T} \\ d(\tau) \leq n}} S'(\mathfrak{f})_{\tau}.$$

Conversely if (2.6) is verified then (2.3) follows immediately. Q.E.D.

The group M' leaves $f + \alpha$ invariant, thus the Weyl group W = M'/M operates canonically on the ring $S'(f + \alpha)^M = S'(f)^M \otimes S'(\alpha)$ of M invariants in $S'(f + \alpha)$. Let $(S'(f)^M \otimes S'(\alpha))^W$ denote the ring of Weyl group invariant elements in $S'(f)^M \otimes S'(\alpha)$. We are ready to state and prove our main theorem.

THEOREM 12. The operation of restriction from g to f + a induces an isomorphism of $S'(g)^K$ onto

(2.7)
$$\bigoplus_{n\geq 0} \bigoplus_{\substack{\tau \in T \\ d(\tau) \leq n}} \left(S'(\mathfrak{f})_{\tau}^{M} \otimes S'_{n}(\mathfrak{a}) \right)^{W}.$$

PROOF. We already know that the restriction homomorphism (2.1) is injective and that its image is contained in $S'(\mathfrak{k}+\mathfrak{a})^{M'}=(S'(\mathfrak{k})^M\otimes S'(\mathfrak{a}))^W$. Theorem 11 now shows, more precisely, that the image is contained in (2.7). Let $v\in \bigoplus_{\tau\in T,\ d(\tau)\leqslant n}(S'(\mathfrak{k})^M_\tau\otimes S'_n(\mathfrak{a}))^W$. Since (2.2) is an isomorphism of algebras there exist $u\in S'(\mathfrak{g})^K$ and $q\geqslant 0$ such that $\pi(u/b^q)=v$. By the K invariance of u/b^q we have that

$$\frac{u}{b^q}(y) \in \bigoplus_{\substack{\tau \in \mathbb{T} \\ d(\tau) \leq n}} S'(\mathfrak{k})_{\tau}$$

for all $y \in K \cdot \alpha$ ($K \cdot \alpha$ contains the set of all $y \in \mathfrak{p}$ where $b(y) \neq 0$). On the other hand since $K \cdot \alpha$ is dense in \mathfrak{p} , u/b^q is homogeneous of degree n on \mathfrak{p} . Then Theorem 11 tells us that $u/b^q \in S'(\mathfrak{g})^K$. This completes the proof of the theorem. Q.E.D.

REFERENCES

- 1. B. Kostant, On the existence and irreducibility of certain series of representations, Lie Groups and their Representations, 1971 Summer School in Math. (I. M. Gelfand, editor), Wiley, New York, 1975, pp. 231-330.
- 2. B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753-809.
- 3. B. Kostant and J. Tirao, On the structure of certain subalgebras of a universal enveloping algebra, Trans. Amer. Math. Soc. 218 (1976) 133-154.
 - 4. G. Warner, Harmonic analysis on semi-simple Lie groups. I, Springer-Verlag, New York, 1972.
- 5. J. Lepowsky, Algebraic results on representations of semisimple Lie groups, Trans. Amer. Math. Soc. 176 (1973), 1-44.
 - 6. J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, Paris, 1974.

I.M.A.F., Universidad Nacional de Córdoba, 5000 Córdoba, Argentina