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A GENERALIZATION OF F-SPACES

AND SOME TOPOLOGICAL CHARACTERIZATIONS OF GCH

BY

MARY ANNE SWARDSON

Abstract. Several topological characterizations involving F-spaces of the continuum

hypothesis are due to R. G. Woods and E. K. van Douwen. We extend this work by

defining a space X to be an F„-space if the union of < a cozero-sets is C*-embedded

in X and by giving, for every infinite cardinal a, topological characterizations

involving Fa-spaces of the cardinal equality 2" = a + .

Topological characterizations of the continuum hypothesis (CH) abound in the

theory of F-spaces. The two which are important for this paper are due to Woods

([Wo,] and [Wo2]) and to van Douwen [vDJ. We state these as follows:

0.1. Theorem (Woods [Wo,, 2.2 and Wo2, 1.1(a)] and van Douwen [vD„]). The

following are equivalent:

(a) CH.

(b) Every small F-space is weakly Lindelof.

(c) Every small normal countably compact F-space is compact.

Topological characterizations of CH involving F-spaces have also been given by

Dow [Do, 3.4], and van Douwen has pointed out a number of others in [vD,]. (We

give another such characterization of CH in this paper (see 3.19 and 5.3(b)).)

The present study, which comes from the author's Ph.D. thesis at Ohio University

(done under the direction of R. L. Blair, to whom we are greatly indebted), and

which is summarized in [Sw3], has as its purpose an extension of the work of Woods

and of van Douwen. We define "Fa-spaces" and give, for every infinite cardinal a,

topological characterizations involving Fa-spaces of the segment 2" — a+ of the

generalized continuum hypothesis (GCH).

1. Definitions and conventions. By a topological space (or simply a space), we

always mean a Tychonoff space.

Let A' be a topological space. Then C(X) (resp. C*(X)) denotes the set of all

real-valued (resp. bounded real-valued) continuous functions on X. For /E C(X),

Z(f) = {x E X: f(x) = 0} is a zero-set of X. The complement in A' of a zero-set of

A" is a cozero-set of X. A subset A of X is C-embedded (resp. C*-embedded) in X if
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662 M. A. SWARDSON

every/ E C(A) (resp. every/ E C*(A)) has a continuous extension over X. A space

A" is an F-space if every cozero-set of A'is C*-embedded in X [GJ, 14.25].

What we intend to do in this paper is to add a cardinal parameter a to some of the

properties mentioned in 0.1 in such a way that the Woods and van Douwen

characterizations of CH become corollaries of our results in the case a = co. To this

end we make the following definitions: A subset A of a space A1 is a Ga-set in X if

A — n%, where ^l is a collection of open sets in X with \%\< a. A set A C X is

Ga-dense in A" if every GQ-set in X meets ^4. /I is a-open in A" if A = U %. where % is a

collection of cozero-sets of X with | %|< a, and ^4 is a-closed in A if X — A is a-open

in X. Clearly finite unions of a-open sets are a-open, and A is a a-closed if and only

if A — H2 where £ is a collection of zero-sets of X with \%\< a. It is obvious that

an to|-open set is a cozero-set, that an co,-closed set is a zero-set and that, for a > co,,

an a-closed set is a Gtt-set.

A subset y4 of X is z-embedded in A" if every zero-set of A is of the form Z n ^ for

some zero-set Z of X Clearly, if A is z-embedded in X and if G is a-open (resp.

a-closed) in A, then G = G' n A for some a-open (resp. a-closed) subset G' of X

A space X is an Fa-space if every a-open subset of X is C*-embedded in X, and A

is a-basically disconnected if every a-open set in X has open closure in X. X is

extremally disconnected if every open set in X has open closure in X. Clearly X is an

Fu -space if and only if X is an F-space, and X is co,-basically disconnected if and

only if X is basically disconnected.

1.1. Remarks. The terms "Fa-space" and "a-basically disconnected space" are

used by other authors in senses different from the foregoing:

(a) In [CN, §14], Comfort and Negrepontis restrict attention to the class % of

spaces that have a base of closed-and-open sets. For X E% and G open in X, G is of

type < a if G is the union of < a closed-and-open subsets of X. Then, in the sense of

[CN], a space X E <$ is "a-basically disconnected" if every open subset of X of type

< a has open closure in X, and X is an "Fa-space" if every open subset of X of type

< a is C*-embedded in X [CN, pp. 350, 343]. It is clear that if X E <S and if X is an

Fa-space in our sense, then A* is an Fa-space in the sense of [CN]. Our definition of

Fa-space is chosen to insure that our theorems reduce to results about F-spaces for

the case a = co,.

(b) In [NL], Neville and Lloyd define a (compact) space A' to be an "Fa-space" if

any two disjoint a-open subsets of X have disjoint closures in X. It can be shown

that, in the presence of normality, the Neville and Lloyd definition of Fa-space

coincides with ours, and that, if X is compact and X E $, then all three definitions

of an Fa-space (that of [CN], of [NL], and ours) coincide.

We shall need the following cardinal functions:

L(X) = min{K: every open cover of A'has a subcover of cardinality «s k} + co.

wL(X) — min{K: if % is an open cover of X, then there exists °Vc % such that

ITI« k and UTis dense in A"} + co. We say that A'is weakly Lindelöf if wL(X) = to.

d( X) = min(| S | : S is a dense subset of A"} + co.

w(X) = min{|iB | : % is a base for X) + co.
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For A C X, define

X(A, X) = min{|íB | : iß is a base for the neighborhoods of A in A} + w.

¡P(A, X) = min{| %| : % is a collection of open subsets of X and A = D %} + co.

Xc(X) = sup{x(^l, X): A is closed in A"}.

X„.(A") = sup{x(^, A"): A is a nowhere dense zero-set of X).

2. Properties of Fa-spaces and a-basically disconnected spaces. In proving some

elementary results about Fa-spaces and a-basically disconnected spaces, we will

frequently make use of the following proposition.

2.1. Proposition. // G is a-open in X and if Z, and Z2 are disjoint zero-sets of G,

then Z, and Z2 are contained in disjoint a-open subsets of X.

Proof. Let G = UÍ<K P¿, where each P^ is a cozero-set of X and k < a, and let Z,

and Z2 be disjoint zero-sets of G. There exist disjoint cozero-sets g, and Q2 of G

with Z, C g, and Z2 C Q2. For each £ < k, Ö, n P¿ and {22 n F¿ are disjoint

cozero-sets of P? and hence of X [En, 2.1.B(c)], and thus U{<K(Ö, n Pé) and

Ui<K(g2 n Pj) are disjoint a-open subsets of X containing Z, and Z2 respectively.

D

2.2. Proposition. If X is a space, then the following are equivalent:

(a) X is extremally disconnected.

(b) X is a-basically disconnected for every infinite cardinal a.

(c) X is an Fa-space for every infinite cardinal a.

Proof, (a) => (b) is trivial.

(b) => (c) Let X be a-basically disconnected, let G be an a-open subset of X, and

let Z, and Z2 be disjoint zero-sets of G. It suffices to show that Z, and Z2 are

completely separated in X.

By 2.1, Z, and Z2 are contained in disjoint a-open subsets P, and P2 of X

respectively. Then cl^ P, and cl^ P2 are disjoint closed-and-open subsets of X and

hence Z, and Z2 are completely separated in A.

(c) =* (a) By [GJ, 1H.6] it suffices to show that every open subset of X is

C*-embedded in X, and this follows from (c) and the fact that the cozero-sets form a

base for X.    D

The following is a generalization of [GJ, 14N.4].

2.3. Theorem. A space X is an Fa-space if and only if any two disjoint a-open subsets

of X are completely separated in X.

Proof. If G and H are disjoint a-open subsets of the Fa-space A", then the function

/ E C*(G U H) that is 0 on G and 1 on H has an extension g E C(X), and g

completely separates G and H. Conversely, let G be a-open in X and let Z, and Z2

be disjoint zero-sets of G. By 2.1, Z, and Z2 are contained in disjoint a-open subsets

of X, which are completely separated in X by hypothesis, and hence G is C*-

embedded in X.    O
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The well-known fact that the F-space property is hereditary with respect to

C*-embedded subsets does not generalize to Fa-spaces (see 2.6), but we do have the

following result:

2.4. Theorem. Let S be dense and C*-embedded in the space T. Then S is an

Fa-space if and only if T is an Fa-space.

Proof. Let S be an Fa-space and let G be a-open in T. Let / E C*(G). Since

S n G is a-open in S, S n G is C*-embedded in S and hence in T, and thus

/| (S n G) has an extension g E C(T). Since S n G is dense in G, g| G = /. Thus G

is C*-embedded in T, and we conclude that T is an Fa-space.

Conversely, assume that T is an Fa-space and let G be a-open in S. Let Z, and Z2

be disjoint zero-sets of G. By 2.1 there exist disjoint a-open subsets //, and H2 of S

such that Z, C Hx and Z2 C H2. Since S is C*-embedded in T, there exist a-open

subsets Ll and L2 of T such that //, = L] n S and H2 = L2C\ S, and since S is

dense in F, L, and L2 are disjoint. By 2.3, L, and L2 are completely separated in S.

We conclude that G is C*-embedded in S.    D

The following corollary generalizes an important property of F-spaces [GJ, 14.25].

2.5. Corollary. A space X is an Fa-space if and only if ßX is an Fa-space.

2.6. Remark. For a > to,, a C*-embedded subset (in fact, a compact subset) of an

Fa-space need not be an Fa-space: /?co is extremally disconnected, hence an Fa-space

for all a, but ßto — to is not basically disconnected [GJ, 6W.3], and so there exists a

cardinal a such that ßw — co is not an F„-space. (The referee of this paper has noted

that /?to — to is not an Fu -space since Hausdorff has shown that there is an

(co,, co,)-gap in ßu - co [Ha, §1].)

The following result generalizes [GJ, 6M.1].

2.7. Proposition. A space X is a-basically disconnected if and only if ßX is

a-basically disconnected.

Proof. Let X be a-basically disconnected and let G be a-open in ßX. Then G n X

is a-open in X and hence cl^G = cl^cl^G n X)) is open in ßX. Conversely,

assume that ßX is a-basically disconnected and let H be a-open in X. Then

H = H' n X, where H' is a-open in ßX. Since c\ßXH' is open in ßX, cl XH — X fl

clßxH' is open in X.    D

A collection of pairwise disjoint open subsets of a space X is called a cellular

family in X. A subset A of X is cellularly embedded in X if every cellular family in A

is the restriction to A of a cellular family in X. We will use the next proposition in

§5.

2.8. Proposition. If A is cellularly embedded in the Fa-space X, and ifwL(A) < a,

then A is C*-embedded in X.

Proof. Let Z, and Z2 be disjoint zero-sets of A. There exist disjoint cozero-sets P,

and P2 of A and disjoint open sets {/, and U2 of X such that Z, C P, C ¿7, and

Z2 C P2 C U2. For each x E Z, and each y E Z2 pick cozero-sets Px and Qy of X
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with x E Px C (7,  and y E Qv C U2. There exist I C Z] and J C Z2 with |/|,

\J\<a such that Z, C cl^ Uxe/Px and Z2 C c\xUveJQY. Since   U,e/Px and

Uv,eyöv. are disjoint a-open subsets of X, Z, and Z2 are completely separated in X

and hence A is C*-embedded in A.    D

Corollary 2.9 is well known (see [GJ, 14N.1]).

2.9. Corollary. No point of an F-space is the limit of a sequence of distinct points.

3. FQ-spaces and x0"remote points. We call a space X a-small if | C*( A") |=s 2" and

we call X small if X is to-small. We denote the Stone-Cech remainder ßX — X of A

by A*.

The theorem of Fine and Gillman below (3.1) plays a crucial role in the proof that

(a) ̂ (c) in 0.1.

3.1. Theorem (Fine and Gillman [FG, 4.6]) [CH]. If X is a small locally compact

a-compact space, then X* has no proper dense C*-embedded subspace.

Before stating a consequence of 3.1, we need the following result.

3.2. Proposition [Sw,, 5.3]. // F is closed in the normal space X, then clßxF is

a+ -closed in ßX if and only if x( F, A) *£ a.

3.3. Proposition [CH]. // X is a small normal F-space and if p E A'*, then

p £ c\ßXF for every closed nowhere dense subset F of X with x(F", A") = co.

Proof. Suppose/? E A"* and p E clßXF where F is a closed nowhere dense subset

of X with x(F, A) = co. By 3.2, cl^F is a nowhere dense zero-set of ßX and hence

ßX — clßXF is a dense cozero-set of the F-space ßX. Then cl^F is the Stone-Cech

remainder of the small locally compact a-compact space ßX — cl^F. By 3.1, then,

cl^Fhas no proper dense C*-embedded subset, which is, since/? E (cl^F) — F, a

contradiction.    D

What we have, then, is that, under the hypothesis of 3.3, all points of X* are

" remote" in some sense. We make this motion precise by defining a point p E X* to

be a xa-remote point of X if p £ cl^F for every closed nowhere dense subset F of A

with x(F, A) < a. A point p E A"*, then, is remote in the sense of [vD2] if and only

tip is xa-remote for every cardinal a; and if xc( A") < a, then for every p E X*, p is

X„-remote if and only tip is remote.

What we will establish in this paper is that, under a suitable generalization of the

hypothesis of 0.1(c), no point of A"* is xa-remote. In the case a = co, then, by 3.3,

X* = 0.

If ^ is a collection of sets, we say that ÍF has the a-intersection property if

PI <§' ¥= 0 for all f ' C f with | f |< a. We set ßaX = {p E ßX: p has the a-inter-

section property} (where points of ßX are regarded as z-ultrafilters on X). A space

X is a-pseudocompact if ßa+ X = ßX [Ke]. Note that the Hewitt realcompactification

vX of X is ßu X and that X is pseudocompact if and only if X is co-pseudocompact.

A space X is [a, ß]-compact if every open cover % of A" with |%|^)S has a

subcover %' such that |%'|< a. It can be shown (see [Ke, 2.2 and §3]) that if X is

[co, a]-compact, then A"is a-pseudocompact.
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For our purposes, it turns out that "a-pseudocompact" is the appropriate gener-

alization of "countably compact" in 0.1(c). The important fact about an a-pseudo-

compact space X for this study is that, since X is Ga+ -dense in ßa+X, if X is

a-pseudocompact, then every Ga*-set in ßX meets X.

We are now ready to state the main theorem of this section.

3.4. Theorem [2" = a+ ]. If X is an a-small, a-pseudocompact, normal Fa+-space,

then X has no \a-remote point.

Before proceeding with the proof of 3.4, let us note that 0.1(a) => (c) is a corollary.

3.5. Corollary (Woods [Wo,, 1.1(a)]) [CH]. // A is a small normal countably

compact F-space, then X is compact.

Proof. By 3.3, every point of X* is x^-remote. Hence by 3.4, A* = 0.    □

We postpone the proof of 3.4 until after we have established a generalization of

0.1(a) => (b). This we do in a sequence of lemmas in order to show precisely where

the hypothesis 2° = a+ is needed.

The easy proof of the first lemma is omitted.

3.6. Lemma. If L(X) < a, and if G is a+ -open in X, then L(G) =£ a.

The next lemma is a generalization of [FG, 4.1]. The lemma is essentially [CN,

14.1] (except that the latter has an unnecessary regularity hypothesis on a), and we

are therefore omitting the proof. A detailed proof can be found in [Sw2, 16.10].

3.7. Lemma. Let X be an Fa-space and let V = U »<a V^be an a+ -open subset of X.

If G C V and if G H Vç is a-open in V for each £ < a, then G is C*-embedded in V.

The proof of the following lemma uses techniques similar to those of [Wo,, 2.2].

3.8. Lemma. // wL(X) — L(X) = a+ , then there exists an a++-open subset

V = U,<a+ Fj of ßX such that X C V and there exists a pairwise disjoint collection

{Pc-. £ < a+ } of cozero-sets of ßX with each P£ C V and such that for all ß < a+ ,

Vß n Ui<a+ P£ ¿y a+ -open in V.

Proof. Since wL(X) = a+ , there is an open cover % of cozero-sets of X such

that no subcover of cardinality a has dense union in X. Since L(X) = a+ , %. has a

subcover {tV^: £ < a+ } of cardinality a+ . Then each i/f = Vi n X, where V( is a

cozero-set of ßX. Let V = Ui<a » V( and note that X C V. We will construct, by

recursion, a sequence (Pf £ < a+ > satisfying the following two conditions:

(1) For each £ < a+ , P£ is a nonempty cozero-set in ßX and P¿ C V.

(2) For each ß, £ < a+ , if ß < £, then P{ n (Pß U Vp) = 0.

Let £ < a+ and assume that for all ß < £, Pß has been selected subject to

conditions (1) and (2).

We will now show that V — c\ßx \Jß<iPß^ 0. Assume the contrary. Since

Uß<i(Pß U Vß) is a+ -open in ßX, since {Vf £ < a+ } covers Uß<((Pß U Vß) and

since L(ßX) — co < a, by 3.6 there exists / C a+ such that |/|< a and such that
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{F£: £ E /} covers U^P, U Vß). Then Uß<((Pp U Vß) C U£e/ F£ C V C

dßx ^a<i(Pß u ^s)' ani* hence U£e/ F£ is dense in F. Therefore ( U£e/ V() D X —

U£e/ i/£ is dense in F n A" = A, contradicting the assumption that no subcollection

of % of cardinality < a has dense union in X.

We may therefore select a nonempty cozero-set P£ of ßX such that P£ C F —

CW U/B<{(-^3 u ^)- This completes the recursion.

By conditions (1) and (2), the collection {P£: £ < a+ } satisfies the requirements of

the lemma.    D

3.9. Lemma.//ivL(A) = L(X) = a+ andifX is an F0+ -space, then \C*(X)\> 2a+.

Proof. By 3.8, there exists an a++-open subset V of ßX with X C V, and there

exists P = U£<a+ P£, a pairwise disjoint collection of cozero-sets of ßX with P C V

and such that for all £ < a+ , Vi n P is a+ -open in F. Since /JA" is an Fa+ -space, P is

C*-embedded in V by 3.7, and, since X C V, F is C*-embedded in y8A". Then

2a+ <\C*(P)\<\C*{V)\<\C*(ßX)\ = \C*(X)\.    D

3.10. Theorem. //1 C*( A) |< a+ and if X is an Fa+ -space, then wL(X) < a.

Proof. If wL(A)5*a+, then wL(X) = L(X) = w(X) =\C*(X)\= a+, con-

tradicting 3.9.    D

3.11. Corollary [2a = a+ ]. // A is an a-small Fa+ -i/^czce, then wL(X) < a.

We see in 5.2 that Corollary 3.11 is, in fact, equivalent to 2a = a+ .

We still have some more work to do before we can proceed with the proof of 3.4.

First we need a couple of lemmas.

3.12. Lemma. Let X be a space with wL(X) < a. If p E X*, then there exists a

dense a+ -open subset V of ßX with p E V.

Proof. ßX - {p} is open in ßX, and hence ßX - {/>} = U%, where % is a

collection of cozero-sets of ßX. Since X C U % and wL( X) =£ a, there exists

%' C % such that | %' |< a and such that ( U %') n A" is dense in A. Let F = U %'.

F is a dense a+ -open subset of ßX and /? E F.    D

3.13. Lemma. // X is an a-pseudocompact space and if V is a dense a+ -open subset

ofßX, then c\px(X- V) = ßX - V.

Proof. Let p E ßX — V and let U be an open neighborhood of p in ßX. Since V

is a+ -open in ßX, ßX — V is a+ -closed in ßX and is thus a Ga+-set in ßX. Hence

U-V=Un (ßX - V) is a Ga+-set in ßX = ßa+X, and hence U - V meets X.

Then clearly U meets X — V, which implies that p E c\px(X — V). The reverse

inclusion is obvious.    D

The following result is fundamental to the proof of 3.4.

3.14. Theorem. If X is a normal a-pseudocompact space with wL(X) < a, then no

point of X* is a \a-remote point of X.
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Proof. Let p E X*. By 3.12 there exists a dense a+ -open subset V of ßX such

that p $ V. By 3.13, c\ßx(X - V) = ßX - V, and hence p E cl^X- V) and

c\px(X- V) is a+ -closed in ßX. By 3.2, x( A" - V, X) < a, which implies that /> is

not x «-remote.    D

We digress in order to give two corollaries of 3.14. (It is known, of course, that

Lindelöf pseudocompact spaces are compact. The second corollary of 3.14 answers

the question: What property can one add to weakly Lindelöf pseudocompact normal

spaces to insure that they are compact?)

3.15. Corollary. Let a be an infinite cardinal. If X is a normal space, then the

following are equivalent:

(a) X is compact.

(b) wL( X) < a, X is a-pseudocompact, and every nowhere dense closed subset F of

X with x(F, A) < a is compact.

Proof, (a) =» (b) is trivial. Assume (b) and suppose that (a) is false. Then there

exists p E X* and, by 3.14, p is not x„-remote. Therefore some nowhere dense closed

subset F of A with x(F, X) < a is not compact, a contradiction.    D

3.16. Corollary. If X is a normal space, then the following are equivalent:

(a) X is compact.

(b) X is weakly Lindelöf and pseudocompact, and every closed nowhere dense subset

F of X with x(F, A) = co is compact.

3.17. Remarks, (a) To show that the hypothesis of normality is necessary in 3.16,

let cf>(R) = {/? E ßR: p E c\ßK A for every closed discrete subset A of R}. (<i>(R) is

the set of far points of R. See [vD2] for a discussion of <i>(R).) Let Y = R U t>(R). Y

is separable, hence weakly Lindelöf, and pseudocompact [vD2, §17]. We will show

that every closed nowhere dense subset of Y with countable character is compact

(and is, in fact, contained in R).

Let F C Y be closed and nowhere dense and let [Un: n E u} be a base for the

neighborhoods of F in Y. We show first that F D R is compact.

Assume the contrary. Thus FOR is not bounded and hence contains {xn:

n E co}, an infinite closed discrete set. There exists a collection {//„: w E co} of open

subsets of R such that for all n E co, xn E Hn C U„ and such that {//,,: n E co} is

discrete in R. Since Hn is open in Y and since F is nowhere dense, we can pick

v„ E Hn - F for all n E co. Then A = {yn: n E co} is closed discrete in R and, since

no point of c>(R) is a limit point of A, A is also closed in Y. Then Y - A is a

neighborhood of F in Y but no Un is contained in Y — A, a contradiction.

Next we show that F Fl </>(R) has countable character in Y. Since F Fl R is

compact and 4>(R) is closed in Y, F Fl R has a closed neighborhood H in Y such that

H n (F n <i>(R)) = 0. Then [U„ - H: n E co} is a base for the neighborhoods of

F Fl <t>(R) in Y.

Finally, we show that no nonempty subset of </>(R) has countable character in Y

and conclude that F — F D R and is therefore compact. Let 0 ^ A C <i>(R) and let

{//„:« E co} be a decreasing neighborhood base for A in Y. For all n E co, pick
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yn E Hn n R and consider K = clR{yn: n E to}. If K is compact, then Y - K is open,

A C Y - K, but for all n E co, Hn <£ Y — K, a contradiction. If tf is not compact,

{xn: « E to} is not bounded and therefore contains an infinite subset D = {xnk:

k E 03} which is closed discrete in R. Again no point of <J>(R) is a limit point of D

and therefore Y — D is a neighborhood of /I in F. Since {//„:« E co} is a decreasing

neighborhood base for A in Y, {Hnk: k E to} is also a neighborhood base for A in 7,

but no Hnk is contained in Y - D. This contradiction completes the proof.

(b) We show next that, in the implication (b) =» (a) of 3.16, none of the hypotheses

of (b) can be omitted.

The ordinal space co, is normal and pseudocompact and every closed nowhere

dense subset of ui with countable character is compact. Thus the hypothesis "X is

weakly Lindelöf cannot be omitted. To see that the hypothesis of pseudocompact-

ness cannot be omitted, we note that the ordinal space co is normal and Lindelöf and

contains no nonempty nowhere dense closed set. The last example shows that the

hypothesis on closed nowhere dense sets cannot be omitted from 3.16(b): Let k be an

uncountable cardinal, and for each £ < k, let A"£ = {0,1}. Let A = I]£<K A"£ and let

Y = {x E X: x£ = 1 for at most countably many £ < k}. (Y is a "2-product" of the

family < A£: £ < k). See [Co] and [En, 2.7.13] for further details.) By [Co, Theorem

1], F is normal, and by [Co, Theorem 2], vY = X = ßY, and hence Y is pseudocom-

pact but not compact. Moreover, by [Co, Proposition 3], Y has a dense Lindelöf

subspace and is therefore weakly Lindelöf. (We are grateful to E. K. van Douwen for

calling [Co] to our attention.)

We are now ready to prove 3.4.

Proof of 3.4. Let x be an a-small a-pseudocompact normal Fa+-space. By 3.11,

wL( X) < a and hence by 3.14, A has no xa-remote point.    D

The statement of the following theorem is also equivalent to 2" — a+ (see 5.2).

3.18. Theorem [2" = a+ ]. If X is an a-small Fa+ -space with x(F, X) < a for every

a+ -closed nowhere dense subset F of X, then ßa+ X — X contains no xa-remote point of

X.

Proof. Let p E ßa* X — X. By 3.11 and 3.12 there exists a dense a+ -open subset

V of ßX with p E V. Then ßX — V is a+ -closed in ßX and hence is a Ga+-set in

ßX. Sincep E ßa. X, (ßX - V) n U meets X for every neighborhood U of p in ßX,

and hence p E c\ßx( X - V). Since x( X - V, X) < a, p is not xa-remote.    D

3.19. Corollary [CH]. // A is a small normal F-space with xnÂx) = w> then x is

realcompact.

Proof. Let p E vX - X. By 3.18, p E c\ßxF for some closed nowhere dense set F

of A" with x(F, X) = to, contradicting 3.3.    D

3.20. Remarks, (a) 3.19 is equivalent to CH (see 5.3(b)).

(b) In [Sw,] we show that if X is countably compact, then x(Z, X) = co for every

zero-set Z of X, and hence x„2(X) = u. Note then that 0.1(a) => (c) is a corollary of

3.19. Note also that for p E ßu — co, 3.19 shows that, under CH, ßco - {/?} is not
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normal. (See [Wa, 7.3 and 7.4] for a proof that CH implies that co* — {p} (and

hence ßu — {p}) is not normal.)

(c) In [Te], Terada shows that no point of vX — X is remote, provided only that

every collection of disjoint open subsets of X has Ulam-nonmeasurable cardinality.

We will see later, however, that for every a, there is a space $„ such that u4>a — $a

contains a x „-remote point (see 4.26).

4. Generalization of van Douwen's space $. In this section we define, for every

infinite cardinal a, a space $a that is normal, almost compact, noncompact,

a+ -basically disconnected (hence an Fa+ -space), [co, a+ ]-compact (hence a-pseudo-

compact) and such that x(F, $a) < a for every a+ -closed nowhere dense subset F of

Oa. We shall also show that wL($a) > a, that there exists a point in 4>*, hence in

j8a+$a — 4>a, that is Xa_remote> and that, if 2" ^ a+ , then $a is a-small. Hence if

2" ¥= a+ , then Oa is an example of a space for which the statements of 3.4, 3.11 and

3.18 fail. The conclusion then is that the statements of 3.4, 3.11 and 3.18 are each

equivalent to the segment 2a = a+ of GCH (see 5.2).

$a is a straightforward cardinal generalization of van Douwen's space <b of [vD,]

(in fact, <&u = O), and many of the techniques used in proving that 4>a has the

properties listed above are those of [vD,].

The space 3>a is defined as a subspace of ßBa, where Ba is a cardinal generalization

of the space P of [vD,] (P is also described in [GJ, 9L]). Ba is a subspace of a+ + + 1,

and is defined as follows:

Ba — {£ < a+ + : £ is a successor ordinal or cf(£) E {a+ , a+ + }}.

We now turn to the properties of Ba that will be used in discussing 5>a.

4.1. Proposition. If A is an initial segment of Ba and iff E C(A), then fis constant

on some neighborhood of each point in A.

Proof. The result follows from the fact that countable intersections of open sets

are open in Ba.    D

4.2. Proposition. Every a+ -open subset of Ba is closed in Ba.

Proof. Let G = U£<aP£, where each P£ is the cozero-set of /£ E C(Ba) and

suppose there exists ß E (c\B^G) — G. Then /£(ß) = 0 for all £ < a. ß is not a

successor ordinal since ß & G, and hence cf(jS) > a+ . By 4.1, for each £ < a, there

exists vi < ß such that (j»{, ß] Fl Ba Cff\0). Let v = sup{p£: £ < a). Then v < ß

and (v,ß]n Ba C/f"'(0) for all £ < a. Hence (v, ß] Fl G = 0, which contradicts

the assumption that ß E c\BG.    D

4.3. Corollary. Ba is a+ -basically disconnected, and hence an Fa+ -space.

4.4. Proposition. L{Ba) = a.

Proof. Let % be an open cover of Ba. There exists U E % and there exists

ß<a++ such that (ß, a+ + ] n Ba C U E%. Hence it suffices to show that

(*) L([ö,jS]ni!j<«    tiß<a+ + .
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Assume then that % is an open cover of [0, ß] n Ba. We may assume that

% = (%£: £ < a+ } and that each (7£ C [0, ß] D Ba. For all £ < a+ , let F£ = (V£ -

Ufi<£ Us, and let / = {£ < a+ : F£ ¥= 0 }. It suffices to show that | /|< a.

Assume that \I\= a+ and pick p£ E F£ for all £ E /. Let v = sup{>£: £ E /}. Then

v < ß and ci(v) = a+ and hence there exists S < a+ and there exists A < v such that

(\,v]n BaC Us. Then for all -q > 8, (X, v] n 5a n F„ = 0, a contradiction. Thus

(*) holds, which completes the proof.    D

4.5. Proposition. w{Ba) = a+ +.

?ROOr.a+ + =x(Ba)^w(Ba)<\Ba\-x(Ba) = a+ + -a+ + =a+ + .    D

For a space X, we set CO( A") = [A: A is closed-and-open in A"}.

We call a space X strongly zero-dimensional if every pair of disjoint zero-sets of X

can be separated by disjoint closed-and-open subsets of X [En, 6.2.4].

We turn now to a sequence of propositions leading to a computation of w(ßBa).

4.6. Proposition. Ba is strongly zero-dimensional.

Proof. This is immediate from 4.2.    G

The next two propositions are no doubt well known, but no references are known

to the author.

4.7. Proposition. For any space X, |CO(X)|< w(X)L(X\

Proof. Let % be a base for X with |<& \< w(X). Define *: CO(X) -» {<$>' C <&:

\%'\< L(X)} by *(A) = % if A = UQLA. Then * is injective and |{®' C %:

\9>'\<L(X)}\<w(X)L(X\    D

4.8. Proposition. For any space X, | CO(X) | = | CO(ißX) |.

Proof. Define ^: COÍA") ̂  CO(/8A") by ^((7) = clpxU. Then ^ is bijective.

D

The following two cardinal equalities will be used in subsequent calculations.

Proofs can easily be given using [Mo, 22.5, 22.6, 22.13 and 22.14].

4.9. Proposition, (a) (a++)a = a+ + -2a.

(b)(a++-2a)a++=2a+ + .

4.10. Proposition. |C0(5a)|= a+ + ■ 2°, and hence \CO(ßBa)\= a+ + -2".

Proof. |CO(Ba)|< (a++)a = a+ + -2a by 4.4, 4.5, 4.7 and 4.9(a). Let & = {{£}: £

is a successor ordinal and £ > a] and let % = [A: A C [0, a) Fl Ba). Then

|CO(5a)|>|rl|-|®|=a+ + -2a)andhence|CO()85a)|=a+ + -2aby4.8.    D

4.11. Proposition. w(ßBa) = a+ + -2a.

Proof. Since Ba is strongly zero-dimensional, so is ßBa [En, 6.2.12] and therefore

w(ßBa) =\CO(ßBa)I by [CN, 2.24]. The result then follows from 4.10.    D

We prove two more results about Ba that will be needed later.

4.12. Proposition. // G is a+ -open and dense in ßBa, then Ba C G.
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Proof. If G is a+ -open and dense in ßBa, then G Fl Ba is a+ -open and dense in

Ba. By 4.2, G Fl 5„ is closed in Ba, and hence G Fl Ba = Ba.    D

4.13. Proposition. Every real-valued continuous function on Ba — {a+ + } is con-

stant on a tail of Ba — {a+ +}, and hence Ba — {a+ +} is C-embedded in Ba.

Proof. Let /E C(Ba — {a+ + }). Suppose / is not constant on a tail of Ba —

{a+ + }. We can then pick recursively two sequences (jS£: £ < a+ ) and (v¿: £ < a+ >

such that/(/?£) ^ /i^) for all £ < a+ and such that if 8 < £, then ßs < vs < ß£.

Let p = sup{ß£: £ < a+ } = sup{p£: £ < a+ }. Then vEBa- {a+ + }, but/is not

constant on a neighborhood of v, contradicting 4.1.    D

We now define the space Oa as follows: Oa = ßBa — {a+ +}.

The remainder of this section is devoted to showing that Oa has the desired

properties.

4.14. Proposition. ß$a = ßBa, and hence $a is almost compact but not compact.

Proof. <I>a is clearly dense in ßBa, and since, by 4.13, Ba — {a+ +} is C-embedded

in Ba, <Pa is C*-embedded in ßBa.    D

4.15. Proposition. Oa is collectionwise normal.

Proof. We show that every pair of noncompact closed subsets of Oa meet. Let F

and K be closed subsets of $a with a+ + E cl^ F Fl cl^ K. We will pick, recur-

sively, four sequences (x£: £ < a+ >, (y(: £ < a+ >, (j»{: £ < a+ > and (/?£: £ < a+ >

subject to the following conditions:

(l)Forall£<a+,

x(EFn clß9l(ß(, ps] n Ba)    and   y( E K n clß*l(ß(, >J n Ba).

(2) If 5 < £ < a+ , then ßs< vs< ß^< a+ +.

Let £ < a+ and assume that for all 8 < £, x5, >>s, pä and /?s have been selected

satisfying (1) and (2). Let ß( — sup{>s: 8 < £}. Pick

x£ E F n (Vj((/8t> a++] n Ba)    and   j£ E K D cl^j^, a++] n Ba).

Pick p£ so that x£, y^ £ cl^^, a+ + ] Fl Ba). This completes the recursion.

Let v = sup{/?£: £ < a+ } = sup{V£: £ < a+ }. Since cf(j>) = a+ , v E 4>a. Also

cEdtjx{:i<a+}cF   and   p E cl^Jv^: £ < «+ } C K.

Thus F and K meet which proves that $a is normal. Since 4>„ is almost compact, 3>a

is collectionwise normal.    D

4.16. Proposition. í»„ is a+ -basically disconnected and hence an Fa+-space.

Proof. By 4.3, Ba is a+ -basically disconnected. The result then follows from 2.7

and 4.14.    D

4.17. Proposition. wL($a) = a+ + .
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Proof. Since Ba - {a+ + } is dense in $a, wL($a) <|Ba - {a+ + }|= a+ + .Tosee

that wL{<S>a) > a+ + , we note that % = {ßBa - c\pB{.(í, a+ + ] D Ba): £ < a+ + } is

an open cover of $a of cardinality a+ +. No subcover of % of smaller cardinality has

dense union in <ï>a.    D

4.18. Proposition. If F is a+ -closed and nowhere dense in Oa, then F is a+ -closed

in ßBa and hence F is compact.

Proof. We may write F= n£<a(Oa — P£). where each P£ is a cozero-set in

ß$a = ßBa. Then U£<a P£ is dense and a+ -open in ßBn. which implies by 4.12, that

Ba C U£<aP£. Hence a+ + E U£<aP£, and so F = D^a(ßBtt - P£). an a+ -closed

subset of ßBa.    O

4.19. Proposition. x(F, $„) < a/or every nowhere dense a+ -closedsubset Fof$a.

Proof. By 4.18, F is a+-closed in ßBa and hence x(F, Oa) « x(^» ßBa) =

^(F,ßBa)<a.    D

The next group of propositions leads to the conclusion that $a is a+ -

pseudocompact. We will show, in fact, that 4>a is [to, a+ ]-compact.

A point p E X is a complete accumulation point of a subset A of X if for every

neighborhood U of /> in X, \ U Fl A \ = \A \.

4.20. Lemma [En, 3.12.1]. A space X is compact if and only if every infinite subset of

X has a complete accumulation point in X.

4.21. Proposition. If A C $a and if\A |< a+ , then a+ + is not a limit point of A in

ßBa-

Proof. Since cf(a++) > a+ , a+ + &clpB^A if |yl|<a+.    D

4.22. Proposition. $„ is [co, a+ \-compact.

Proof. Let % be an open cover of $a such that | %|< a+ , and assume that % has

no finite subcover. Choose %' C % of minimal cardinality such that %' covers <ï>a.

Write %' = {(7£: £ < k} with k < a+ , and for each £ < k, let F£ = i/£ - Uj8<£ L^.

Let / = {£ < k: F£ ̂  0}, and note that $a = U£6/1/£. By the minimality of k,

|/|= k. For each £ E /, choose jc£ E F£, and let A = {x£: £ E /}. Clearly | A |= k > w,

and hence /I has a complete accumulation point p E ßBa. By 4.21, p ¥= a+ +, and

hence p E 4>„. Then p E Uß for some ß E I, and therefore | L^ Fl .4 |=|>4 |= k. But

for all £ E / with £ > /?, we have jc£ E Ljg and hence | Uß Fl /I |^| ß1< «, a contradic-

tion.    D

4.23. Corollary. $a « a+ -pseudocompact, hence a-pseudocompact.

In order to calculate | C*($„) |, we need the following result from elsewhere. (We

discuss this result in more detail in §5.)

4.24. Theorem [CoHa, 2.2]. For any space X, | C(X) |< w(X)wL(X).

4.25. Proposition. |C($„)| = a+ + -2a.
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Proof. It suffices to calculate \C*(ßBa)\. By 4.11, 4.24 and 4.9, \C*(ßBa)\<

(a+ + -2a)" <(a+ + -2a)a = a+ + -2", and, since the characteristic function of a

closed-and-open set is continuous, \C*(ßBa)\>\ CO( ßBa ) | = a + + ■ 2a by 4.10.    D

We need one last result about $a.

4.26. Proposition. a++ is a x„-remote point of<ba.

Proof. Let F be a closed nowhere dense subset of 4>a with x(F, <£>a) < a. By 3.2,

cl^ F is a+ -closed in j8$a, which implies that F = Oa Fl cl^ F is a+ -closed in $a.

By 4.18, F is compact, and hence a++ ^cl^ F.    D

5. Topological characterizations of cardinal equalities. As noted in 4.24, Comfort

and Hager prove in [CoHa, 2.2] that, for every space X, \ C(X) |< w(X)wL(X), and in

[CoHa, 5.5], they give an example of a space X such that | C(X)|< w{X)wL(X\ In

[vDZ], van Douwen and Zhou observe that, for every cardinal À such that Xa = X,

the ordinal space X has the property that | C(X) |= X while w(X)wL(X) > X.

What we now show is that, for every infinite cardinal a, | C($a)|< w(^a)wL<-^") if

and only if 2" < 2" . In fact, we have the following topological characterizations of

the cardinal equality 2" = 2"+ +.

5.1. Theorem. If a is an infinite cardinal, then the following are equivalent:

(a)2a = 2°+ + .

(b) //X is any space with d(X) < a++ and if X has either a discrete C*-embedded

subspace of cardinality a or at least 2" closed-and-open subsets, then |C(A")|=

w(X)vL(X\

(c) // X is an Fa+ -space with d(X) < a+ + , and if X has a discrete cellularly

embedded subset of cardinality a, then \ C(X) |= w{ X)wL(X\

(d)|C($a)|= *($„)«*<*«>.

Proof, (a) => (b) Under either hypothesis on X, \ C*(X)\> 2a. Then, by [CoHa,

2.2] and [En, 1.5.6], 2a <| C*(X)\=\C(X)\^ w(X)wLiX) ̂  (2d(X'>)diX^ < 2a+ + = 2a.

(b) => (c) This is immediate from 2.8.

(c)=>(d) Since Ba- {a+ + } is dense in 4>a, c/($a) < a+ + . Moreover, the set

S = [ 0, a) Fl Ba is cellularly embedded in $a and | S | = a.

(d)^(a)   If   2a<2°++,   then   | C($a) |= a++ -2a < 2a++ = (a++ -2a)a++ =

As a summary of §§3 and 4, we now present several topological characterizations

of the segment 2" = a+ of GCH. It should again be noted that 5.2, in the case

a = co, is due partly to Woods [Wo,, 2.2] and [Wo2, 1.1(a)] and partly to van

Douwen [vD,].

5.2. Theorem. If a is an infinite cardinal, then the following are equivalent:

(a)2« = a+.

(b) If X is an a-small Fa+ -space, then wL(X) < a.

(c) If X is an a-small, a-pseudocompact, normal Fa+-space, then X has no xa~remote

point.
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(d) If X is an a-small Fa+ -space such that x(F, A") < a for every a+ -closed nowhere

dense subset F of X, then ßa+ X — X contains no xa'remote point.

Proof, (a) =* (b) is 3.11; (a) => (c) is 3.4; and (a) => (d) is 3.18.

Now assume that (a) is false. Then |C*($a)|= a+ + -2a = 2" and hence $a is

a-small. By 4.16, $a is an Fa+-space; by 4.15, <E»a is normal; by 4.23, 4>„ is

a-pseudocompact; and by 4.19, x(^> $«) < « for every a+ -closed nowhere dense

subset F of A. Then (b) is false by 4.17 while (c) and (d) are false by 4.26 (since

a++Eßa+^a-^a).

5.3. Remarks, (a) Since by 4.22, Oa is [co, a]-compact, the hypothesis "a-pseudo-

compact" can be replaced by "[to, a]-compact" in 5.2(c).

(b) If -,CH, then Ow is a small normal F-space and xnz(®a) = " by 4.19. Since $u

is countably compact but not compact, $u is not realcompact and therefore the

statement of 3.19 is equivalent to CH.
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