
transactions of the
american mathematical society
Volume 279, Number 2. October 1983

NONIMMERSIONS AND NONEMBEDDINGS OF

QUATERNIONIC SPHERICAL SPACE FORMS
BY

TEIICHI KOBAYASHI

Abstract. We determine the orders of the canonical elements in KO-nngs of

quaternionic spherical space forms S*" + 3/Qk and apply them to prove the nonex-

istence theorems of immersions and embeddings of S4" + 3/C?a in Euclidean spaces.

1. Statements of results. Let Qk = [x, y: x ' = y , xyx = y] be the generahzed

quaternion group of order 2k (k > 2). (Note that the relation x2 =1 follows from

the above two relations.) Let dx: Qk -> S3 = Sp(l) = SU(2) be the natural inclusion

defined by dx(x) — exp(2iri/2k~l), dx(y)=j. Then Qk acts freely on the unit

sphere S4n+3 in the quaternion (« + l)-spacei/"+l by the diagonal action (« + l)dx:

Qk -* Sp(n + 1). The quotient manifold S4"+3/Qk is called the quaternionic spheri-

cal space form. D. Pitt [8] studied the structure of K- and KO-nngs of S4"+3/Qk and

considered the problem of immersing or embedding S4n+3/Qk in Euclidean space

Rm using the techniques of M. F. Atiyah [1] (cf. also [5, Chapter 6] and [6, Chapter

3]).

The purpose of this note is to determine the orders of the canonical elements in

KO{S4n+3/Qk) and apply them to improve the nonexistence theorems of immer-

sions and embeddings of S4n+3/Qk. Let M <¿ Rm (or M çt Rm) denote nonexistence

of a C°°-immersion (or a C°°-embedding) of M in Rm. Let v(n) be the nonnegative

integer such that n — q-2"(n), where q is odd. Our main theorem is

Theorem 1.1. // v{2n+)+') < 2« + k - 2i + e, then S4n+3/Qk g #4«+2+2< ancj

S4n+3/Qk £ R4n+3+2i, where e = 0 if n is even > 0, and e = 1 if n is odd.

Define

N(n,k) =max[i: 1 < i < n, v(Zn+]+i) <2n + k-2i + e\.

The case N(n, k) = « was obtained by Pitt [8, Corollary 5.6], and the case k = 3 was

obtained by K. Fujii. It follows from Theorem 1.1, for example, that

Sl5/Qk(ZR20, S'5/Qk£R2i; S^/Q^R42, S3l/Q3£R43,

S3l/Qk<¿R4A,   S3]/Qk£R45       íork>4.
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The complex representation ring Rc(Qk) 01 Qk ^s generated as a free abelian

group by 1, a, b, c and dr(r — 1,2,... ,2

and 3, §3]):

l(x) = l, U(x)=l,

l(y) = l,       1aO0 = -l

k-2 1) defined below (cf. [2, §47.15; 8, §1

b(x) = -l,

b(y) = h

c(x)

c(y)

l,

■ l.

dr(x) = Lo
0 , /   x_  0    (-1)'

where u is a primitive 2*~'th root exp(27r//2*_1) of unity. The multiplicative

structure is given by

a2 = 62 = c2=l,       ab — c,       drds — dr+s + dr_s,       bdr —d2k-i_r,

where we define

b + c,       d_r = dr,       d2k-2+r = d2k-i_r.

The reduced representation ring Rc(Qk) is generated as a free abelian group by

a = a-l,ß = b-l,y = a + b + c-3,8r = dr-2(r= l,2,...,2k~2 - 1) with

relations (cf. [3, Proposition 3.3]):

a2 = -2a,    ß2 = -2ß,    y = aß + 2a + 2/3,    a8x = -2a,

ß8x = -2ß + 82*-2_x -8X,   8r+x = 8x8r + 25, + 28r - 8r_x

d0 = 1 + a,

where 62*-2 y — a, 80 = a. Thus Rc(Qk) is generated by a, ß and 8X as a ring.

Let cR: RR(Qk) -» Rc(Qk) be the complexification. The real representation ring

^/j(Ôa).  considered  as  the  subring  cR(RR(Qk))  of /^(ö^),  is  generated  by

1, a, b, c,d2r and 2d2r+x(r = 0, l,...,2k~3 - 1) (cf. [8, Proposition 1.5]).

Define elements v and z in RR(Qk) by

(1.2) ci1(2*,) = o,       cR'(52)=z.

Let X be the canonical complex plane bundle over the quaternion prqjective space

HP" = S4n+3/S3, and let it: S4n+3/Qk -» //P" be the natural projection. Let ¿c:

Ac(Ô-t) -* K(S4n+3/Qk) be the projection defined in [3,§4] and put 8 = £c(fi,).

Then we have 5 = ir*X- 2 (cf. [3, Lemma 4.4]). The order #5' of 8' E K(S4n+3/Qk)

is determined by H. Oshima in [7, Proposition 5.2] and T. Mormann in [6, Chapter

2, Theorem 4.52] as follows.

Proposition 1.3. #6" = 22n+k~2' (1 < i « «).

Let rc: K(X) -* KO{X) and cR: KO(X) -* K(X) be the realification and the

complexification, respectively. Let £fi: RR(QK) -» îTO(54"+3/Ôa:) De the projection

defined in [4, (3.9)] (or in [8, Theorem 2.5]). Then, by (1.2),

iRv = rc{nr*X - 2)    and   iRz = cr1{(tt*X - 2)2)

(cf. [4, Lemma 3.10]), because 8X is self-conjugate and cRrc — 1 + conjugation. For

simplicity we write v and z instead of i-Rv and £Rz. Then, for the complexification

cR: KO(S4n+3/Qk) -> ̂ (S4n+3/Ô*X we have

(1.4) cä(ü) = 2«,       cÄ(z) = 52.
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Let #a (or #A) denote the order of an element a (or a group A). The orders of the

canonical elements in KO(S4n+3/Qk) are determined as follows.

Theorem 1.5. For z' andvz' E KO(SBm+1/Qk),

#zi _ 24«+*-4i+3 (0</<»i),

#uz'' = 24m+k-4> (0<f<m).

Theorem 1.6. For z< andvz' E KO(SSm+3/Qk),

#zi = 2*m+k-4i (0</<m),

#ÜZ, = 24m + A:-4,-3 (0 < / < «).

Corollary 1.7. Fort; G KO(S,4',+3/Ö*),

_ Í22n+k-2    if n is odd,

[22n+k-3     ifniseven>0.

K. Fujii [4] proved the result for A: = 3. H. Oshima [7] announced it for /c = 4 and

conjectured Corollary 1.7.

The author wishes to express his sincere thanks to the referee for his valuable

suggestions.

2. Proofs of Theorems 1.5 and 1.6. First we prepare a lemma.

Lemma 2.1. In KO(S4n+3/Qk):

2*-3

(a) 2kv+ 2 (2c2J + c2j+lv)zJ = 0,

7=1

2*-3

(b) 2*z +  2 (2-1c2yü + c27+1z)z^ = 0,

7=1

vv«ere cs are integers satisfying

(•) ^2 = 2^2(22*-3 + l)/3,       c2»-2+I = l,

r(cj >max(l, A: - j)   /orO < s « 2*~2.

Proof. It was proved in [6] that 22=,2+1<^ = 0 in Rc(Qk), where

(CVM2*"2 + s - 1 \ + I 2k~2 + 5-2

2s - 1      /      \      2s - 1

(*) follows easily from

v\n) ~ avw) + a(m ~~ n) ~~ a(w)>

where a(«) denotes the number of nonzero terms in the dyadic expansion of n. (a)

and (b) are proved by multiplying this by 2 and 8X, respectively, and applying cRl£c.
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Lemma 2.2. In KO(SSm+1/Qk):

(i) zm+1=0,

(ii) 24i+kvzm-'' = 0        (0<i<m),

(iii) 24i+k+3zm-' = 0        (0<i<m),

(iv) 24,'+*"1üzm_'' + 24l+k+2zm-i = 0        (0<i<m),

(v) 24, + k + l^-, + 24i+k+3vzm-i-\  _ Q (0 < j < m).

Proof, (i) follows from [8, Theorem 2.5].

(ii) and (iii) are proved by induction on i. (ii) for i = 0 follows from (i) and

(a) X zm. (iii) for i = 0 follows from (b) X 23zm_' and (ii) for i = 0. (iii) for any

j<i- 1, (ii) for any; < i and (b) X 24,+3zm~'~' imply (iii) for/ = i. (ii) for any

/ < i, (iii) for any; < i and (a) X 24,+4zm_/~ ' imply (ii) for; = / + 1.

Using (b) X 24'+2zm-'-1 (resp. (a) X 24i+3z",-,_l) and (i) ~ (iii), we obtain (iv)

(resp. (v)).

Lemma 2.3. In KO(S*m + 3/Qk):

(i) zm+l=0,

(ii) vzm = 0,

(iii) 24/+*zm""'= 0 (0<i<m),

(iv) 24,+k+[vzm -''-' =0 (0</<m),

(v) 24'+*_,zm_' + 24'"1"*!»"-'"1 =0 (0 < i < m),

(vi) 24i+kvzm-'-] + 24,+k+3zm-'-] =0 (0 < i < m - 1).

Proof, (i) follows from Lemma 2.2(i) and the naturality. (ii) is proved in [4, §4].

The proofs of (iii) ~ (vi) are similar to those of Lemma 2.2(h) ~ (v), so we omit the

details.

Proof of Theorem 1.5. By Lemma 2.2(iii), (ii) we have

#z''< 24m+k-4i+3    (0<i^m)       and       #vz' < 24m+*_4/    (0</<m).

Let ;: SSm+3/Qk -* SSm+7/Qk be the natural inclusion. Then it follows from

[4,§4] that Ker;'*, the kernel of the induced homomorphism;*: KO(S*m+7/Qk) -

KO(S*m+3/Qk), is generated by vzm. According to [5, Chapter 6, Proposition 5.7],

#KO(Sim+1/Qk) = 22mk+Am+k+4   and    #KO(SSm+3/Qk) = 22mk+4m+4.

Hence, by Lemma 2.2(h), we obtain

2k = #KO(S%m+1/Qk)/#KO{S%m+3/Qk) < # Ker;* = #vzm « 2k.

Thus #vzm = 2k. Therefore, by Lemma 2.2(iv), (v) we have

24m + k-4, + 2zi _ _24m+k-4i-lvzi -  . . . _ _2k-iVZ"> ^ 0.

Proof of Theorem 1.6. By Lemma 2.3(iii), (iv) we have

#zi^2Am+k~4i   (0<i<m)       and       #üz'< 24m+Ac-4'-3    (0<i<m).
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By Lemma 2.3(vi), (v) we have

•y4m + k — 4i— 1   i _ _'}4m + k — 4i — 4.   i —   . . . — _j4m + k — 4.^

But, by (1.4) and Proposition 1.3, cR(24m+k-4v) = 24m+k~38 ^ 0, so 24m+k-4v ^ 0.

3. Atiyah's criterion. Exterior power operation X(a), a E Rc(Qk), is determined

by

A°(a) = l,   X\a) = a,   X(a) = 0   for i > 1, a = 1, a, b, c,

X2{dr) = l    for rodd,   X2(dr) = a   for r even,       X'{dr) = 0   for / > 2.

Define A,(a) = S^o^'i«)*'- Then the Grothendieck y-operations v' are obtained

from the equality of the polynomials

\ai-,)(<x) = Y,(«) = 2 ?'(«)''■
/»o

The following is well known (cf. [8, p. 2]).

Lemma 3.1. y,(82r+x) = 1 + 52r+1(/ - t2), where 82r+x = d2r+x - 2 e Rc(Qk).

Let v and z be the elements in RR(Qk) defined in (1.2). Then we prove

Lemma 3.2. y,(v) = I + v(t - t2) + z(t - t2)2.

Proof. Since y, is natural with respect to the complexification cR, we have, by

Lemma 3.1 and (1.2),

yt(v) = y,cR\28x) = cÄ'{Y,(S,)}2 = ^'{l + 8x(t - t2)}2

= cRl[l + 28x(t - t2) + 82(t - t2)2} = l + v(t- t2) + z(t - t2)2.

As an application of Grothendieck y-operations in KO-theory, M. F. Atiyah [1]

obtained the following

Theorem 3.3. Let M be an n-dimensional compact smooth manifold and t0 E KO(M)

the stable class of the tangent bundle of M. Then, if M is immersible (resp. embed-

dable) in R"+r, y'(-t0) = 0/or all i > r (resp. i > r).

Lemma 3.4. Let t0 be the stable class of the tangent bundle r = r(S4n+3/Qk) of

S4n+3/Qk. Then

í     \_ v/2«+l+2/\  (/.     ,2\2'      v  1/2« + 2 + 2/\    iit     ,2\2'+i
y,u)-|o(   2/.   y\t-t) - 2o2i 2í+i )™(<-<2)  ■

Proof. According to [9, Corollary 3.3],

-t0 = 4« + 3 - t = 4(« + 1) - (« + l)(rcir*X) = - (« + I)«.
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By Lemma 3.2 and (1.2), we have

y,H>) = y,(- (« + 0») = M*)r~l = {i + v(t-t2) + z(t -12)2}--]

= cj{l + 8x(t - t2)}-2-2

= cR>{l(2n+2\ + 2i)8ï(t-t2f

-1 \{ln^lY'W^t-t2f+]
1*0 J

_ v /2n + 1 + 2i\i/t     tt\2i      v   W2n + 2 + 2/'\    ,/„     .2\2'+i
-J0(        2t        H'"'*   -2,21     2/+1     H'"')      •

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. Let « be even. Let yi = z'/2 if / is even and yt =

-2-lvz(i'l)/2 if i is odd. Then, by Theorem 1.6, #y¡ = 22n+k~2' for i < n and y, = 0

for i > «. Also, by Lemma 3.4,

= 2(-DV   2   (-D'fMf^V + V
s 2"'s</«;j

Hence, if S4n+3/Qk is immersed in /?4"+2+2', then for all s > li,

2"'í«/<j

The desired equahties

1 / )y'-°
are obtained by a downward induction on s, beginning with j = 2«.

The other cases are similar.
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