NONIMMERSIONS AND NONEMBEDDINGS OF QUATERNIONIC SPHERICAL SPACE FORMS

RY

TEIICHI KOBAYASHI

ABSTRACT. We determine the orders of the canonical elements in KO-rings of quaternionic spherical space forms S^{4n+3}/Q_k and apply them to prove the nonexistence theorems of immersions and embeddings of S^{4n+3}/Q_k in Euclidean spaces.

1. Statements of results. Let $Q_k = [x, y: x^{2^{k-2}} = y^2, xyx = y]$ be the generalized quaternion group of order 2^k (k > 2). (Note that the relation $x^{2^{k-1}} = 1$ follows from the above two relations.) Let $d_1: Q_k \to S^3 = \operatorname{Sp}(1) = \operatorname{SU}(2)$ be the natural inclusion defined by $d_1(x) = \exp(2\pi i/2^{k-1})$, $d_1(y) = j$. Then Q_k acts freely on the unit sphere S^{4n+3} in the quaternion (n+1)-space H^{n+1} by the diagonal action $(n+1)d_1: Q_k \to \operatorname{Sp}(n+1)$. The quotient manifold S^{4n+3}/Q_k is called the quaternionic spherical space form. D. Pitt [8] studied the structure of K- and KO-rings of S^{4n+3}/Q_k and considered the problem of immersing or embedding S^{4n+3}/Q_k in Euclidean space R^m using the techniques of M. F. Atiyah [1] (cf. also [5, Chapter 6] and [6, Chapter 3]).

The purpose of this note is to determine the orders of the canonical elements in $\widetilde{KO}(S^{4n+3}/Q_k)$ and apply them to improve the nonexistence theorems of immersions and embeddings of S^{4n+3}/Q_k . Let $M \not\subseteq R^m$ (or $M \not\subseteq R^m$) denote nonexistence of a C^{∞} -immersion (or a C^{∞} -embedding) of M in R^m . Let $\nu(n)$ be the nonnegative integer such that $n = q \cdot 2^{\nu(n)}$, where q is odd. Our main theorem is

THEOREM 1.1. If $\nu({}^{2n+1+i}) < 2n+k-2i+\varepsilon$, then $S^{4n+3}/Q_k \not\subseteq R^{4n+2+2i}$ and $S^{4n+3}/Q_k \not\subset R^{4n+3+2i}$, where $\varepsilon=0$ if n is even >0, and $\varepsilon=1$ if n is odd.

Define

$$N(n, k) = \max \left[i: 1 \le i \le n, \nu \binom{2n+1+i}{i} < 2n+k-2i+\epsilon\right].$$

The case N(n, k) = n was obtained by Pitt [8, Corollary 5.6], and the case k = 3 was obtained by K. Fujii. It follows from Theorem 1.1, for example, that

$$S^{15}/Q_k \not\subseteq R^{20}$$
, $S^{15}/Q_k \not\subset R^{21}$; $S^{31}/Q_3 \not\subseteq R^{42}$, $S^{31}/Q_3 \not\subset R^{43}$, $S^{31}/Q_k \not\subseteq R^{44}$, $S^{31}/Q_k \not\subset R^{45}$ for $k \ge 4$.

Received by the editors August 19, 1982 and, in revised form, November 29, 1982.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 57R42; Secondary 57R40, 55N15, 55S25.

Key words and phrases. Quaternionic spherical space forms, representation ring, K-theory, KO-theory, γ-operations, immersions, embeddings.

The complex representation ring $R_C(Q_k)$ of Q_k is generated as a free abelian group by 1, a, b, c and d_r ($r = 1, 2, ..., 2^{k-2} - 1$) defined below (cf. [2, §47.15; 8, §1 and 3, §3]):

$$\begin{cases} 1(x) = 1, & \{a(x) = 1, \\ 1(y) = 1, \end{cases} \begin{cases} a(x) = 1, & \{b(x) = -1, \\ b(y) = 1, \end{cases} \begin{cases} c(x) = -1, \\ c(y) = -1, \end{cases}$$
$$d_r(x) = \begin{bmatrix} \omega^r & 0 \\ 0 & \omega^{-r} \end{bmatrix}, \quad d_r(y) = \begin{bmatrix} 0 & (-1)^r \\ 1 & 0 \end{bmatrix},$$

where ω is a primitive 2^{k-1} th root $\exp(2\pi i/2^{k-1})$ of unity. The multiplicative structure is given by

$$a^2 = b^2 = c^2 = 1$$
, $ab = c$, $d_r d_s = d_{r+s} + d_{r-s}$, $bd_r = d_{2^{k-2}-r}$

where we define

$$d_0 = 1 + a$$
, $d_{2^{k-2}} = b + c$, $d_{-r} = d_r$, $d_{2^{k-2}+r} = d_{2^{k-2}-r}$.

The reduced representation ring $\tilde{R}_C(Q_k)$ is generated as a free abelian group by $\alpha = a - 1$, $\beta = b - 1$, $\gamma = a + b + c - 3$, $\delta_r = d_r - 2$ $(r = 1, 2, ..., 2^{k-2} - 1)$ with relations (cf. [3, Proposition 3.3]):

$$\alpha^2 = -2\alpha, \quad \beta^2 = -2\beta, \quad \gamma = \alpha\beta + 2\alpha + 2\beta, \quad \alpha\delta_1 = -2\alpha,$$

$$\beta\delta_1 = -2\beta + \delta_{2^{k-2}-1} - \delta_1, \quad \delta_{r+1} = \delta_1\delta_r + 2\delta_1 + 2\delta_r - \delta_{r-1}$$

where $\delta_{2^{k-2}} = \gamma - \alpha$, $\delta_0 = \alpha$. Thus $\tilde{R}_C(Q_k)$ is generated by α , β and δ_1 as a ring.

Let $c_R: R_R(Q_k) \to R_C(Q_k)$ be the complexification. The real representation ring $R_R(Q_k)$, considered as the subring $c_R(R_R(Q_k))$ of $R_C(Q_k)$, is generated by 1, a, b, c, d_{2r} and $2d_{2r+1}$ $(r = 0, 1, \ldots, 2^{k-3} - 1)$ (cf. [8, Proposition 1.5]).

Define elements v and z in $\tilde{R}_R(Q_k)$ by

(1.2)
$$c_R^{-1}(2\delta_1) = v, \quad c_R^{-1}(\delta_1^2) = z.$$

Let λ be the canonical complex plane bundle over the quaternion projective space $HP^n = S^{4n+3}/S^3$, and let π : $S^{4n+3}/Q_k \to HP^n$ be the natural projection. Let ξ_C : $\tilde{R}_C(Q_k) \to \tilde{K}(S^{4n+3}/Q_k)$ be the projection defined in [3, §4] and put $\delta = \xi_C(\delta_1)$. Then we have $\delta = \pi^*\lambda - 2$ (cf. [3, Lemma 4.4]). The order $\#\delta^i$ of $\delta^i \in \tilde{K}(S^{4n+3}/Q_k)$ is determined by H. Oshima in [7, Proposition 5.2] and T. Mormann in [6, Chapter 2, Theorem 4.52] as follows.

PROPOSITION 1.3. $\#\delta^i = 2^{2n+k-2i}$ $(1 \le i \le n)$.

Let $r_C: \widetilde{K}(X) \to \widetilde{KO}(X)$ and $c_R: \widetilde{KO}(X) \to \widetilde{K}(X)$ be the realification and the complexification, respectively. Let $\xi_R: \widetilde{R}_R(Q_K) \to \widetilde{KO}(S^{4n+3}/Q_k)$ be the projection defined in [4, (3.9)] (or in [8, Theorem 2.5]). Then, by (1.2),

$$\xi_R v = r_C (\pi^* \lambda - 2)$$
 and $\xi_R z = c_R^{-1} ((\pi^* \lambda - 2)^2)$

(cf. [4, Lemma 3.10]), because δ_1 is self-conjugate and $c_R r_C = 1 + \text{conjugation}$. For simplicity we write v and z instead of $\xi_R v$ and $\xi_R z$. Then, for the complexification $c_R : \widetilde{KO}(S^{4n+3}/Q_k) \to \widetilde{K}(S^{4n+3}/Q_k)$, we have

$$(1.4) c_R(v) = 2\delta, c_R(z) = \delta^2.$$

Let #a (or #A) denote the order of an element a (or a group A). The orders of the canonical elements in $\widetilde{KO}(S^{4n+3}/Q_k)$ are determined as follows.

THEOREM 1.5. For
$$z^i$$
 and $vz^i \in \widetilde{KO}(S^{8m+7}/Q_k)$,

$$#z^i = 2^{4m+k-4i+3}$$
 $(0 < i \le m),$

$$#vz^i = 2^{4m+k-4i}$$
 $(0 \le i \le m).$

THEOREM 1.6. For z^i and $vz^i \in \widetilde{KO}(S^{8m+3}/Q_k)$,

$$\#z^i = 2^{4m+k-4i} \qquad (0 < i \le m),$$

$$#vz^{i} = 2^{4m+k-4i-3} \qquad (0 \le i < m).$$

COROLLARY 1.7. For $v \in \widetilde{KO}(S^{4n+3}/Q_k)$,

$$#v = \begin{cases} 2^{2n+k-2} & \text{if n is odd,} \\ 2^{2n+k-3} & \text{if n is even} > 0. \end{cases}$$

K. Fujii [4] proved the result for k = 3. H. Oshima [7] announced it for k = 4 and conjectured Corollary 1.7.

The author wishes to express his sincere thanks to the referee for his valuable suggestions.

2. Proofs of Theorems 1.5 and 1.6. First we prepare a lemma.

LEMMA 2.1. In $\widetilde{KO}(S^{4n+3}/Q_k)$:

(a)
$$2^{k}v + \sum_{j=1}^{2^{k-3}} (2c_{2j} + c_{2j+1}v)z^{j} = 0,$$

(b)
$$2^{k}z + \sum_{j=1}^{2^{k-3}} (2^{-1}c_{2j}v + c_{2j+1}z)z^{j} = 0,$$

where c_s are integers satisfying

(*)
$$c_2 = 2^{k-2}(2^{2k-3} + 1)/3, \quad c_{2^{k-2}+1} = 1,$$
 $\nu(c_s) \ge \max(1, k - s) \quad \text{for } 0 < s \le 2^{k-2}.$

PROOF. It was proved in [6] that $\sum_{s=1}^{2^{k-2}+1} c_s \delta_1^s = 0$ in $\tilde{R}_C(Q_k)$, where

$$c_s = \left(\frac{2^{k-2}+s}{2s-1}\right) + 2\left(\frac{2^{k-2}+s-1}{2s-1}\right) + \left(\frac{2^{k-2}+s-2}{2s-1}\right).$$

(*) follows easily from

$$\nu\binom{m}{n} = \alpha(n) + \alpha(m-n) - \alpha(m),$$

where $\alpha(n)$ denotes the number of nonzero terms in the dyadic expansion of n. (a) and (b) are proved by multiplying this by 2 and δ_1 , respectively, and applying $c_R^{-1}\xi_C$.

LEMMA 2.2. In $\widetilde{KO}(S^{8m+7}/Q_k)$:

$$z^{m+1}=0,$$

(ii)
$$2^{4i+k}vz^{m-i} = 0 (0 \le i \le m),$$

(iii)
$$2^{4i+k+3}z^{m-i} = 0 (0 \le i < m),$$

(iv)
$$2^{4i+k-1}vz^{m-i} + 2^{4i+k+2}z^{m-i} = 0 (0 \le i < m),$$

(v)
$$2^{4i+k+2}z^{m-i} + 2^{4i+k+3}vz^{m-i-1} = 0 \qquad (0 \le i < m).$$

PROOF. (i) follows from [8, Theorem 2.5].

(ii) and (iii) are proved by induction on i. (ii) for i = 0 follows from (i) and (a) $\times z^m$. (iii) for i = 0 follows from (b) $\times 2^3 z^{m-1}$ and (ii) for i = 0. (iii) for any $j \le i - 1$, (ii) for any $j \le i$ and (b) $\times 2^{4i+3} z^{m-i-1}$ imply (iii) for j = i. (ii) for any $j \le i$, (iii) for any $j \le i$ and (a) $\times 2^{4i+4} z^{m-i-1}$ imply (ii) for j = i+1.

Using (b) $\times 2^{4i+2}z^{m-i-1}$ (resp. (a) $\times 2^{4i+3}z^{m-i-1}$) and (i) \sim (iii), we obtain (iv) (resp. (v)).

LEMMA 2.3. In $\widetilde{KO}(S^{8m+3}/Q_{\nu})$:

$$z^{m+1}=0,$$

$$vz^m=0,$$

(ii)
$$vz^m = 0,$$

(iii) $2^{4i+k}z^{m-i} = 0$ $(0 \le i < m),$

(iv)
$$2^{4i+k+1}vz^{m-i-1} = 0 (0 \le i < m),$$

(v)
$$2^{4i+k-1}z^{m-i} + 2^{4i+k}vz^{m-i-1} = 0 \qquad (0 \le i < m),$$

(vi)
$$2^{4i+k}vz^{m-i-1} + 2^{4i+k+3}z^{m-i-1} = 0 \qquad (0 \le i < m-1).$$

PROOF. (i) follows from Lemma 2.2(i) and the naturality. (ii) is proved in [4, §4]. The proofs of (iii) \sim (vi) are similar to those of Lemma 2.2(ii) \sim (v), so we omit the details.

PROOF OF THEOREM 1.5. By Lemma 2.2(iii), (ii) we have

$$\#z^i \le 2^{4m+k-4i+3} \quad (0 < i \le m)$$
 and $\#vz^i \le 2^{4m+k-4i} \quad (0 \le i \le m)$.

Let j: $S^{8m+3}/Q_k \to S^{8m+7}/Q_k$ be the natural inclusion. Then it follows from [4, §4] that Ker j*, the kernel of the induced homomorphism j*: $\widetilde{KO}(S^{8m+7}/Q_{\nu}) \rightarrow$ $\widetilde{KO}(S^{8m+3}/Q_k)$, is generated by vz^m . According to [5, Chapter 6, Proposition 5.7],

$$\#\widetilde{KO}(S^{8m+7}/Q_k) = 2^{2mk+4m+k+4}$$
 and $\#\widetilde{KO}(S^{8m+3}/Q_k) = 2^{2mk+4m+4}$.

Hence, by Lemma 2.2(ii), we obtain

$$2^k = \#\widetilde{KO}(S^{8m+7}/Q_k)/\#\widetilde{KO}(S^{8m+3}/Q_k) \le \# \text{ Ker } j^* = \#vz^m \le 2^k.$$

Thus $\#vz^m = 2^k$. Therefore, by Lemma 2.2(iv), (v) we have

$$2^{4m+k-4i+2}z^{i} = -2^{4m+k-4i-1}vz^{i} = \cdots = -2^{k-i}vz^{m} \neq 0.$$

PROOF OF THEOREM 1.6. By Lemma 2.3(iii), (iv) we have

$$\#z^i \le 2^{4m+k-4i} \quad (0 < i \le m)$$
 and $\#vz^i \le 2^{4m+k-4i-3} \quad (0 \le i < m)$.

By Lemma 2.3(vi), (v) we have

$$2^{4m+k-4i-1}z^i = -2^{4m+k-4i-4}iz^i = \cdots = -2^{4m+k-4}iz^i$$

But, by (1.4) and Proposition 1.3, $c_R(2^{4m+k-4}v) = 2^{4m+k-3}\delta \neq 0$, so $2^{4m+k-4}v \neq 0$.

3. Atiyah's criterion. Exterior power operation $\lambda^i(\alpha)$, $\alpha \in R_C(Q_k)$, is determined by

$$\lambda^0(\alpha) = 1$$
, $\lambda^1(\alpha) = \alpha$, $\lambda^i(\alpha) = 0$ for $i > 1$, $\alpha = 1$, a , b , c , $\lambda^2(d_r) = 1$ for r odd, $\lambda^2(d_r) = a$ for r even, $\lambda^i(d_r) = 0$ for $i > 2$.

Define $\lambda_i(\alpha) = \sum_{i \ge 0} \lambda^i(\alpha) t^i$. Then the Grothendieck γ -operations γ^i are obtained from the equality of the polynomials

$$\lambda_{t/(1-t)}(\alpha) = \gamma_t(\alpha) = \sum_{i \geq 0} \gamma^i(\alpha) t^i.$$

The following is well known (cf. [8, p. 2]).

LEMMA 3.1.
$$\gamma_t(\delta_{2r+1}) = 1 + \delta_{2r+1}(t-t^2)$$
, where $\delta_{2r+1} = d_{2r+1} - 2 \in \tilde{R}_C(Q_k)$.

Let v and z be the elements in $\tilde{R}_R(Q_k)$ defined in (1.2). Then we prove

LEMMA 3.2.
$$\gamma_t(v) = 1 + v(t - t^2) + z(t - t^2)^2$$
.

PROOF. Since γ_t is natural with respect to the complexification c_R , we have, by Lemma 3.1 and (1.2),

$$\begin{split} \gamma_t(v) &= \gamma_t c_R^{-1}(2\delta_1) = c_R^{-1}\{\gamma_t(\delta_1)\}^2 = c_R^{-1}\{1 + \delta_1(t - t^2)\}^2 \\ &= c_R^{-1}\{1 + 2\delta_1(t - t^2) + \delta_1^2(t - t^2)^2\} = 1 + v(t - t^2) + z(t - t^2)^2. \end{split}$$

As an application of Grothendieck γ -operations in KO-theory, M. F. Atiyah [1] obtained the following

THEOREM 3.3. Let M be an n-dimensional compact smooth manifold and $\tau_0 \in \widetilde{KO}(M)$ the stable class of the tangent bundle of M. Then, if M is immersible (resp. embeddable) in R^{n+r} , $\gamma^i(-\tau_0) = 0$ for all i > r (resp. $i \ge r$).

LEMMA 3.4. Let τ_0 be the stable class of the tangent bundle $\tau = \tau(S^{4n+3}/Q_k)$ of S^{4n+3}/Q_k . Then

$$\gamma_t(-\tau_0) = \sum_{i \geq 0} \left(\frac{2n+1+2i}{2i} \right) z^i (t-t^2)^{2i} - \sum_{i \geq 0} \frac{1}{2} \left(\frac{2n+2+2i}{2i+1} \right) v z^i (t-t^2)^{2i+1}.$$

PROOF. According to [9, Corollary 3.3],

$$-\tau_0 = 4n + 3 - \tau = 4(n+1) - (n+1)(r_C\pi^*\lambda) = -(n+1)v.$$

By Lemma 3.2 and (1.2), we have

$$\begin{split} \gamma_t(-\tau_0) &= \gamma_t(-(n+1)v) = (\gamma_t(v))^{-n-1} = \left\{1 + v(t-t^2) + z(t-t^2)^2\right\}^{-n-1} \\ &= c_R^{-1} \left\{1 + \delta_1(t-t^2)\right\}^{-2n-2} \\ &= c_R^{-1} \left\{\sum_{j \ge 0} (-1)^j \binom{2n+1+j}{j} \delta_1^j (t-t^2)^j\right\} \\ &= c_R^{-1} \left\{\sum_{i \ge 0} \binom{2n+1+2i}{2i} \delta_1^{2i} (t-t^2)^{2i} - \sum_{i \ge 0} \frac{1}{2} \binom{2n+2+2i}{2i+1} 2\delta_1^{2i+1} (t-t^2)^{2i+1}\right\} \\ &= \sum_{i \ge 0} \binom{2n+1+2i}{2i} z^i (t-t^2)^{2i} - \sum_{i \ge 0} \frac{1}{2} \binom{2n+2+2i}{2i+1} v z^i (t-t^2)^{2i+1}. \end{split}$$

Now we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let n be even. Let $y_i = z^{i/2}$ if i is even and $y_i = -2^{-1}vz^{(i-1)/2}$ if i is odd. Then, by Theorem 1.6, $\#y_i = 2^{2n+k-2i}$ for $i \le n$ and $y_i = 0$ for i > n. Also, by Lemma 3.4,

$$\gamma_{t}(-\tau_{0}) = \sum_{l} {2n+1+l \choose l} y_{l} t^{l} (1-t)^{l}$$

$$= \sum_{s} (-1)^{s} t^{s} \sum_{2^{-1} s \leq l \leq s} (-1)^{l} {l \choose s-l} {2n+1+l \choose l} y_{l}.$$

Hence, if S^{4n+3}/Q_k is immersed in $R^{4n+2+2i}$, then for all $s \ge 2i$,

$$\sum_{2^{-1}s \le l \le s} (-1)^{l} \binom{l}{s-l} \binom{2n+1+l}{l} y_{l} = 0.$$

The desired equalities

$$\left(\begin{array}{cc} 2n+1+l\\ l\end{array}\right)y_l=0$$

are obtained by a downward induction on s, beginning with s = 2n.

The other cases are similar.

REFERENCES

- 1. M. F. Atiyah, Immersions and embeddings of manifolds, Topology 1 (1962), 125-132.
- 2. C. W. Curtis and I. Reiner, Representation theory of finite groups and associative algebras, Wiley, New York, 1962.
 - 3. K. Fujii, On the K-ring of S^{4n+3}/H_m , Hiroshima Math. J. 3 (1973), 251–265.
 - 4. _____, On the KO-ring of S^{4n+3}/H_m , Hiroshima Math. J. 4 (1974), 459–475.
- 5. N. Mahammed, R. Piccinini and U. Suter, Some applications of topological K-theory, North-Holland Math. Studies no. 45, North-Holland, Amsterdam, 1980.
 - 6. T. Mormann, Topologie Sphärischer Raumformen, Dissertation, Univ. Dortmund, 1978.
- 7. H. Oshima, On stable homotopy types of some stunted spaces, Publ. Res. Inst. Math. Sci. 11 (1976), 497-521.
- 8. D. Pitt, Free actions of generalized quaternion groups on spheres, Proc. London Math. Soc. (3) 26 (1973), 1-18.
- 9. R. H. Szczarba, On tangent bundles of fibre spaces and quotient spaces, Amer. J. Math. 86 (1964), 685-697.