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INVARIANT SUBSPACES ON RIEMANN SURFACES OF

PARREAU-WIDOM TYPE

BY

MIKIHIRO HAYASHI1

Abstract. In this paper we generalize Beurling's invariant subspace theorem to the

Hardy classes on a Riemann surface with infinite handles. The problem is to classify

all closed (weak* closed, if p = oo) /f°(i/x)-submodules, say m, of Lp(dx),

1 « p < oo, where d\ is the harmonic measure on the Martin boundary of a

Riemann surface R, and Hx( d\ ) is the set of boundary functions of all bounded

analytic functions on R. Our main result is stated roughly as follows. Let R be of

Parreau-Widom type, that is, the space Hx(R,y) of bounded analytic sections

contains a nonzero element for every complex flat line bundle y 6 n(R)*. We may

assume, without loss of generality, that the Green's function of R vanishes at the

infinity. Set m°°(y) = sup{|/(0) | : / e H°°(R, y), |/|< 1} for a fixed point O of R.

Then, a necessary and sufficient condition in order that every such an m takes either

the form m = CELp(dx), where CE is the characteristic function of a set E, or the

form m = qHp(dx, y). where \q\= 1 a.e. and y is some element of tr(R)* is that

mx(y) is continuous for the variable y E tr(R)*.

1. Introduction. This paper deals with the classification of invariant subspaces of

the Lp spaces in terms of Hardy classes on certain Riemann surfaces. Our classifica-

tion theorem is closely related to direct and inverse Cauchy theorems.

In a famous paper [1], Beurling classified all closed invariant subspaces of the

Hardy class H2 on the open unit disc. Though his study originated in the invariant

subspace problem on Hubert space, our classification problem is traced back to this

result. There are of course several intermediate developments between the present

work and Beurling's one. The case of an annulus was considered by Sarason [18].

For compact bounded Riemann surfaces, various classification theorems of invariant

subspaces were given by Forelli [6], Voichick [21,22] and Hasumi [7]. In more recent

years, Neville [11,12] succeeded in obtaining a similar classification theorem on

certain plane domains with infinite connectivity, and this result was extended to

certain classes of open Riemann surfaces by Hasumi [8,9] and Neville [13]. How-

ever, a problem remained because the conditions assumed on the Riemann surface

are not well designed for use.

The purpose of this paper is to present the classification theorem on a more

satisfactory class of Riemann surfaces, which is of course (probably, strictly) broader

than those considered by Neville and Hasumi.
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The class of Riemann surfaces we have in mind was introduced by Parreau [14].

Various considerations led Widom [23] more recently to rediscover the same class. A

Riemann surface in this class will be said to be of Parreau-Widom type (cf. the next

section, for a precise definition). Our classification theorem for invariant subspaces

(Theorem 5.1) will be given on Riemann surfaces of Parreau-Widom type satisfying

an additional condition.

In §6, we shall investigate this condition and show a way of constructing a variety

of Riemann surfaces with this condition. We may emphasize this fact because it

gives the first example of a Riemann surface with infinite handles on which the

classification theorem of invariant subspaces is obtained; on the contrary, it is

unknown, as far as we are aware, whether the class of Riemann surfaces considered

by Neville and Hasumi contains a Riemann surface with infinite handles or not.

Finally, we note that the methods employed in this paper are similar to those used

by Hasumi [8]. Green's lines and the Martin boundary play a fundamental role.

Although it is also possible to organize the development in terms of the Hayashi

boundary (homeomorphic to Wiener's harmonic boundary), which Neville used, the

methods employed here give a better formulation of our classification theorem

(Theorem 5.1).

Acknowledgement. I would like to express my sincere thanks to Professor M.

Hasumi for his valuable suggestions, discussions and patience during the preparation

of the paper. I would like to express my sincere thanks to Professor T. W. Gamelin

for his valuable discussions and constant encouragement. I am also grateful to the

referees for many helpful comments, corrections and, especially, indicating to me a

serious mistake which I made in relation to the condition (3.1) in a previous version

of this paper.

The first draft of the present paper was written under the title " Direct and inverse

Cauchy theorem and application to invariant  subspaces".

2. Notations and basic facts. In this section we shall fix some notations and

summarize basic known facts.

Throughout the paper R will be a hyperbolic Riemann surface and O E R will be

a fixed point. The Green function on R will be denoted by G(z, f ). Moreover, R*

will denote the Martin compactification of R, A the Martin boundary of R (i.e.,

A* = R*\R by definition), and dx the Harmonic measure for the point O on A.

Fine limit. Let A, be the set of minimal points of A. Then A, has full measure with

respect to d\- For each point b E A, a specific filter base on R is defined as in

[3, Abschnitt 17].

If a function f on R has a limit along this filter base, we will denote the limit by

Kb).
The class LP(R) (cf. [3, Abschnitt 2; 8, §2; and 13, §§2.1 and 2.2]). We shall

denote by LP( R ) the set of differences of functions which are positive and harmonic

on R except for isolated logarithmic singularities with integer coefficients. Moreover,

S(R) (resp. Q(R)) will be the class of harmonic functions on R which are singular

(resp., quasi-bounded), and B(R) will be the set of functions of the form

"(2) = 2"kG(z>tk)
k
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such that u(z) is finite except for z = f¿, where {nk} and {fA.} are sets of integers

and discrete points of R, respectively.

The following facts are known:

(2.1) Equipped with the natural addition and order relation for functions, the class

LP( R ) becomes an ordered abelian group possessing a complete lattice structure.

(2.2) The classes B(R),S(R) and Q(R) are mutually orthogonal bands of LP(R),

and we have the orthogonal decomposition

LP(R) = B(R)®S(R)®Q(R).

Every harmonic function of the form u = us + uQ, us G S(R), uQ E Q(R), has a

unique integral representation

u(z)= ( kh(z)dfi(b).

where kh(z) is the Martin kernel for R and u is a finite measure on A, [3, Satz 13.1].

The correspondence between u and u. is a vector lattice isomorphism, and us (resp.,

Uq) corresponds to the i/x-s'nëular (resp., dx-absolutely continuous) part of ju

[3, Folgesatz 13.1]. Moreover.

uQ(z)=f û(b)kh(z)dX(b)
"I

[3, Folgesatz 14.2]. This shows that û = 0 a.e. on A,, û = uQ a.e. on A,, and û is

integrable with respect to d\- Moreover, if a potential p is continuous on R, it

follows from [3, Satz 14.2] that p = 0 a.e. on A, with respect to d\- In summary, we

have the following fact:

(2.3) Let u = uB + us + uQ, where uB E B(R), us E S(R) and uQ E Q(R). Then,

Ct(b) exists a.e. on A. Moreover, û(b) = ûQ(b) a.e. and ûB(b) = ûs(b) = 0 a.e. on A.

Multiplicative meromorphic functions of bounded characteristic. A multiple-valued

meromorphic function, say /, is called multiplicative if |/| is single valued. If, in

addition, log|/| belongs to LP(R),f is said to be of bounded characteristic (compare

with the concept of a locally meromorphic modulus [11; 13, Chapter 2]). We shall

denote by MeB(R) the set of multiplicative meromorphic functions of bounded

characteristic, and by MB( R ) those which are single-valued. By definition, it is clear

that logl/lG LP(R) if f E MeB(R). Conversely, we begin with u G LP(R). By

(2.2), u can be written in the form u = lnkG( ■, Çk) + v, where v is regular. So, the

additive multiple-valued harmonic conjugate of u, denoted by *u, is defined on

R\{Çk}, and since the period around Çk of *u is an integer multiple of 27r, the

function

f(z) = cxp(u(z) + i*u(z))

extends to a multiplicative meromorphic function oní¡. In other words, LP(R) is

the set of logarithms of the moduli of the multiplicative meromorphic functions of

bounded characteristic.

Inner functions (cf. [13, §2.3]). A multiplicative analytic function / will be called an

outer function if log|/|G Q(R). A multiplicative analytic function/is inner if |/|< 1

and log l/l G /(R), where I(R) = B(R) © S(R). By (2.2), every function/ G MeB(R)
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has a unique inner-outer factorization up to multiplication by unimodular constants;

say, / = qg, where q and g will be called the inner factor and the outer factor of /,

respectively. One should note that the inner factor q may be a quotient of inner

functions.

Characters of multiplicative functions. We shall denote by tt( R ) the fundamental

group of R whose base point is O, and by tt(R)* the character group of tt(R), that

is, the set of all homomorphisms of tt(R) to the unit circle group. Let / be a

multiplicative meromorphic function on R; from now on throughout the paper,/will

be assumed to be associated with a unique branch/0 of/at O and regarded as the

analytic function obtained by analytic continuations of/0. For each closed curve C

starting from the point O, the analytic continuation/- of/0 along C is defined, and

fc = yf(C)f0, where yf G tt(R)* is determined uniquely by /. This yf will be called

the character of f. If g is another multiplicative meromorphic function, then/g is also

a multiplicative meromorphic function, and y¡H(C) = yf(C)yg(C) for CEtt(R).

Moreover, if g has the same character as/, then the sum/+ g is well defined and is

a multiplicative meromorphic function with the same character as /and g.

Hardy classes. Let 1 <p < oo and y G tt(R)*. We shall denote by HP(R, y) the

set of all multiplicative analytic functions / such that /has the character y, and \ff

has a harmonic majorant on R (|/| is bounded, tip = oo). We shall also write Hp( R )

instead of HP(R, 1). Now we define

(2.4a) U/H, =[(L.H.M.|/r KO)]17',    K;<oo,

(2.4b) ||/||00 = sup|/(z)|,
zGR

where "L.H.M." means the "least harmonic majorant". For each y G tt(R)*, the

class HP(R, y) becomes a Banach space equipped with the norm ||/|L. It is known

that log l/l G LP(R) and it is written as

log|/|= uQ - uj,       uQ E Q(R), u, E I(R), u, > 0,

and that L.H.M. |/f is quasi-bounded (cf. [13, Theorem 2.5.3]). In particular, the

inner factor of/is an inner function. Hence,

\ff(z)<exp(puQ(z))<fexp(pûQ(b))kb(z)dX(b).

Here we have used Jensen's inequality for the integral representation uQ =

jûQ(b)kh dx(b). By (2.3), |/| = exp ûQ a.e. on A. This shows that

(2.5) (L.H.M. \f\P)(z) = f\f\'p(b)kb(z) dx(b).

Therefore,

(2.6) U/H, = m/fii,,
where the right side is of course the L^-norm with respect to the harmonic measure

dx-
Parreau- Widom type. A Riemann surface R is said to be of Parreau- Widom type if

(2.7) H°°(R,y) ¥={0}    for every y E ir(R)*.
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The Riemann surfaces that satisfy this property were characterized by Widom

[23]. In the case of a hyperbolic Riemann surface that is regular (i.e., (z G R:

G(z, O) > e) is compact for all e > 0), Parreau [14] had introduced the property

(2.8) 2(J(a*,0)<oo,
k

where ak denote the zero points of the meromorphic differential dG( •, O) +

d*G( ■, O), counting multiplicities. The points ak will be called the critical points of

the function G( •, O). Widom showed that the two properties (2.7) and (2.8) are

equivalent if R is a regular hyperbolic Riemann surface ([23, p. 314]). In his paper [9]

Hasumi showed that every hyperbolic Riemann surface satisfying the property (2.7)

is obtained from a regular surface satisfying (2.7) merely by puncturing at a discrete

set of points  w¡ satisfying 2G(tv,, O) < oo.

3. Direct and inverse Cauchy theorems. From now on throughout the paper, R will

be a regular hyperbolic Riemann surface of Parreau-Widom type unless otherwise

stated. The regularity has been assumed here without loss of generality according to

Hasumi's result mentioned at the end of the preceding section.

In order to state the Cauchy theorems, let us fix a few more notations. As in the

preceding section, ax, a2,... denote the critical points of the function G(-,0).

Define functions

X(z) = 2G(z,ak),   A(z) = exp(-X(2))
k

and

Ä(z) = exp(-A(z) -i*X(z)).

By (2.8), X E B(R). We denote by f the character of the multiplicative analytic

function Ä(z). The direct Cauchy theorem now reads as follows:

Theorem 3.1 (direct Cauchy theorem). Let R be a regular hyperbolic Riemann

surface of Parreau-Widom type satisfying

(3.1) exp(-2G(^,0))=sup{|/(0)|:/G//1(^,f),ll/ll1<l}-
V      k '

If f is a meromorphic function on R such that A \f\ has a harmonic majorant then f(b)

exists a.e. on A and is integrable, and we have

f(0)=ff(b)dX(b).

Remark. We shall investigate condition (3.1) in §6.

Proof of Theorem 3.1. Let B be the set of functions k, defined on R except for

the discrete set {ak}, such that \k\ is dominated by a harmonic function on R and

such that k/A extends to a single-valued meromorphic function on R. Recalling that

*X is the harmonic conjugate of X, we have

(3.2) B = exp(i*X)Hx(R,y).
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Let k E B. Then k/A extends to a function belonging to MB(R). It is easy to see

that every function in MB( R ) can be written as a quotient of two bounded analytic

functions, since R is of Parreau-Widom type. Hence (k/A) (b) exists a.e. on A by

(2.3). Since A(b) = 1 a.e. on A, k(b) also exists a.e. on A and k(b) — (k/A) (b) a.e.

on A. We have k E Lx(dx) by (2.6), since exp(-/*A)Â: G HX(R, y). We norm the

space B by \\k\\ = \\k\\x. Let us define a linear functional $ on B by

•(*) = (*/A)(0).

By (3.1),

A(O) = sup{|g(0)| : g G nx(R,y),\\g\\x *£ l}.

Hence, it follows from (3.2) that ||4>||B < 1. By the Hahn-Banach extension theorem,

there is a function w E L°°(dx) such that IMI^ «£ 1 and

<¡>(k)= fk(b)w(b)dX(b)    lorkEB.

In view of the facts that A G B and A(b) = 1 a.e. on A, the following chain of

inequalities

l = *(A)=|i-wrfx</Mrfx<IML= '

becomes a chain of equalities. This implies w(b) — 1 a.e. on A. To conclude the

proof, let / be a meromorphic function satisfying the hypotheses. Then, k = A/

belongs to B. Since k(b) = f(b) a.e. on A, it follows that

/(0) = (*/A)(0)=//rfX

as was to be proved.

The inverse Cauchy theorem is known. We state it for the convenience of the

reader.

Inverse Cauchy theorem (Hasumi [8,9]; also cf. Neville [13]). Let R be a

regular hyperbolic Riemann surface of Parreau-Widom type. Let f* G Lx(dx)- If

ff*(b)h(b)dx(b) = Q

for every meromorphic function h on R such that h(0) = 0 and A | h | is bounded, then

f* is the boundary value of a function in HX(R), that is, there is /G hx(R) with

f(b) = f*(b) a.e. on A.

Remark. In the case of compact bordered Riemann surfaces the above mentioned

inverse Cauchy theorem is equivalent to the one proved by Read [15] and alterna-

tively by Royden [16]; in this case, the direct Cauchy theorem becomes rather trivial.

For certain infinitely connected plane domains, the direct and inverse Cauchy

theorems were proved by Neville in his thesis [11]. The proofs were adapted to

Riemann surfaces satisfying stronger conditions than ours by Hasumi [8] and Neville

[13], in terms of the Martin boundary and the Hayashi boundary, respectively.

As remarked earlier, the inverse Cauchy theorem has been proved on the Riemann

surfaces of Parreau-Widom type, and this fact was first noted by Hasumi [9]. In fact,
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Hasumi's proof of this theorem in [8] is valid for surfaces of Parreau-Widom type

without any modificiation. Neville's proof of this theorem [13] is also valid if one

makes some easy modifications; his proof can also be translated into terms of the

Martin boundary. The two proofs, however, seem to be quite different from each

other. In Hasumi's proof, Green's lines play an important role. In Neville's, it is

crucial to make use of a remarkable inequality [13, Theorem 3.5.2], and Green's lines

do not appear at all.

4. Radial limits and lifting. In this section, we summarize some properties of Green

lines and some relations between the surface R and its universal covering space,

according to Parreau [14] and Hasumi [8,9]. We shall however reorganize the

original statements.

Throughout the paper, we shall denote by £ the set of (open) Green's lines on R

issuing from the point O. The Green's star region in R with respect to O is defined

by

S= {O} U ( (J {/:/££}).

Let {/„} be the set of singular Green's lines, i.e., /'s in £ such that

inf{G(z,0):z G/} >0.

Since we are assuming the regularity of R, the number of {/„} is at most countable.

In fact, let {/*} be the set of Green's lines not lying in £, all of which issue from the

critical points ak of G(z,0). Every Green's lines /„ terminates at a critical point ak

and, possibly, some of /* may terminate at ak. The number of these Green's lines

terminating at a critical ak is precisely one plus the multiplicity of the critical point

ak, and the same number of Green's lines, all of them lying in {/*}, issue from the

ak. Thus, there must be at most countably many l„'s and /*'s. Incidentally, the

Green's star region S is a simply connected region obtained from R by making cross

cuts along {/*} (cf. Figure 4.1 for a plane domain with three boundary components).

Figure 4.1

If / is a mapping from /, / ¥= l„, to a topological space and if f(z) has a limit as

G(z, O) -> 0, z G /, the limit will be denoted by /(/) and called the radial limit of/

along /. Let/be a multiplicative meromorphic function on R. Since S is a simply

connected region on R containing O, the unique analytic extension of fQ is defined
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on S and will be denoted byfs. Furthermore, we shall fix a branch of the function

w(z) = exp(-G(z,0) - i*G(z,0))

on 5, which is a one-to-one conformai mapping of 5 into the open unit disc. Under

this mapping w(z), each Green line / corresponds to an open radial segment w(l)

issuing from the origin. Assigning the argument of this segment w(l) to /, we may

identify £ with the unit circle {e'e; 0 < 9 < 2-rr). The normalized Lebesgue measure

dl = (l/2ir)d6 is called the Green's measure on £.

Proposition 4.1 (Parreau [14]). Let f be a multiplicative meromorphic function of

bounded characteristic on R. Then, fs(l) exists a.e. on £.

Remark. This proposition was essentially proved by Parreau [14]. He only

considered the case in which/is single valued, but no difficulties arise in this general

case. The same proof of this proposition was rediscovered by Hasumi [9].

Proposition 4.2 (Hasumi). (a) Except for a null set £(), every Green's line I has a

single endpoint, denoted by bh in the Martin boundary.

(b) The mapping tp: I — b, from £\£0 to A is measurable, measure preserving,

almost onto and almost one-to-one; that is, there exists a measurable subset £* of £

such that £* Ç £\£0, dl(£\£*) = 0, dX(à\<p(£*)) = 0 and the restriction of<p to £*

is injective.

(c) u(b,) = ü(l) a.e. on £* when u G LP(R). Moreover, if f is a multiplicative

meromorphic function of bounded characteristic, then |/| (b¡) =\f(l) \ a.e. on £* and if

this f is also single valued, then f(b¡) = /(/) a.e. on £*.

Remark. The "almost one-to-one" part in (b) is not mentioned in Hasumi [8],

while part (c) is mentioned only in the case when/is bounded and harmonic. Thus it

might be helpful to the reader to sketch briefly a proof of the proposition.

As in Hasumi [8, pp. 261-262], part (a) is proved by making use of Proposition 4.1

and l'Hospital's rule; the proof becomes simpler if we fix the point a to be O in his

proof. To prove parts (b) and (c), we first assume that u is bounded harmonic. Then

the two Dirichlet problems with respect to the Martin boundary with boundary data

û(b) and with respect to the Green's lines with boundary data û ° y(l) have the

same solution u as in Brelot-Choquet [2, Théorème 30]. Making use of [3, Hilfssatz

8.1] and [2, Théorème 26] we can deduce that/(è,) =/(/) a.e. on £. Now, by [2,(17),

p. 247] and [3, Folgesatz 14.2], we have

f(0)=fj(b)dX(b)=fj(l)dl.

This identity implies that <p is almost onto. The "almost one-to-one" part follows

from [14,§3, Théorème]. This shows part (b). Now let u E LP(R), u < 0. Then,

/=exp(u + ('*M) is a bounded multiplicative analytic function on R. Put v =

L.H.M. l/l. Since v is a bounded harmonic function, v(b¡) = v(l) a.e. on £ as we

have seen. Also, v(b) =|/| (b) a.e. on A by (2.5). On the other hand, by [2, Notation

et Lemme 13], we have

v(0)<J\f(l)\dl.
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Since |/(/)|<û(/) and since u(O) = ¡v(l)dl, we see that |/(/)|= t5(/) a.e. on £.

Therefore, |/(/)| = |/| (bt) and u(l) = û(b,) a.e. on £. Now it is easy to see these

identities for general u and/by their definitions. If/ G MB(R), then condition (2.5)

allows us to write/as a quotient of single-valued bounded analytic functions. Hence,

we have/(/) =f(b,) a.e. on £. This completes the proof.

Throughout the paper (U,ip) will denote the universal covering space of R, where

U is the open unit disc and ^ is the covering map with t^(O) = O. Moreover, da will

denote the normalized Lebesgue measure on 317 and T— {t} will denote the

covering transformation group for (U,\p). As is well known (cf. [3,p. 136]), the

Martin compactification of U is identified with the closed unit disc U U aU, and

\j/(e'e) exists a.e. on dU.

The following two propositions are valid for arbitrary hyperbolic Riemann

surfaces and give a precise relation between the decomposition in (2.3) and the one

on U (cf. [13, Theorem 2.4.1]).

Proposition 4.3. Let s be a positive superharmonic function, with decomposition

s = p + v + w, where p is a potential, v G S(R) and w G Q(R). Then, the decom-

position of the superharmonic function s ° \p on U is given byp°\p + v°\p + w°\p,

that is, p o \j/ is a potential, v ° \p E S(U) and w ° \p E Q(U).

Proposition 4.4 [8, §6]. (a) There is a T-invahant Borel subset Lí> of dU such that

a( UD ) = 1 and \p maps °D into A.

(b) Ifv EQ(R), then v ° ^ G Q(U) and

(v°t)~(eie) = vo4,(eil>)    a.e. on W.

By this correspondence v -> v ° ^, the space Lp(dx) is isometrically isomorphic to

L''(da)Tfor 1 ^ p < oo, where Lp(da)T denotes the subspace of functions in Lp(da)

which are T-invariant on aU.

Remark. An inaccurate statement exists in the proof of this fact [8, Lemma 6.2]

but can be amended without difficulty.

As in [13, §2.4], for each multiplicative meromorphic function/on R, there exists

a meromorphic function F on U such that |/| ° ^ =| F|. We can also take this F so

that /0 o 4> agrees with the germ of F at the origin. Under this convention, F is

uniquely determined by / and we shall write F — f o ^. Conversely, if F is a

meromorphic function on U such that |F| is F-invariant, then there exists a unique

multiplicative meromorphic function/on U such that/ ° ip = F.

Let y, be the character of /. For each t G T, let CT be the image of a continuous

curve from 0 to t(0) by \p. Then, t -> CT induces a natural isomorphism of the group

T onto the group tt(R), and we see that

(4.1) F°t = y7(Ct)F   for all t G T.

Corollary 4.5. If fis a multiplicative meromorphic function of bounded characteris-

tic on R, then

\F(e">) |=|/|" o 4 (e'e) =\f(<p-x o I (e'O)) |   a.e. on W,

where F = f ° \¡j.
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Proof. Note that part (b) of the proposition implies the image of \p has full

measure in A. Thus by Propositions 4.4(a) and 4.2(b), tp"1 ° 4)(e'e) is defined a.e. on

W. Now let f — qg be an inner-outer factorization, where log\q\E I(R) and

log|g|G Q(R). Then, |F|= (|<?| ° ^)(|g| ° ^) and by Proposition 4.3, log\q\°

\p E I(U) and log\g\° \p E Q(U). By (2.3) and part (b) of the proposition,

\F(eie)\ = \g\ * 4>(ew) =\f\ ° Ùe,e) a.e. on W. Hence, the first equality holds.

The second equality follows from Proposition 4.2(c).

5. Classification of invariant subspaces. By Proposition 4.2(b), we have an almost

bijective mapping I -> b, between the Green's lines on R and the points on the

Martin boundary A. For a function/G MeB(R), we define a measurable function

f(b) on A by f(b) = fs(l), when fs(l) exists for b = bt, and f(b) = 0 otherwise.

When/ G MB(R), the notation f(b) has been defined in a different way in §2. Two

definitions of f(b), however, agree on A except for a null set by Proposition 4.2(c),

and we may interpretf(b) in either sense if/ G MB(R).

Now, by Proposition 4.1, we put

H'(dX,y)= {f:fEHp(R,y)}.

We write Hp(dx) instead of Hp(dx, 1). The identity (2.6) and Proposition 4.2 imply

that Hp(dx, y) is a closed subspace of Lp(dx) for 1 *£ p < oo, and since Hx(dx, y)

= Lx(dx) n Hx(dx, y), Hx(dx, y) is weak* closed in L°°(dX) by [5, Chapter IV,

Lemma 2.1]. A linear subspace m of Lp(dx) is called an invariant subspace if

/m C m for every/G H°°(R), that is, if m is is an //°°(i/x)-submodule of Lp(dx)-

Two typical examples of closed invariant subspaces are qHp(dx, y) and Ci:Lp(dx)*

where q G L°°(dx) satisfies |^|= 1 a.e. on A, and where CE denotes the characteris-

tic function of a measurable subset £ of A. What we are about to prove is that every

closed (weak* closed, if p = oo) invariant subspace has one of these two forms.

In order to state our theorem more exactly, let us call attention to common inner

divisors of HP(R, y). Let/ G MeB(R). A quotient q of inner functions is said to be

an inner divisor of /if the inner factor oif/q is bounded. This occurs precisely when

the component of log|/| in I(R) = B(R) © S(R) is dominated by log|?|. When f

is a subset of MeB(R), q is said to be a common inner divisor of ^if q is a divisor of

each function/ G l3r. Now the class Hp(R, y) will be called regular if no nonconstant

inner function is a common inner divisor of HP(R, y). It remains as an interesting

problem whether the class H°°(R, y) is regular for every y E tt(R)* when R is a

regular hyperbolic Riemann surface of Parreau-Widom type. In this problem,

"regularity of R" is necessary, for there exists a nonregular H°°(R, y) whenever the

surface R of Parreau-Widom type is not regular. (For instance, take as y the

character of exp(-(G(z, w) + i*G(z,w))/2) for a nonregular point w for R; ex-

istence of such w is proved in [9].)

Finally, we put

HS(dX) = {f:fEH»(R),f(0) = 0}.

An invariant subspace m is called doubly invariant if H0x'(dx)m is dense (weak*

dense, if p = oo) in m. An invariant subspace m is simply invariant if m is not

doubly invariant.
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Now our classification theorem reads as follows.

Theorem 5.1. Suppose that R is a regular hyperbolic Riemann surface of Parreau-

Widom type satisfying the identity (3.1). Let 1 < p < oo, and let m be a closed (weak*

closed, if p = oo) invariant subspace of Lp(dx)- Then, m has one of the following

forms:

(a) m = CELp(dx), where CE is the characteristic function of a measurable subset E

of the Martin boundary A. The set E is uniquely determined up to a null set by m.

(b) m = qHp(dx, y), where q is a measurable function on A such that \q\= 1 a.e.,

and y E tr(R)*. The character y can be chosen so that HP(R, y) is regular, and if this

is the case, such a character y and the function q are uniquely determined (up to a null

set and multiplication by a unimodular constant) by m.

Moreover, m is in the form (a) (resp., (b)) if and only if m is doubly (resp., simply)

invariant.

Remark. We shall investigate condition (3.1) in §6.

The proof of the theorem is preceded by three lemmas. The first two lemmas are

valid for arbitrary hyperbolic Riemann surfaces.

Lemma 5.2. If h E MeB(R) and h ¥= 0, then h(b) ^ 0 a.e. on A.

Proof. Since log|/j|G LP(R), we have log| A | G Lx(dx) by (2-3) and the Poisson

integral representation preceding it. Hence, h(b) ¥= 0 a.e. on A by Proposition 4.2(c).

4.2(c).

Lemma 5.3. Let f E MeB(R). If the inner factor of f is bounded on R, and if\f\(b)

is integrable, then \f\ has a harmonic majorant on R.

This lemma can be proved in a way similar to the case of the open unit disc. It

depends on the inequality between arithmetic and geometric means (cf. [4, Theorem

2-8]).

If m is a subset of Lp(dx), vc\x will denote the orthogonal complement (g G

Lp (dx)'- Ifgdx — 0 for all / G m}, where p' is the conjugate exponent of p, i.e.,

l/p+ \/p'=\.

Lemma 5.4. Let KX(R) be the set of meromorphic functions such that /(O) = 0 and

A l/l has a harmonic majorant. Set K x(dx) = {f:fEKx(R)}. Then,

Kx(R) = A,Hx(R,y~j),

where A„,(z) = exp(-G(z,0) - z'*G(z,0))/A(z) and y* is the character of A*.

Moreover, if R satisfies (3.1), then

K\dX) = H-(dx)^ .

Proof. The first identity is easy to see by definition. Thanks to the direct and

inverse Cauchy theorems in §3, the orthogonal complement in Lx(dx) oí Kx(dx) is

equal to H°°(dx)- Since A„, is a quotient of inner functions, Kx(dx) is a closed

subspace of Lx(dx)- Hence, Kx(dx) is the orthogonal complement of Hx(dx)-

Now we are in position to prove the theorem.
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Proof of Theorem 5.1. The notations defined in the preceding section will be

used without notice. Let {m} = {/*°i//:/*Gm}, and let [m]p be the closure

(weak* closure, if p = oo) in Lp(da) of the set {FG: F E Hx(da) and G G {m}}.

Clearly {m}p is an invariant subspace of Lp(da) with respect to Hx(da). Further,

{m} is F-invariant, i.e, G ° r G {m}^ whenever G G {m]p and j ET. Now, we

divide the proof into three parts.

Part one. Suppose that {m}^ is a doubly invariant subspace of Lp(da). We shall

prove that m is in the form (a).

By [19], there is a measurable subset L of W such that {m} = C, Lp(do). Since

{m} is F-invariant and T is countably generated, L may be chosen so that L is

F-invariant. By Proposition 4.4(b), there is a measurable subset £ of A such that

CE o ^ = Cz a.e. on dU. Clearly, CELp(dx) includes m. In order to show the reverse

inclusion, let p' be the conjugate exponent of p. Suppose that ,v* G Lp(dx) and

s* -L m. Take an element /* in m. Since s*f* is orthogonal to Hx(dx), s*f* G

Kx(dx) by Lemma 5.4. Let us choose a nonzero bounded analytic function h G

AHX(R, y"1), h¥-0. Then, hs*f* G H¿(dx)- So, for any F G Hx(da), we have

[ ([hs*] o j )(/* o $ )Fda = [ ([hs*f*] ° 4> )Fda = 0.
JdU J<)u

Since the function /* G m is arbitrary, [hs*] ° \¡/ is orthogonal to {m} . Thus,

[hs*] ° \\> must vanish on the set L a.e., or hs* vanishes a.e. on E. Since h(b) ¥= 0 a.e.

on A by Lemma 5.2, s* = 0 on E a.e. Therefore, s* is orthogonal to C, Lp(dx), and

we obtain m = CELp(dx)- It is clear that the set E is uniquely determined by m up

to a null set.

Part two. Suppose that {m} is simply invariant. We shall prove that m has the

form (b). The proof of this part is divided into three steps.

(Step 1) We shall find the function q. By [20], there exists a function Q G L°°(da)

such that |Q|= 1 a.e. on W and {m)p = QHp(da). Let t G F. Since {m}p is

F-invariant, it follows from the uniqueness of Q that Q ° t = y(r)~xQ a.e. on W for

some unimodular complex number y(t). Clearly, y(tit2) = Y(ti)y(t2) for t,, t2 G F.

Since the covering transformation group F is naturally isomorphic to tr( R ), we may

regard y as a character of w( R ). Let /* be an element of m. Then, /* ° \p = QF for

some F G HP(U). Since/* ° \p is F-invariant, it follows that F o T = y(t)F for every

t E T. Therefore, there is a unique multiplicative analytic function / with / ° ip = F.

Here we recall our convention that/0 ° \p agrees with the germ of G at the origin. By

(4.1), the character of /is y. Since L.H.M. \Ff is F-invariant, \ff has a harmonic

majorant. Hence, /G Hp(R,y). Now suppose, in addition, that /* is not a null

function. Set

(5.1) q{b) = f*{b)/f(b)   a.e. on A.

If we knew / ° \p = F, it would be clear that q ° \p — Q, so q would be independent

of/*. Unfortunately, this is not true in general (f° 4* is F-invariant but F is not

unless y = 1). So fix a nonzero function g of HX(R, y'x) and put G = g ° f Since

(fg)s — fsgs on the Green's star region S, we see that/g = (fg) a.e. on A. Since

fgE Hp(R), (fg)" ° x¡> = ((fg) o ¡p)" a.e. on W by Proposition 4.4(b). Further-

more, the germ of FG at the origin agrees with (/g)Q ° i>, so FG — (fg) ° <£, and
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hence (FG)~=(fg)~ »f Thus (/« fai ° *) = (&) ° * = (&)" °<¿ = (FG)" =
FG a.e. on 3t/. Hence, /* ° ¿//o ^ = c}F(g ° ^)/(/<> <¿)(g ° if¡) = öAg ° i>)/FG

= (?(g°>¿)/G. Thus,

(5.2) q ° t¿ = ö(go j )/G   a.e. on 3t/.

This identity shows that g is independent of the choice of nonzero/* G m. Corollary

4.5 implies that \q\= 1 a.e. on A. Now, by (5.1), each element/* G m is written in

the form

(5.3) f*(b) = q(b)f(b)    a.e. on A, where/ G HP(R, y).

In particular, m C qHp(dx- y)-

(Step 2) We shall prove that the last inclusion is indeed an identity. To do this, we

first show that if an inner function, say q', is a common inner divisor of the set

X= {fEHp(R,y):qfEm},

then q' is a unimodular constant. In fact, if/* G m, we have by (5.3)

/* o ̂  = QF,

where /G Hp(R,y) and F = /° xp. By Proposition 4.3, Q' = q' ° \p is an inner

divisor of F. Since this is true for every such F, we must have

[m}pQQQ'Hp(do),

and the reverse inclusion trivially holds. By the uniqueness of function Q, Q' must

be a unimodular constant. Hence Q' and thus q' itself must be a unimodular

constant. In particular, we have also shown that Hp(R, y) is regular.

Now let s* be an element of Lp(dx) which is orthogonal to m and let g be an

arbitrary element of HP(R, y). Choosing a nonzero element /* of m, put /* = qf.

Since m is invariant, s*f* is orthogonal to Hoc(dx)- Thus s*f* G Kx(dx)- Since/

and g have the same character, the right-hand side of the identity

(5-4) s*qg = s*f*(g/f)

is the boundary values of a meromorphic function, say h, of bounded characteristic.

Since the left-hand side of (5.4) is independent of the choice of/* G m, and since

Lemma 5.2 guarantees that a meromorphic function of bounded characteristic is

determined by its boundary values, h is independent of the choice of/*.

Let us write the inner factor of h as AJ[qx/q2), where qx, q2 are inner functions.

The function At appears because s*f* G Kx(dx), and the denominator q2 comes

from the function/in (5.4). Hence, q2 must be an inner divisor of/. As we have seen,

q2 must be a unimodular constant. Now, it follows from Lemma 5.3 that A | h | has a

harmonic majorant. By Lemma 5.4, we conclude that h E KX(R). Since

fs*qgdX=fhldX = 0.

s* is orthogonal to qHp(dx- y)> as was to be proved.

(Step 3) We now only have to prove uniqueness of function q and character y. Let

m = q'Hp(dx, y') be another expression, where Hp(dx, y') is regular. Let / be a

nonzero element of Hp(R,y). Then, there is an element /' of Hp(R,y') with
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qf = q'f, or q/q' = f'/f. Since \q/q'\= 1 a.e. on A, /'// is a quotient of inner

functions. By Lemma 5.2, the identity (f'/f)Hp(dx,y') = Hp(dx,y) implies the

identity

(f'/f)Hp(R,y') = Hp(R,y).

Since the members of the right-hand side are multiplicative analytic functions, the

inner factor of/'// must be bounded by the regularity of Hp(R,y'). Similarly,

the inner factor of ///' must be bounded. Therefore, the function /'// is a constant

of modulus one, and hence, y = y'.

Part three. Now we shall show the final part of the theorem. Suppose that

m = qHp(dx,y), where \q\= 1 a.e. Choose a function g G H°°(dx, Y~') with

|g|(0) # 0. By the direct Cauchy theorem (Theorem 3.1), we see that the function

g/q G L°°(dx) is orthogonal to Hx(dx)m but not to m. Hence, m is simply

invariant.

Next, we suppose that m = CELp(dx)- Choose a nonzero function/* of Hx(dx)-

Set En = [b E A: \f*(b) |> l/n). We define functions g* on A by g*(b) = l/f*(b)

if b E En, otherwise g*(b) — 0. Since m is an Lœ(dx)-module, we have

f*mDf*gtCEm = C(EnnE)Lp(dx).

Letting n -» oo, it follows that/*m is dense (weak* dense, if p = oo) in m. Hence, m

is doubly invariant. This completes the proof.

Remark. The fact that CELp(dx) is doubly invariant was indicated to me

together with its proof by M. Hasumi. Also, he has known the fact proved in Part

one independently; the direct Cauchy theorem is not necessary in the proof of this

part.

In the above proof, the results that have been proved without using condition (3.1)

are valid even for arbitrary of Riemann surfaces of Parreau-Widom type. We have

used it twice in the proof. First it has been used, as the form of Lemma 5.4, at the

end of (Step 2) of Part two and second, as the form of the direct Cauchy theorem, at

Part three to show that qHp(dx, Y) is simply invariant. However, the latter fact can

be seen without using the direct Cauchy theorem. Namely, we have the following:

Theorem 5.1'. Let R be a regular hyperbolic Riemann surface of Parreau-Widom

type, and let m be a closed (weak* closed if p — oo) invariant subspace of Lp(dx),

1 < p < oo. Then, either (a) or (b) holds:

(a) m = CELp(dx), where E is a measurable subset of A;

(b) m C qHp(dx, y), where q G Loc(dx) and\q\= 1 a.e.

When the case (b) occurs, the set X = {/ G HP(R, y): qf Em] can be chosen to be

regular, that is, X admits no nonconstant inner function as its common inner divisor,

and in this case the character y and the function q are uniquely determined (up to a null

set and multiplication by a unimodular constant) by m. Moreover, the case (a) (resp.,

(b)) occurs if and only if m is doubly (resp., simply) invariant.

Proof. Replacing HP(R, y) by X, the uniqueness of y and q can be seen similarly.

Thus, it suffices to show that m is simply invariant in the case (b). Suppose that

m Ç qHp(dx, y) and the set X is regular. Let rrt' be the (weak*) closure of
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H^(dx)m. Then, m' Ç ZqHp(dx, YYó'), where z(2) = exp(-G(z,0) - /*G(z,0))

and y0 is the character of Z. Since X is regular, the inner function Z is not a

common inner divisor of X. So there is an element/ G X with |/(0) \=£ 0. If qf E m',

then qf — Zqg for some g G HP(R, YYo'X but this is impossible because / — Zg

vanishes at O. Hence, qf G m' and qf E m, as was to be proved.

The following fact has also been shown in the proof of Theorem 5.1.

Corollary 5.5. If m is an invariant subspace of the form m = qHp(dx, y), where

| q |= 1 a.e. and HP(R, y) is regular, then the orthogonal complement ire1 of m is given

by

mL=qA*HPXdx,y-:y-x),

where p' is the conjugate exponent of p, i.e, /?"' + p'~x = 1.

Corollary 5.6. Let M be a family consisting of functions in MeB(R) which have

the same character y. Suppose {/: / G M) C Lp(dx) for some 1 *^p < oo. Let [M]p

denote the closed (weak* closed, if p = oo) invariant subspace in Lp(dx) generated by

U:fEM].
(a) // M has no common inner divisors, more precisely, if the set of I(R)-parts of

log l/l J e M, is not bounded above in the lattice LP(R), then [M]p = Lp(dx)-

(b) // M has a common inner divisor, then [M]p = qHp(dx, yI"')> where q is the

greatest common inner divisor of M and ¿ is the character of q. Moreover the class

Hp(R,y£-]) is regular.

Remark. A quotient qx of inner functions is said to be greater than or equal to

another q2, if q2 is a divisor of qx, i.e., log | q2 \> log | qx \. The greatest common inner

divisor has been defined in the corollary according to this order relation. In assertion

(b), q= V(log|/|)fl + V(log|/|)s, where the suprema are taken in the lattice

LP(R) over the set of all/ G M.

Proof of Corollary 5.6. The assertion (b) follows from Part two of the proof of

Theorem 5.1. In order to see the assertion (a), we suppose that [M] was simply

invariant. Then, [M]p = qHp(dx, y), where \q \— 1 a.e. and y G ir(R)*. Let g EM,

g^O. Then, g = qf for some/ G HP(R, y). Hence, q = g//is the boundary values

of multiplicative meromorphic function g/f of bounded characteristic. Let h — g/f.

Then, h is independent of /and g by Lemma 5.2, and we have g = hf. Hence M must

have a common inner factor, a contradiction. Thus, we must have [M] = CELp(dx)

for some measurable subset F of A,. By Lemma 5.2, g does not vanish on a set of

positive measure if g G M and g ¥= 0. Hence, we obtain [M]p = Lp(dx)-

Our classification theorem is stated in terms of the Martin boundary. As for the

invariant subspaces of Hp(dx), we can state the result without the notion of ideal

boundaries as done by Neville [11,12,13] and Hasumi [8, Corollary 7.2]. To do so,

let C0(R) be the set of real continuous functions on R which vanishes at infinity.

When k ranges over the class C0(R), the seminorms

||/||* = sup{|/(z)*(z)|:ze/t}
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define a topology on HX(R), which is called the ß topology. This topology has been

studied extensively by Rubel and Shields [17] and by Neville [13]. In particular, it is

known that a subspace M of H°°(R) is ß-closed if and only if {/: / G M) is weak*

closed in Hx(dx)- Now, we have the following.

Corollary 5.7. Let M be a closed (ß-closed, if p = oo) Hx(R)-submodule of

Hp(R). Then, M = qHp(R, y~x), where q is the greatest common inner divisor of M

with character y.

The following corollary is of interest from the point of view of the abstract Hardy

class theory (cf. [5, Chapter V, Theorem 4.2]).

Corollary 5.8. Let 1 *Zp =s r < oo. Then Hp(dx, y) n U(dx) - Hr(dx, y)- If,

in addition, Hr(R, y) is regular, then Hr(R, y) is dense in Hp(dx, y)- In particular,

Hr(R) is dense in HP(R). (Note that Hr(R) is regular because it contains constant

functions.)

Finally, we obtain the following result due to Hasumi as a corollary of Theorem

5.1'.

Corollary 5.9 (Hasumi [10]). Let R be a hyperbolic Riemann surface of Parreau-

Widom type. Then H°°(dx) is maximal among the weak* closed proper subalgebras of

L°°(dX).

Proof. We may assume that R is regular. Let â be a weak* closed subalgebra

between Hx(dx) and Lx(dx)- Since H°°(dx) Q &, # is an invariant subspace of

Lx(dx)- By Theorem 5.1', we must have &= Lx(dx) if & is doubly invariant.

Suppose that 6? is simply invariant. Then, & C qHx(dx, Y) for some q E Lx(dx),

\q\= 1 a.e., and y E-n(R)*. We may assume that the set X= {fEHx(R,y):

qf G &} is regular. Since 1 G &, qq' — 1 a.e. on A for some q' E X. Hence, this q' is

an inner function. Let A — (l/q')X. Since â — {/: / G A), and since 6B is an algebra,

it follows from Lemma 5.2 that A is also an algebra. Hence, A2 C A, or X2 C q'X.

This means that q' is a common inner divisor of X2. Since X is regular, q' must be a

constant inner function. Therefore, HX(R, y) = HX(R), and 6£ coincides with

Hx(dX).

6. Remarks on the identity (3.1) and examples. It is unknown whether the identity

(3.1) holds for every regular hyperbolic Riemann surface of Parreau-Widom type.

This identity, however, is necessary in order to obtain our invariant subspace

theorem. More precisely, we have the following theorem.

Theorem 6.1. Let R be a regular hyperbolic Riemann surface of Parreau-Widom

type. For y E ■jt(R)* and 1 <p < oo, set

mp(y) = snp{\f(0)\:fEHp(R,y),\\f\\p^l}.

Then, the following conditions are mutually equivalent:

(a) Every ß-closed ideal of HX(R) has the form qH°°(R, y), where q is an inner

function with the character y "'.

(b) The identity (3.1) holds.
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(c) mp(y)mp'(y~xy) = mx(y), for every y G tt(R)* and 1 < p, p' < oo, p'x + p'~x

= 1.

(d) For each 1 < p < oo, mp(y) is continuous for y G 7r(Ä)*.

(e) lim„ mx(y~x) = 1, iv/îeve yn is the character of

exp(-2 [G(-,ak) + i*G(-,ak)}\.

Assuming the theorem for a while, let us construct examples of Riemann surfaces

satisfying the above conditions.

Let R be an w-sheet branched full covering surface of the open unit disc U.

Suppose that the projections of the branch points form the zero set of a Blaschke

product on U. Let <¡>: R -» U be the projection. We may choose the point O so that

<í>(0) = 0. By Stanton [24], R is of Parreau-Widom type and there are constants

0 < r < 1 and A > 0 such that

iG0(4>(z),0)^AG(z,O)   for|<f>(z)|>r.

Here G0(w,0) = -log|w| is the Green function for U. From this inequality and the

fact that R is of Parreau-Widom type, it follows that the projections of the critical

points ak, counting their multiplicities, form the zero set of a Blaschke product on U.

Let Bn be the Blaschke product whose zero set is {4>(ak)}k>n. For simplicity of

notation, we define

Za = exp(-G(-,a) + /*G(-,û)).

Since Bn ° <J> is a single-valued Blaschke product on R, Bn ° <t>/\lk>„Za belongs to

Hx(R,y-]). Since B„(0) - 1, mx(y~x) - 1. Therefore, the surface R satisfies the

condition (e).

One can generalize the above reasoning and can prove the following:

(I) Let RQ be a regular Riemann surface satisfying the conditions in the theorem

and R an m-sheet branched full covering surface of R0. If the projections of the

branch points form the zero set of a Blaschke product on R0, then R also satisfies

the conditions.

In proving this, one may find that the Blaschke product Bn may not be single

valued on R0. Multiplying a suitable element with the inverse character to Bn, one

obtains a single valued function B'n. Use the condition (d) to prove J5^(<p(0)) -> 1.

Following Voichick-Neville's examples (cf. [13, Chapter 8]), we show another way

of constructing Riemann surfaces that satisfy the conditions in the theorem. Namely,

(II) Let /?() be as in (I), and let Ak (k s* 1) be disjoint compact continua such that

R = R(\ UkAk is connected. If there are points bk in Ak with 2kG0(O, bk) < oo,

then R also satisfies the condition.

We briefly sketch the proof of this fact. Choose disjoint domains Rk which

contain Ak and are surrounded by a finite number of closed curves. Let i: R -» R0 be

an inclusion mapping and it: %*(R) -» %*(R0) the induced homomorphism of

homology groups with integer coefficients. Applying the Mayer-Vietoris exact se-

quences to the pair (R0, {JkRk),-wc obtain an isomorphism

%X(R)=$(B§,
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where tJ= Im(tt) and § = K.er(t„,). It is not difficult to see that § is the subgroup of

%X(R) generated by the closed 1-chains 3^, k s* 1. As in Neville [13, Lemma 8.2.1],

there exist probability measures u¿ on Ak such that uk — /G0( • ,b)d\ik(b) are

bounded positive harmonic functions on R and

(6.1) 2«*(0)<oo,
k

(6.2) /J9R, '0 (j¥>k).

Now let y G tt(R)* and set ck = arg y(dRk)/2ir, where 0 < ck < 1. For e > 0, we

fix AT = A(e) with Zk>Nuk(0) < e. Define

« = 2ckuk

for A: satisfying either k > A7 or c¿ < {, and

o = 2(c*- i)«*

for k satisfying both k < N and c¿ > 5. The first sum converges by (6.1), So, the

function u is positive harmonic on R. On the other hand, v is a bounded harmonic

function on R. Set g = exp(-w — v — i*u — i*v). By (6.2), the character y, of g

agrees with y on §. Set y2 = yyf1|?F. By the duality theorem of locally compact

abelian groups, W* is isomorphic to X^Rq)*/1»1- . Thus, we can extend y2 to a

character y2 E %X(R0)* = 7t(R0)*. Since the quotient mapping from %X(RQ)* onto

<3r* is open, we can choose y2 so that y2 converges to 1 in irx(R0)* when y2 converges

to 1 in '§*. Let/ G HX(R0, y2). Since dRk is chain homotopic to zero in R,/has no

periods along dRk. Hence, h = fg belongs to HX(R, y). Since

0exp(|M|J    and    |A(0) | = |/(0)g(0) | ,

it follows that

mx(R, y) > mx(R0, y^)exp(-u(0) - v(0))cxp(-\\v\\J.

Here mx(R,y) and mx(R0,y) denote the quantity mx(y) with respect to R and

R0, respectively. If y -» 1, then ck approaches either 0 or 1 for each k. So,

limsupY^,1 u(0) < e and hmy_1||ü||00 = 0. Moreover, since Yi -» 1, y2 -* 1> and so,

y2 -* 1, as noted above. By the condition (d), we have mx(R0,y2) -* 1. Hence,

liminf?_, mx(R, y) > e~\ Since e > 0 is arbitrary, mx(R, y) -» 1 as y -► 1. There-

fore, R satisfies the condition (e).

Beginning with the open unit disc, one can construct a variety of Riemann

surfaces satisfying the conditions in the theorem by repetitions of (I) and (II).

Now we turn to the proof of the theorem. In what follows, we assume that R is a

regular hyperbolic Riemann surface of Parreau-Widom type. It follows that

(6-3)

mp(y)mp'(y-xy) > expl-'%G{0, aj)    for 1 *Zp,p'^ oo,p~x + p"x = 1.
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In fact, by Widom [23, Lemma and Theorem II], equality holds in (6.3) when R is a

finite bordered Riemann surface. The inequality (6.3) is obtained by a normal family

argument with respect to the exhaustion {z G R: G(z,O) > l/n}, n = 1,2,3.of

R. By [23, Theorem II], we also know that

(6.4) infyw"(Y) = exp(-2G(0, ak)\,        K/><oo.

Lemma 6.2. If HX(R, y) is regular, then HX(R, y~x) also is regular.

Proof. Let qQ be the greatest common inner divisor of Hx(R,y~]) and y0 the

character of q0. We have

Hx(R,yx) =qQHx(R,y0xy~x).

Now HX(R, Y0~'y~' ) is regular, and since

HX(R.y0)Hx{R,y0xy-x) C Hx{R,y-x),

the inner factor of every element of Hx(R,y0) must be divided by qQ. Thus,

H°°(R, y0) = q()Hx(R). By induction, we prove HX(R, y0A) = q^Hx(R) for every

positive integer. Suppose that this is true for k. Then,

Hx(R.yi) + x)Hx(R.y0xy-x)Hx(R,y) Eq^Hx(R).

Since both HX(R, y^'y"1) and Hx(R,y) are regular, the inner factor of every

element in/in HX(R, y(A + l) must be divided by q^. That is,/can be written in the

form

f=q^g,        gEHx(R,y0).

Since Hx(R,y{)) = q0Hx(R), we have Hx(R,yi) + i) = qk + xHx(R). Now, it fol-

lows that

mx{y¿)=\q0(O)f

for every positive integer k.  By (6.4), q0 must be a constant inner function.

Therefore, HX(R, y ' ) is regular.

Now, we set

A„ = TJ Zai    and   A'„ = Z0/ ][ Zû;.
k>n k=\

A„ is the function in the condition (e). We denote by y'„ the character of A'„. Note

that A„ -» 1 and A'„ -> A„, as n -» oo. We also set

I„(R) = AnHx{R,y-x)    and    Kn(R) = A'„HX{R, y^1)

and denote by /„ and Kn the sets of boundary values of functions in I„(R) and

Kn(R), respectively.

Since we may choose any point of R for O, it follows from (6.4) that no Za are a

common inner divisor of any oîHx(R,y). Since A„ belongs to Hx(R, y„), Hx(R, yn )

is regular, and hence, H°°(R, y~x) is regular by the above lemma. This shows that

(6.5) the greatest common inner divisor of  U I„(R) is a constant inner function.
n=l
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Lemma 6.3. Let K0 be the Lx(dx) closure of Un=xKn and I the weak* closure of

Un=]I„inLx(dX).Then,

K0 = H°°(dX)±    and   I = Kx(dX)X ■

Proof. By [8, Theorem 4.2],

(6.6) Kn C Hx(dx)X ,

and it is obvious that

(6.7) In(R)Kx(R)QKx(R).

Thus, if/* G Kg , then Jghf* dx = 0 for any g G KX(R) and h E In(R). Hence, for

every h in I„(R), hf* is orthogonal to K x(dx)- By the inverse Cauchy theorem, hf* is

the boundary values of a bounded analytic function, say /. So, /* = f/h". By Lemma

5.2, f/h is a meromorphic function on R which does not depend on the choice of h.

By (6.5) and Lemma 5.3, f/h is a bounded analytic function. This proves Kg Q

Hx(dx)- The reverse inclusion follows from (6.6).

For the second identity, we have Kx(dx) Q 1^ by (6.6) and (6.7). If g* E Ix , the

fg*h" dx = 0 for every h E I„(R). Since In(R) is an ideal of HX(R), g*h" belongs to

Hx(dx)±=K0. Since K0 C Kx(dX), g*h" = g/A for some g E Hx(R,y^x). So,

Â*g* = g/h. Again, by (6.5) and Lemma 5.3, we deduce that g/h is in HX(R, y+).

Therefore, g* G Kx(dx), and hence 7X Ç Kx(dx)- This proves the lemma.

Proof of Theorem 6.1. We first show that the identity / = Hx(dx) implies the

identity (3.1). If I = Hx(dx), we have Hx(dx)^ = Kx(dx) by the preceding

lemma. LctfEHx(R, y). Set g =//Ä. Since g - g(O) G KX(R), ¡(g - g(O))- 1 dx

— 0. Hence,

jgdx = g(o)=f(o)/À(o).

This implies

l/(o)|<| 1(0)111111, =|A(o)|||/||,.
It follows that mx(y) <| Ä(O) |, and we obtain the identity (3.1) by (6.4).

Now, if (a) holds, then / = Hx(dx) by (6.5). Hence, (b) holds. Conversely, if (b)

holds, then (a) follows from Corollary 5.7. Therefore, (a) and (b) are equivalent.

If fEHp(R,y) and g G H»'(R, y'y), then fgEHx(R,y) and ||/g||, <

ll/llpllgll^-Thus, we have

mp(y)mp\y-xy) < mx(y).

Therefore, (c) follows from (b) by (6.3) and (6.4).

Now suppose that (c) holds. Since mx(y) < 1, mx(y~xy) > mx(y). On the other

hand, limsup.^ ml(y"1f)<wl(y) follows from a normal family argument. Hence,

lim^^i m'(y_1Y) = mx(y), and it follows from the formula in (c) that limy-i m°°(y)

= I. Now let Y0 G n(R)*. Since HP(R, y0)Hx(R, Yo'y) Ç Hp(R, y), we have

m"(yo)mx(y0-xy)<mp(y).

Thus, liminfyjyo mp(y) s* mp(y0), because y0"'y -» 1. Also, by a normal family

argument, we have limsupy^yo mp(y) =£ mp(yQ). Hence, mp(y) is continuous for

y Eit(R)*.
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It is trivial that (d) implies (e). If mx(y~x) -» 1 as n -> oo, take a function /„ in

HX(R, y~x) with |/J=s 1 and |/„(0)|= mx(y~x). Then, A„/„ converges to 1 pointwise

boundedly on /?. Thus, 1 G /, so, / = Hx(dx)- This shows that (e) implies (b) by

the first part of the proof. This completes the proof.

Remark. There is another way of proving our direct Cauchy theorem. As we have

seen, the identity (3.1) implies the condition (e). Using the condition (e), one can

prove the direct Cauchy theorem in a similar way to that of Hasumi [8],

Addendum. I recently found an example of a plane domain that is of Parreau-

Widom type but does not have condition (3.1).
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