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SPECTRAL PROPERTIES OF A CERTAIN CLASS

OF COMPLEX POTENTIALS

BY

V. GUILLEMIN AND A. URIBE1

Abstract. In this paper we discuss spectral properties of the Schroedinger operator

-A + q on compact homogeneous spaces for certain complex valued potentials q. We

show, for instance, that for these potentials the spectrum of -A + q is identical with

the spectrum of -A.

Introduction. Let G be a compact Lie group and A the bi-invariant Laplace-

Beltrami operator on G. Fegan observed in [F] that there exist functions q on G for

which the Schroedinger operator -A + q possesses an infinite sequence of eigenval-

ues Xx, X2,... such that each X, is also an eigenvalue of -A. In this paper we will

show that (a) potentials with this property exist not just on compact Lie groups but

on arbitrary compact homogeneous spaces as well, and (b) for such potentials the

entire spectrum of -A + q is identical with the spectrum of -A.

In Fegan's examples as well as in ours, the potentials q are complex-valued. This

means that the operator -A + q is not selfadjoint. Fortunately, however, there exists

a rather nice spectral theory for such operators. For instance their generalized

eigenspaces are finite dimensional and span L2. (See §2 below.) In view of this we

were surprised to find relatively little material in the literature on such operators. (A

notable exception is Peter Sarnack's beautiful paper on Schroedinger operators with

quasiperiodic q 's. See [S].)

We will describe and sketch the proof of our main result. Let G be a compact

connected Lie group, H a closed subgroup and X the homogeneous space G/H. For

simplicity we will assume for the moment that G is semisimple (though this

assumption is not essential; see §4 for the case G = Sx). Let G be the unitary dual of

G. We can order G lexicographically by choosing a system of positive weights.

Consider the Hilbert-space direct sum

(1.1) L2(X) = ^Ha,       at EG,

Ha being the G-invariant subspace of L2(X) on which G acts according to the

representation a. Each irreducible subspace of Ha possesses a unique maximal

weight vector. Let H^ be the subspace of Ha spanned by these vectors and let

(1.2) L2(X)+ = Zh:.
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We will say that a smooth function q is a Fegan potential if it belongs to L2( X)+ and

is of mean zero: fxq dx = 0.

Now let A be the Laplace-Beltrami operator on X associated with the killing form

of G and consider -A + q restricted to L2(X)+. The first term preserves the

decomposition (1.2) whereas the second term shifts the H* 's to the right; so if we

choose a basis for L2(X)+ whose elements belong to the H+ 's, the matrix for

-A + q with respect to this basis is upper triangular and its diagonal entries are the

eigenvalues of -A; so

Spec(-A + q) = Spec(-A)    on L2(X)+ .

Next let g be the Lie algebra of G, gc its complexification and n the maximal

nilpotent subalgebra of gc spanned by the positive root spaces. Every element £ G n

corresponds to a complex vector field £ on X. We will denote by D^ the operator

"differentiation by £". It is clear that

(1.3) L2(X)+= r|Ker(2)f)

and the D^'s commute with -A + q. Therefore, if X G Spec(-A + q) and Hx is the

(finite-dimensional) generalized eigenspace associated with X, Dç maps Hx into itself;

so we get a representation of n on Hx. By Lie's theorem (see [J]), there exists a

nonzero vector v E Hx such that Z^u = 0 for all £ G n. Thus by (1.3), Hx n L2(X)+

¥= 0 and so, by the previous argument, X is an eigenvalue of -A, proving that

Spec(-A + q) = Spec(-A). It is easy to see, by the way, that the dimension of Hx is

equal to the multiphcity of X as an eigenvalue of -A (see §2).

We will conclude this section with an outline of the remainder of the paper. In §2

we will insert the few details needed in the proof above to make it rigorous. In §3 we

will examine briefly the inverse question: Given a complex potential q on X such

that Spec(-A + q) — Spec(-A), is q, up to translation by an element of G, a Fegan

potential? One can define spectral invariants for complex potentials using the heat

and wave equations associated with -A + q just as for real potentials, and our hope

is that the vanishing of all these invariants will imply that q is a Fegan potential.

Here we restrict ourselves to rank one symmetric spaces and describe one such set of

invariants in detail: the analogue for complex potentials of the "band invariants" of

Weinstein [W].

In §4 we discuss the theory of Fegan potentials on Sx. Such potentials are just

functions in the positive Hardy space. We will prove directly that for such functions,

L2(SX) decomposes into an invariant direct sum L2(X) = C + 2„_¿o^n such that

each Hn is two dimensional and (-A + q — n2)2Hn = 0. We will say that q is a

A:-band potential if it is even and if (-A + q — n2)Hn is nonzero for n < k and zero

for n > k. We will prove a number of facts about the set of all fc-band Fegan

potentials. For example we will show it is a complex manifold equal to Ck with k

rational hyperplanes deleted.

We suspect that there is no analogue of this finite band phenomenon in higher

dimensions, the reason being the following: Let Spec(-A) = Spec(-A + q) = {X,,

X2>.. • }• Let H° and Hi be the eigenspaces of -A and -A + q corresponding to X,.
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By (1.3) these spaces are modules with respect to the nilpotent Lie algebra n. It turns

out that they are not only isomorphic as vector spaces, but modules as well, and the

fact that -A + q, restricted to H„ is a module morphism imposes some severe

restrictions on what it can be. In §5 we will show that we can compute exphcitly

-A + q on the H¡'s for X — S2 by exploiting this fact.

We would like to thank Alan Weinstein for some timely suggestions about the

material in §2. We would also like to thank David Mumford and Henry McKean for

elucidating for us the connection between the usual finite band potentials of the

KdV theory and the finite band potentials described above.

2. Complex potentials. Let H be a Hubert space and A an unbounded selfadjoint

operator whose domain of definition is a dense subspace of H. We will assume that

for some (and hence all) X g Spec(A), (X — A)~x is completely continuous; and, in

addition, we will assume that for some integer n, (X — A)'" is of trace class. We will

need the following theorem of Gohberg and Kreïn (see [G-K, Chapter V, §10]).

Theorem. Let Tbea bounded operator and let B = A + T. Then:

(i) The spectrum of B is discrete and has only ± oo as points of accumulation.

(ii) For every e > 0 all but finitely many of the eigenvalues of B lie in the sectors

-e < arg X < e and tt — e < arg X < it + e.

(iii) Let X E Spec(fi). Then the generalized eigenspace of B associated with X, i.e.

the set of all v E H such that (B — X)kv — Ofor some k, is finite dimensional.

(iv) The generalized eigenspaces span H.

If X is a compact Riemannian manifold, A the Laplace-Beltrami operator and q a

smooth complex-valued function, we can apply this theorem to A — -A and T —

multiplication by q to conclude

Theorem 2.1. The spectrum of -A + q is discrete and has only + oo as a point of

accumulation. If e > 0, all but finitely many of the eigenvalues of -A + q lie in the

sector -e < arg X < e. Furthermore, its generalized eigenspaces are finite dimensional

and span H.

Now let G be a compact, connected semisimple Lie group, H a closed subgroup of

G and X = G/H. Let A be the Laplace-Beltrami operator on X associated with the

killing form of g and let q be a Fegan potential. We will prove

Theorem 2.2. Spec(-A) = Spec(-A + q). Moreover for each X E Spec(-A) the

dimension of the generalized eigenspace of -A + q corresponding to X is equal to

the dimension of the eigenspace of -A corresponding to X.

Proof. As in §1 let L2(X)+ be the subspace of L2(X) spanned by the maximal

weight vectors. If q and/are in this space and q is smooth, then by (1.3) qf is in this

space; so -A + q leaves this space invariant. If we apply the Gohberg-Kreïn theorem

to the restriction of -A + q to L2(X)+ , we conclude that the generalized eigen-

spaces of -A + q are finite dimensional and span L2(X)+ . Let X be an eigenvalue of

-A + q on L2(X)+ and/the corresponding eigenfunction. Decompose / and (¡/into



762 V. GUILLEMIN AND A. URIBE

their components with respect to the direct sum (1.2); i.e. let

(2.1) /=2/.    and    qf=2(qf)a,        a EG,

where/, and (qf)a are in Ha. Let/tto and (qf)ai be the leading terms in the series

above with respect to the lexicographical ordering of G. Since q is of mean zero, a, is

strictly greater than a0 with respect to this ordering; so if we compare coefficients in

the equation (-A + q)f= Xf we get -A/„o = X/„o, i.e. X G Spec(-A). This shows

that on L2( X)+ , the spectrum of -A contains the spectrum of -A + q.

Now let us pass from L2(X)+ to L2(X). We will need

Lemma. Let f E L2(X) be a common eigenfunction of the D^s, | G n. Then

fEL2(X)+.

Proof. If H is a vector space on which the group G acts irreducibly, this lemma is

well known. Now write/as an infinite series in which each term lies in an irreducible

G-invariant subspace of L2( X).   Q.E.D.

To prove the theorem let X be an eigenvalue of -A + q and let Hx be the

corresponding generalized eigenspace. By Theorem 2.1, Hx is finite dimensional, and

by (1.3) there is a natural representation of the nilpotent Lie algebra n on Hx; so by

Lie's theorem there exists an / G Hx which is a common eigenfunction of the Z)t's.

By the lemma, f E L2(X)+ , so X G Spec(-A). This proves that Spec(-A + q) C

Spec(-A). We still have to prove that if X is an eigenvalue of -A with multiplicity m,

it is a generalized eigenvalue of -A + q with multiplicity m. To see this, let D be a

small disk in the complex plane centered about X and containing no other eigenvalue

of -A. Let A, be the operator -A + tq, 0 < / < I. Since tq is a Fegan potential, D

contains no eigenvalue of A, either, except possibly X; so if V = ()D,

f=-L(^-
'     2mJr(\-A,)

is well defined and depends continuously on /. The trace of P, is the multiplicity of X

as a generalized eigenvalue of A,; so this multiplicity is the same for all /. Hence

X G Spec(-A + q) and has the same multiplicity as for -A.

3. The band invariants. In this section we restrict ourselves to the case of rank-one

symmetric space and describe the analogue for complex potentials of the theory of

band asymptotics of Weinstein [W].

Let Ibea rank-one symmetric space, and let q E C°°( X) be a complex-valued

function. Let H be the Hamiltonian vector field on T*X — 0 corresponding to the

norm function arising from the Riemannian structure. The integral curves of H,

when projected onto X, are precisely the geodesies parametrized by arc length. Since

A' is a rank-one symmetric space, these curves are all periodic with a common period

T. We can then prove the following averaging lemma.

Lemma 3.1. There exist zeroth order peusodifferential operators F and Q such that F

is invertible, Q commutes with A and

F(-A + q)F~x = -A + Q.
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Moreover, the principal symbol of Q is the function

q^ = ^[T(exptE)*(q)dt.

The proof is the same as for real potentials, and we refer the reader to [G].

The spectrum of -A is of the form

(3.1) Xk = ak2 + Tk,       k = 0,1,2.

each eigenvalue occurring with multiplicity dk = 0(k"~x) (see [B-G-M]). If Vk is the

eigenspace of -A corresponding to Xk, then the operator Q of Lemma 3.1 maps Vk

into itself. We let X(k),... ,X(¿' be the eigenvalues of Q restricted to Vk. Then Lemma

3.1 implies that the spectrum of -A + q consists of the points Xk + X(k\j = 1,... ,dk,

A: = 0,1,2,....

We can now state the main result of the theory of "band asymptotics" for

complex potentials.

Theorem 3.2. Let f be a function which is holomorphic on the spectrum of Q. Then

there exist constants ßt( f ) G C, / = 0,1,..., depending linearly on f, such that

¿k oo

(3.2) s/W-i^rs*"—'/»/*/)
7=1 /=0

as k -> oo. Moreover,

A>(/) =/(/«•?")*

where Z is the unit cosphere bundle of X and dv the canonical volume form on Z.

We sketch the proof of this theorem. Since/is holomorphic on the spectrum of Q,

the operator f(Q) is well defined and is a zeroth order pseudofiff eren tial operator

with principal symbol f°qsv. Moreover, by (3.1), the operator A which equals

" multiplication by k " on Vk is an elliptic first-order selfadjoint pseudodifferential

operator. For both of these statements we refer the reader to [Se]. With these

operators at hand, one obtains (3.2) by analyzing the singularity of the trace of

f(Q)exp(itA) at t = 0. For details see [W] or [U].

In the case of real potentials, the operator Q of Lemma 3.1 is selfadjoint, and

hence for each / G C°°(R) the operator f(Q) is a well-defined pseudodifferential

operator. Hence, in this case, the band invariants ßt are compactly supported

distributions on the real line. We would like to stress the fact that in the case of

complex potentials, however, the band invariants are complex-analytic functional.

We now turn to the question of when a complex potential q is such that the

spectrum of -A + q equals the spectrum of -A. We would like to prove that this

happens only when q is a Fegan potential. According to Theorem 3.2, a necessary

condition for a potential q to be isospectral with zero is that all the band invariants
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should vanish when evaluated on functions vanishing at zero. In particular, we have

Proposition 3.3. Suppose that Spec(-A + q ) = Spec(-A ). Then for all r = 1,2,...,

(3.3) f(qav)rdv = 0
Jz

Unfortunately, at least for S2, using the inverse of the Radon transform one can

easily construct potentials q satisfying (3.3) that are not Fegan potentials.

4. Fegan potentials on S\ On Sx Fegan potentials are just smooth functions

belonging to the positive Hardy space; i.e. q is a Fegan potential if its Fourier series

is of the form

(4.1) q(0) =  2 bae">:

We will give below a direct and fairly elementary proof of Theorem 2.2 for such

potentials. However, we will first give an intuitive explanation of why this theorem is

true, based on ideas from the Korteweg-DeVries theory. Let X be the space of all

smooth real-valued functions on Sx whose zeroth Fourier coefficient is zero. This

space can be given a symplectic structure by setting

(4.2) Û(qx,q2)=jqxQ2d6

for qx, q2E X and Q2 an antiderivative of q2. Let L¡ = L¡(q) be the "Lax

invariants". These are functions on X which can be written as integrals over Sx of

polynomial functions in q and its derivatives. For instance the first three of these

invariants are

(4.3) Lx(q)=fÇd6,    L2(q)=j^ + q3)jd6,

L3(q)=fi[^f + 2q(qx)2 + q^d0.

These functions have the following properties:

(I) they are in involution with respect to the symplectic structure (4.2); and

(II) the Hamiltonian flows generated by them are isospectral. Specifically, if qx

and q2 lie on the same trajectory of the Hamiltonian vector field associated with one

of the L,'s, then the Schroedinger operators -A + qx and -A + q2 have the same

spectrum.

Now let Xe be the complexification of the space X, i.e. the space of all

complex-valued functions on Sx with zero Fourier coefficient. Then (4.2) defines a

complex symplectic form on Xe and, by (4.3), the L,'s extend to holomorphic

functions on Xe and their Hamiltonian flows to holomorphic flows. The space A of

all <?'s satisfying (4.1) is a Lagrangian subspace of Xe and, by (4.3), the L,'s vanish

on A, so their Hamiltonian flows are tangent to A. If we could show that these flows

act transitively on A (or at least on a large open subset of A) we would have a very

simple explanation of the isospectrality of the Fegan potentials. We will not attempt

to make these ideas rigorous, but we will come back to the KdV picture later in this

section.
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We will now give a direct proof of Theorem 2.2 for Fegan potentials on Sx. We

will begin by considering the eigenvalue problem

(4-4) -£-2f+qf=*f

for functions / in the Hardy space. Extending / and q to holomorphic functions on

the disk, (4.4) becomes

(4.5) (z(d/dz))2f+q(z)f=Xf.

This equation has a regular singular point at the origin, and its indicial equation is

u2 = X; so it is solvable if and only if X = n2 for an integer n, and in this case has a

unique solution of the form/(z) = z"f(z), where/is also holomorphic on the disk

and/(0) = 1.

Since n2 is an eigenvalue of -A of multiplicity 2, we must find, in addition to/, a

second eigenfunction (or generalized eigenfunction) for -A + q corresponding to n2.

We will assume this to be the restriction to 5 ' of a meromorphic function on the disk

of the form g = z~"h(z) where h is holomorphic. We then require

{(z(d/dz))2 + q(z)-n2)g = cf

for some constant c or, alternatively,

(4.6) (z(d/dz)fh - 2n(z(d/dz))h + qh = cz2nf.

The indicial equation for (4.6) is u(u — 2«) = 0, so it is always possible to find such

an h with h(0) = 1. (The presence of c on the right-hand side insures that we can

solve (4.6) formally for the z2"th coefficient of h.) Summarizing, we have proved

that the spectrum of (4.4) consists of n2, n — 0,1,2,..., and that except for n = 0,

there are, for each n, two independent generahzed eigenfunctions. We leave it as an

exercise to show that these functions span L2.

We will next attempt to determine whether the eigenfunction g, obtained by

solving (4.6), is simple or generalized. Let

(4.7) h(z) = 1 + axz + a2z2 + ■■■

and

(4.8) q(z) = bxz + b2z2 + •••.

By (4.6) we can determine the a,'s uniquely from the 6,'s for i < 2n. The 2nth term

of qh is

(4.9) b2n + bxa2n_x + ---+b2n_xax

and c — 0 in (4.6) if and only if (4.9) is zero. But the vanishing of c means that g is

an ordinary eigenfunction, so we have proved

Proposition 4.1. The vanishing of (4.9) is a necessary and sufficient condition for

the nth eigenvalue of (4.4) to be a true double eigenvalue.

Let us describe this condition more exphcity. For 0 < k < 2n we have

-k(k - 2n)ak = bk + bxak_x + ■■■ +bk_xax.
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This gives us inductively, for k < 2n,

ak = pkjbi,---,bk),

where Pk „ is a polynomial degree k in the è(.'s and is homogeneous of degree k

providing we weight bx with weight one, b2 with weight 2, etc. Substituting these

values of ak into (4.9) we get

Theorem 4.2. There exists a polynomial function Qn of the variables bx,.. -,b2n_x

such thatn2 is a genuine double eigenvalue of (A A) if and only ifb2n = Qn(bx,.. -,b2n^x).

Moreover, Qn is weighted-homogeneous of degree 2n providing we assign weight i to the

variable bi for each i = 1,..., 2/7 — 1.

Remark. It is not hard to calculate explicitly the first few of the Q„'s. For

instance,

(4.10) Q} = -b2   and    Q2 = - (|é„ b3 + \b\b2 + ^ + ^).

In the usual KdV theory, one set of objects of considerable interest is the "finite

band" potentials. By definition, an «-band potential is an even real-valued function

on the circle such that the spectrum of -A + q has the following features. The first

2« + 1 eigenvalues are simple, but from then on all eigenvalues are double. It has

been shown that the set of all these potentials forms a finite-dimensional symplectic

manifold on which the KdV flows act as a completely integrable system. (See, for

instance, [McK-V].) Using Theorem 4.3, we will show that analogous results are true

for finite band Fegan potentials. We will say that a Fegan potential q is an n-band

potential if:

(i) it is even, i.e. q(0) = q(8 + m);

(ü) the eigenvalues k2, k = 0,1,...,«, are strictly generahzed eigenvalues;

(in) the remaining eigenvalues are all genuine double eigenvalues.

The assumption that q is even imphes that its holomorphic extension to the disk is

represented by a power series of the form

00

(4.11) q(z)=  Zb2kz2k.
k=\

To obtain the set of all n-band potentials we can specify b2,...,b2n arbitrarily,

providing we make certain that

(4.12) b2k*Qk(b2,...,b2k_2)

for k> n, and then the conditions b2k = Qk(b2,.. -,b2k_2) for k > n determine all

the remaining coefficients of q. Thus we have proved

Theorem 4.3. The set of all n-band Fegan potentials is isomorphic to C" with the n

rational hypersurfaces (4.12) deleted.

The Hamiltonian flows associated with the Lax functions map this set into itself.

We will attempt here just to describe the flow associated with Lx. On the circle this

Hamiltonian gives rise to the flow q -» qt for t E R where qt(B) = q(t + 6). If we
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expand q into its Fourier coefficients as in (4.1) this becomes the one-parameter

group

(4.13) bn^e""bn,       «+1,2,...,

with t E R; or, if we complexify this flow

(4.14) bn-*Xnb„,       «=1,2,...,

with X G C*. This explains why the Qk's are weighted homogeneous with each b¡

weighted of degree i.

David Mumford has suggested to us a method for getting explicit closed-form

expressions for the finite-band Fegan potentials. Consider the manifold of «-band

potentials whose first 2« + 1 eigenvalues are X0,... ,X2n where X0 = 0 and X2k_, =

k2, k = 1,...,«. From the Its-Matseev theory, one gets closed form expressions for

these potentials. The limits of these expressions as X2k -» k2 for k — l,...,n should

be the potentials above. Explicit expressions for these limits (corresponding to the

operation of "band-pinching") can be found in [McK].

5. Fegan potentials on S2. Let q be a Fegan potential on the homogeneous space

X. Let X,, X2,... be the eigenvalues of -A + q and let Hx, H2,... be the correspond-

ing generalized eigenspaces. By Theorem 2.2 the X,'s and the dimensions of the H/s

are independent of q; so the only spectral data which does depend on q is the string

of matrices Jx, J2,..., where J¡ is the matrix representing -A + q on Hi in a Jordan

canonical basis. In this section we will show how to compute these matrices for even

potentials on S2.

We will denote by x, y and z the standard coordinate functions on R3 and also

their restrictions to 52. We recall the following standard facts about the Laplace

operator A on S2. (See, for instance, [We, pp. 61,62].)

(1) The eigenvalues of -A are r(r + 1), r = 0,1,2,_

(2) The eigenspace corresponding to r(r + 1) is (2r + l)-dimensional and is

spanned by the functions

(5.1) PrJc(z)(x + iy)k,       k = 0,...,r,

and their conjugates

(5.2) PrJz)(x-iy)k,       k=l,...,r,

where

(5.3) pr,k(z) = (i-z2yk(d/dZy-k(i-z2y.

Note that (5.3) is a polynomial in z of degree r — k.

(3) SO(3) acts irreducibly on this space and its highest weight vector is (x + iy)r.

From (3) one easily deduces

Theorem 5.1. A smooth function q is a Fegan potential on S2 if and only if it is of

the form q(x + iy), where q is a smooth function on the closed unit disk D which is

holomorphic on Int D and zero at the origin.
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The space of these functions can also be characterized by (1.3). In the case S0(3)

the nilpotent algebra n is one dimensional and spanned by the vector field X + iY

where

3 3 3 3
X = v-,-z-—    and    Y=z--jc-—

oz        By dx        dz

are the infinitesimal rotations about the x and y axes. Thus a smooth function q is a

Fegan potential if and only if

(5.4) (X+iY)q = 0.

We will henceforth restrict our attention to even potentials, i.e. potentials q =

q(x, y, z) on S2 for which q(-x, -y, -z) = q(x, y, z). If q is an even Fegan potential

it can be written as a convergent power series of the form

(5.5) q(x + iy)=  2 b2n(x + iyf".
«>o

Let 2k be the order of the leading nonzero term in (5.5). Our main result is

Theorem 5.2. Let Jr be the 2r + 1 by 2r + 1 matrix having ones at all its

superdiagonal entries and zeros at all other entries. Let Hr be the rth generalized

eigenspace of -A + q. Then one can choose a basis for Hr such that, in terms of this

basis, -A + q — r(r = 1) is represented by the matrix J2k.

From this theorem we immediately deduce

Corollary 5.3. Let nr be the degree of the minimal polynomial of -A + q on Hr.

Then either nr -» oo as r -» oo or q is identically zero.

For the proof of Theorem 5.2 we will need a number of preliminary results. We

first note that X + iY, viewed as a differential operator on L2, leaves Hr fixed. We

will need

Proposition 5.4. The minimal polynomial of X + i Y on Hr is t
2r+\

Proof. Consider ( X + iY)s as a differential operator on L2. Its kernel is a closed

subspace of L2 which is invariant with respect to -A and -A + q. By the results of

§2, -A and -A + q have the same eigenvalues on this subspace, and the multiplicities

of the eigenvalues are the same. But the multiplicity of the eigenvalues r(r + 1) of

-A on this space equals s if s < 2r + 1 and equals 2r + 1 if s > 2r + 1, so the same

is true of -A + q. In particular, Hr is contained in this space if 5 > 2r + 1 and not

contained in it if s < 2r + 1.   Q.E.D.

Let us denote by Kr the L2-closure of the space spanned by the set of all spherical

harmonics of the form Pm s(z)(x + iy)s where either s = r and m> r or m> s> r.

(See (5.1) and (5.3).) It is clear that this space is invariant with respect to -A and

-A + q (for instance,

K,Âz)(x + iyY+k = 2 ajPs+k+jtS+k(z)(x + iy)s+

j=0

since Prs(z) is a polynomial of degree r — s). We will need

Proposition 5.5. -A + q — r(r + 1) is invertible on Kr.
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Proof. The spectrum of -A + q and the spectrum of -A are the same on Kr. But

the spectrum of -A on Kr consists of the eigenvalues «(« + 1), « > r. In particular,

it does not include r(r + 1).    Q.E.D.

We will next show that Theorem 5.2 can be readily deduced from the following.

Theorem 5.6. For 2r > 2k there exists a sequence of functions/0,... ,f2k in Hr and a

nonzero constant X such that:

(a) ( X = iY)fo = 0and(X+ iY)fm =fm_lforl<m< 2k.

(b) (-A + q - r(r + l))fm = Q for m < 2k.

(c) (-A + q - r(r + l))f2k = X/0.

To show that this theorem implies Theorem 5.2, let J0 be the linear mapping of Hr

into itself associated with X + iY, and let A be the linear mapping associated with

-A + q - r(r + 1). By Proposition 5.4, J0 is a nondegenerate nilpotent mapping, i.e.

J2r ¥= 0 and J2r+ ' = 0, where 2r + 1 = dim Hr. Since A and J0 commute, A can be

written as a polynomial function of J0 with complex coefficients. By Theorem 5.6

this polynomial has to be of the form

A = a2kJ02k + higher order terms in J0

= a2kJ02k{l + cxJo + c2J02 + ---)

where alk =£ 0. Thus if we set

J = (a2ky/2kJ0(l + cxJ0 + c2J02 + ---)]/2k,

the last factor on the right being defined by the power series for (1 + t)x/2k, we

obtain A = Jlk. Finally, it is clear that J is also a nondegenerate nilpotent mapping.

Q.E.D.
We will construct only the /OT's in Theorem 5.6 for r > 2k. (For r < 2k < 2r the

construction is similar but somewhat more involved.) We will first show

Lemma 5.7. There exist functions go^--->S2k-\ m Hr SU£h that gm — Prr_m(z)

■(x + iyy-"1 is in Kr+X and (-A + q - r(r + l))gm = 0.

Proof. By (5.1),

(-A-r(r+l))Pr^m(x + ty)r-m = 0;

so (-A + q — r(r + l))Pr r_m(x + iy)r~m is in Kr+X. By Proposition 5.5 there exists

a function hm G Kr+ x such that

(-A + q - r(r + l))Pr,r-m(x + iy)'"" = (-A + q - r(r + l))hm.

Now set gm = Prr_m(x + iy)r-m - hm.   Q.E.D.

Next we will show

Lemma 5.8. There exists a function g2k E Hr and a nonzero constant X such that

gik - pr.r-2k(x + iy)r~2 is in Kr and (-A + q - r(r + l))g2k = Xg0.

We will deduce this from the following elementary fact about Legendre polynomi-

als which we will prove in the appendix.
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Lemma 5.9. There exist constants c0, c2,... ,c2k with c0 ¥= 0 such that

k

(5-6) P,,r-2k{*)=Co+    2   C2mPr+2mir(z).
m — 1

To prove Lemma 5.8 we note that

(5.7)      (-A + q - r(r + l))Pr,r.2k(z)(x + iy)r~2k = b2kPr^2k(x + iy)r

modulo Kr, where b2k is the coefficient of the leading nonzero term in (5.5). By

Lemma 5.7, g0 = (x + iy)r modulo Kr; so by (5.6) we can express the right-hand

side of (5.7) as Xg0 plus an element of Kr with X =£ 0. In view of Proposition 5.5, this

proves the lemma.    Q.E.D.

Finally we will prove Theorem 5.6. We first observe that X + iY, viewed as a

linear mapping on the space of rth order spherical harmonics, acts as a "shift"

operator on the functions (5.1); i.e.

(X+iY)Pr,r_Jz)(x + iy)r~m = yFr,r_m+1(x + (F)'-+\

where y is a nonzero constant depending on m and r. In addition, X + iY leaves the

space Kr fixed; so by Lemmas 5.7 and 4.8, y(X + iY)gm — gm_x G Kr, but the term

on the right is a generalized eigenfunction of -A + q — r(r + 1), so it has to be zero

by Proposition 5.5. Therefore, by setting the fm's equal to appropriate nonzero

constant multiples of the gm's, we can arrange that they satisfy all the conditions of

Theorem 5.6.

Appendix. We will prove here a technical lemma about Legendre functions which

we used in §5, and for which we found no ready source in the literature. (See Lemma

5.9.) Let

Prtk(z) = (l-z2yk(d/dzy-k(l-z2Y

for r > k. Prk is a polynomial of order r — k whose leading term is nonzero, and is

even or odd depending on whether r — k is even or odd. In particular the polynomi-

als l,F..+2 r,.. -,Pr+2k,r form a basis for the space of even polynomials of degree < 2k.

Now suppose r S* 2k. Since PT r_2k is an even polynomial of degree 2k, we can find

constants c0,c2,...,c2k depending on r and k such that

(Al) *r,r-2k ~ C0    '    C2*r+2,r +  '     "  + C2kPr+2k,r■

We will prove

Theorem. The coefficient c0 in (Al) is nonzero.

Proof. We can rewrite (Al) in the form

(i - z2)2k(d/dz)2k(i -z2y = c0(i - z2y + • • • +c2k(d/dz)2k(i - z2y+2k.

Integrating from -1 to 1, we get, for c0, the formula

,2k
I ' /, ->\r   , /"' /, ->\2k I    «

C,0/_;<l-;>)'*= f,(l-*2)2'(;|)    II-.'/*

= /_'0 -*')'(¿)"U -z2)"dz=/_> -z*)'P21(z)¿z,
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where P2k(z) is the standard Legendre function of degree 2k. Therefore, setting

yr,k = f(l-z2yp2k(z)dz,
J-i

we have to show that this integral is nonzero for r > 2k. But, for r > k,

(r-m)(2r + 2k+l)yrk = 2r2yr_Xk.

(See Whittaker and Watson [W-W, §15.211, Example 6].) Thus yrk ¥* 0 for all r > k

providing y kk ¥= 0. Suppose 7^ = 0. Then

[\\-z2)kP2k(z)dz = Q.

Therefore because of the orthogonality relations,

ÇPk(z)Pm(z) dz = 0   for k^m,

(1 — z2)k is a linear combination of F0, P2,... ,P2k-2. However, this would imply

that (1 - z2)k is of degree < 2k.
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