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ANDRZEJ BIA£YNICKI-BIRULA AND ANDREW JOHN SOMMESE1

Abstract. Let p: C* X X -» X be a meromorphic action of C* on a compact

normal analytic space. We completely classify C*-invariant open U C X with a

compact analytic space U/T as a geometric quotient for a wide variety of actions,

including all algebraic actions. As one application, we settle affirmatively a conjec-

ture of D. Mumford on compact geometric quotients by SL(2. Q of Zariski open

sets of (Pc)".

Let p: 7 X Y -» v be a holomorphic action of T — C* on a compact analytic

variety X. In this paper we are studying the following

Problem. Describe all T-invariant open U Ç X — XT such that the geometric

quotient U -» U/T exists and the orbit space U/T is a compact analytic space.

We solve the problem in the case when X is an irreducible normal analytic space

and p is a meromorphic locally linearizable action (i.e. for any x6lr there exist a

T-invariant neighborhood V of x, an integer JV, and a proper holomorphic T-equi-

variant embedding V -* CN, which is T-invariant with respect to p, and a linear

action of T on C^). For example, these conditions are satisfied when XT =£ 0, and

either X is normal and algebraic over C or X is a Kaehler manifold. Note also that if

the conditions are satisfied for a 7-action on an analytic space X, they are satisfied

for any normal analytic T-invariant subvariety of X with the induced action.

The main application of our solution of the above problem is an affirmative

answer to a conjecture of D. Mumford [M + S, p. 187].

Conjecture. Let X - P¿ X ■ ■ • XP¿ (n copies) with n > 3. Let G = SL(2,C) act

on X by the diagonal action g( x,,..., xn ) = ( gx,,..., gxn ), where the action of G on P¿

is induced by the canonical action of SL(2, C) on the affine plane. Let U Ç X be a

G-invariant Zariski open set that is also invariant under the action of the symmetric

group that interchanges coordinates. Assume that the geometric quotient U -* U/G

exists as a compact algebraic space in the sense of Artin. Then n is odd and U is the set

of(xv.. .,xn) with at most (n — l)/2 coordinates the same.

In order to give a detailed description of this paper, we need some notation. Let p:

T X X -* X be a holomorphic action of T = C* on X, an irreducible compact

normal analytic space, and further assume that it is a meromorphic action, i.e. p

extends to a meromorphic map p: P¿ X X -» X. Let {Fx,...,Fr} be the connected
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components of XT and let tx denote p(t, x) for simplicity. Let 0+ : X -» XT be

defined by

0+ (x) = lim tx

and$": Jf-^by

$~(.x) = Urn fjc;
r^oo

these functions exist (cf. §0).

Let

I,+ ={xel|í»+(x)GF,}    and   Xf = {x G X\Q-(x) G F,}.

If X is an algebraic manifold [B-Bt] or a Kaehler manifold [(C + S)1,F2], then

X = Uj A,+ = U(. X~ are decompositions of A into very well-behaved locally closed

analytic sets. For example, each Xf (X¡~) under $+ ($") is a 7-equivariant

holomorphic fibre bundle over F¡ in the Zariski topology with affine space as a fibre.

In the above generality, though the X* (Xf) are still constructible, these facts are

not true [Soj]. One of the things we do in §0 is collect facts about the above

decompositions for the general actions which we consider. Some are not proved

anywhere in the literature in the generality we need them; for these we give proofs in

an appendix to §0.

There are two fixed point components, F, (the source) and Fr (the sink) (after

possibly renumbering), of the action, characterized by the properties that X* and

X~ are Zariski dense in X.

A basic intuition about C* actions is that there is a 'flow' from the source to the

sink. The 'flowlines' are closures of 'generic' orbits and limits of such closures. The

closure Z of a 'generic' orbit is the union of a point of F}, a point of Fr and an orbit

Tx biholomorphic to C*, where x G X — XT. A limit of such closures of orbits is a

union of orbits each biholomorphic to C* and fixed points. Theorem (0.1.2) makes

this intuition precise. It is modeled on a result of Fujiki [F2, 2.8] which uses the

Douady space to parametrize the closure of 'generic' orbits and their limits. It is

somewhat surprising that the parameter space in (0.1.2) turns out to be compact in

the above generality! The proof, in fact, yields an analogous result for any meromor-

phic action of a linear algebraic group on an irreducible compact analytic space.

We also introduce in §0 the notion of a locally linear action. It is a classical result

of Sumihiro [Su] that algebraic C* actions on algebraic varieties are locally linear in

the Zariski topology. For Kaehler manifolds, local linearity is an easy consequence

of the existence of the Frankel-Matsushima Morse function associated to p. Local

linearity is a weak condition satisfied for all actions that we know. Nonetheless, it

has two important consequences. The first, and fairly obvious, one is that a slice

lemma ((0.2.1)) holds and, therefore, geometric quotients are easy to handle ((0.2.2)).

The second, and less obvious, consequence ((0.2.4)) says intuitively that 'flowlines'

do not return to a point after they leave it; there are examples [S02] showing they

can return many times to the same fixed point component.

We end §0 with a discussion of geometric quotients and algebraic spaces in the

sense of Artin; we need this in §§4 and 5.
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In §1 we prove our main theorem on geometric quotients by C*. For a T-invariant

open set U C X — XT to have a compact analytic space U/T as a geometric

quotient, it is enough, for the actions that we consider, to show that the space U/T

of orbits with the induced topology is

(a) compact, and

(b) Hausdorff, i.e. separated.

Lemma (1.2) uses the construction of Theorem (0.1.2) to make precise the intuition

that such U are precisely those that

(a') meet every ' flowline', and

(b') meet any ' flowline' in at most one orbit.

Let us give an example illustrating what this lemma says. Let T act on P¿ by the

action t[z0, z,] = [z0, fzj. The source is 0 = [1,0] and the sink is oo = [0,1].

Now let T act on X = P¿ X P¿ by the diagonal action, where the action on each

factor is given as above. There are 4 fixed points:

F4 = (oo,oo),    the sink;     F2 = (0, oo);

F3 = (oo,0); F, = (0,0),    the source.

'Generic orbits' are those that leave F, and end up at F4, e.g., the diagonal. There are

two distinct limits of closures of generic orbits:

P¿X {oo} U (oo) X P¿ = Z,    and    {0} X P¿ U P¿ X {0} = Z2.

Schematically, we can draw the graph

with fixed points as vertices, and edges representing the fact that there is an orbit

starting at one fixed point and ending at the other. By Lemma (1.2) all orbits from

F, to F4 must be in any U C X — XT with a compact analytic quotient U/T. Also

Z, n U and Z2 n U must each consist of exactly one orbit.

Schematically using the above graphs and letting a dotted line cross the edges

representing orbits in U, we have:

t/=P¿x(P¿-{0} -{oo});

í/=(P¿-{0}-{oo})xP¿;

/

\
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U= P¿ X P¿ - F, -({oo} X P¿) -(P¿ X {oo});

U = P¿ X P¿ - F4 -({0} X P¿) -(p¿ X {0}).

The Main Theorem of this paper systematizes the above. We first make precise the

sectioning of the above graph.

Definition. The component F¡ is said to be directly less than the component F if

CU = (K - Fi) n (Xf - Fj) ^ 0- We s°y that Fi « ¡ess than F¿ if there exists a

sequence i = i0,i¡,...,ik=j such that F¡ is directly less than F¡ for I = 0,..., k — 1 ;

in this case we write F¡ < F. We write F < F to mean either F < F or i = i.

Definition. A cross-section of {l,...,r} is a division of {l,...,r} into two

nonempty disjoint subsets A' and A+ satisfying the condition that i G A~ and F < F,

implies that j G A~.

Main Theorem. Let X be a normal analytic space and p a meromorphic locally

linearizable action. There is a one-to-one correspondence between cross-sections

(A', A + ) of {1,. ..,/•} and T-invariant open sets U C X — XT with U/T a compact

complex analytic space. This association is given by sending (A', A + ) to

u=x- U x-- U x;= U c,,.
iGA~ j&A+ i<EA-

J^A +

In particular, all such U are Zariski open in X. We call such U sectional open sets.

It is noteworthy (cf. (1.6)) that if either F¡ •£ Fj or Fj^ F¡, then there exists a

T-invariant open subset U Ç X — XT with U/T a complex analytic space and

C, ç U. In particular, if X is projective or a compact Kaehler manifold, then, given

two different indices /', j, either F, ^ Fj or Fj ^ F¡ and, hence, the union of open U as

in the Main Theorem is X — XT.

(1.4) Corollary. Let p and X be as in the Main Theorem. Let U Q X — XT be a

T-invariant open set with a complex analytic space as quotient. The following are

equivalent:

(a) X — U has two connected components;

(b) X — U has two or more connected components;

(c) U/T is compact.

This corollary is noteworthy because (a) and (b) do not depend on X or on the

action p. Indeed, given two normal varieties A and B and a bimeromorphic map

from A to B which is a biholomorphism from a Zariski open set U of A to a Zariski

open set V of B, then the number of connected components of A — U equals the

number of connected components of B — V.

4>"$
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Another corollary to the above description of open U with compact quotients is

(1.5) Corollary. Let p,: T X Xi -» XJor i = 1 and 2 be as in the Main Theorem.

If f: X\ -> X2 is a T-equivariant holomorphic map and if U C X2 — X2 is a T-

invariant open set with U/T a compact complex analytic space, then f'[(U)/T is a

compact complex analytic space.

The following result concerning cohomology of compact quotient spaces is a

consequence of our results and Weil conjectures.

(2.1) Theorem. Let X be a smooth compact complex algebraic variety with an action

ofT.Let U be an open subset of X corresponding to a cross-section (A~, A + ). Then

t2d: - Ad; t2d; - ,2d*

P(U/T)=   2 P(F,Y    2    \     =   2   P(Fj)'    2    \     ,
,ELA~ '    ~  l JGA+ t    ~  [

where for any space Y, P(Y) denotes its Poincaré polynomial and df = dim Xf —

dim F¡, d~ — dim X¡~ — dim F¡.

In §3 we give a criterion for certain Zariski open sets U with a separated geometric

quotient to be contained in a sectional open set.

In §4 we prove a basic result ((4.1)) relating the existence of a geometric quotient

by a reductive group to the existence of geometric quotients by subtori. This result

and those of §3 imply that for an action of G = SL(2, C) on X, a product of P¿'s, a

Zariski open set U has a compact geometric quotient by G if and only if U =

H eCgU', where U' is a sectional open set of X for T a maximal torus of G.

Further, N(T) ■ U' = U' for N(T) the normalizer of Tin G.

In §5 we use the last result, our Main Theorem, and simple combinatorial

arguments to settle Mumford's Conjecture.

We would like to thank the University of Notre Dame for financial support on

several occasions, especially the fall semester of 1981, without which this paper

would not have been written. Work was also done during the January 1981 seminar

on Gm actions at the University of British Columbia; we would like to thank James

Carrell for organizing this seminar and the NSERC for providing funds.

0. Notation and background material. Here we establish our notation and collect

results we need; [B-B^, [(C + S),], [F2], [Konj], and [Kor,] are the basic references

for the following.

(0.1) T will always denote C*, the multiplicative group of nonzero complex

numbers. A holomorphic action p: TXX->XoîTona normal compact complex

analytic space X is said to be a meromorphic action if p extends to a meromorphic

mapping p: P¿ X X -> X.

A holomorphic action p:rxJi^Iona compact complex space is meromorphic

if:

(a) X is algebraic and p is an algebraic action; or

(b) X is a Kaehler manifold and XT has nonempty intersection with every

component of X.

(a) is straightforward and (b) is proved in [So,].
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Let $+ and $" be defined as in the introduction; it is easy to check that they exist

for meromorphic actions (e.g. [Kor,]). Let {F,,...,Fr}, {X+\i — \,...,r), and

{Xj~ \j = 1,... ,r} be as in the introduction.

(0.1.1) The results in this section are proved in an appendix to §0. Let p:

FXI^Ibea meromorphic T-action on an irreducible compact complex analytic

space X. There exist two connected components of XT, Fa and Fh, characterized by

the following equivalent properties:

(a) X+ and X¿ contain sets VQ and Vx, respectively, which are Zariski open and

dense in X;

(b) X* and X¡¡ contain sets V0 and Vx which are Zariski open and dense in X such

that $+ : V0 -» Fa and $~: Vx -» Fb are holomorphic.

We call Fa the source and Fh the sink of p. If X is normal then Fa and Fh are

distinct. In this case we renumber if necessary and denote the source by F, and the

sink by Fr. If X is normal then either (a) or (b) is equivalent to

(c) X{ = F, and Ar+ = Fr.

The sets Xf and X~ are constructible for i, i — \,...,r.

The following useful result is modeled after a result of Fujiki [F2, 2.8]; it is not a

consequence of it since it requires no Kaehler assumption.

It says intuitively that Q parametrizes closures of 'generic' orbits and their 'limits'.

The flatness of/means, among other things, that/is an open map; i.e. no isolated

orbit suddenly appears! The compactness of Q is the key to using limit arguments,

(b) guarantees that there is a limit of closures of 'generic' orbits through each point,

but only one through a generic point, (c) says that the family of closures of orbits is

compactible with the group action, (d) relates the notion of 'generic' orbit relative to

this flat family to the more down-to-earth notion of a 'generic' orbit as one that goes

from the source to the sink, (e) states that the only redundancy in the parametriza-

tion from the set-theoretic point of view comes from the nonreduced nature of some

of the fibres, (f) says that all limits of closures of generic orbits start at the source

and end at the sink, (g) guarantees that the limit of closures of generic orbits does

not contain a positive-dimensional subset of XT. (h) lets us use Levi extension type

arguments.

(0.1.2) Theorem [F2, 2.8]. Let p: T X X -> Xbe a meromorphic action ofT=C* on

an irreducible compact complex analytic space X. There is a diagram

fl

Q
with the following properties:

(a)/ is aflat morphism of irreducible compact complex spaces Z and Q;

(b) <f> is a bimeromorphic holomorphic map of Z onto X such that the restriction of 4>

to each fibre Zq— f'l(q)is an embedding;

(c) there is a natural holomorphic action of T = C* on Z making f and <f>

T-equivariant with respect to the trivial action on Q and p on X, respectively;
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(d) there is a dense Zariski open set 0 C Q such that for every q G 0, Zqis reduced

and <P(Zq) is the closure of a T orbit from X¿ n Xb~, where Fa is the source and Fh is

the sink;

(e) every fibre Zq of f is one dimensional, and for fibres [Zq, Zq,} that are reduced,

<t>(Zq) = <t>(Zq,)onlyifq = q';
(f) <¡>(Zq) is connected and meets Fa and Fb for all q G Q; here Fa and Fb are the

source and sink, respectively, of p;

(g) for all q EQ,ZqD ZT is finite;

(h) any continuous map A : § -» Y of an open set § C Q to a complex analytic space

Y which is holomorphic on a Zariski open dense subset of § is holomorphic on all of §.

Proof. Let T be the graph in P¿ X X X X of the meromorphic extension p:

P¿ X X X X of p that exists by hypothesis. Let T' denote the image of T in X X X

under the product projection. Let a: V -> X and b: V -» X denote the maps of I"

onto X induced by the projections of X X X onto its first and second factors,

respectively. There is a natural action y:TXXXX-*XXX induced by p. It is the

product action where:

(1) T acts on the first factor of X by leaving all points fixed;

(2) T acts on the second factor of X by p.

Note that:

T' is invariant under the above T-action. The maps a: V -* X

, . and b: T' -» X are equivariant with respect to this T-action on

F and the T-actions on X given, respectively, in (1) and (2)

above.

Applying Hironaka's flattening theorem [Hir] (use of this method has been

suggested by [L]) to a: V -» X and keeping (*) in mind, we immediately obtain the

following:

(a) an irreducible compact complex analytic space 9C and an irreducible complex

analytic subspace G of % X X;

(ß) the holomorphic maps a: G -» % and b: G -> X (induced by the product

projections) are, respectively, flat and surjective;

(y) letting T act trivially on % and by p on X, and by the product action on

% X X, it follows that G is invariant under T, and [a, b) are equivariant.

We let Q denote the image of % in the Douady space of X [D] induced by ä, f:

Z — Q the flat family over Q, and <J> the induced map to X.

Since % is an irreducible compact complex analytic space, it follows that Q is an

irreducible compact complex analytic space. This implies (0.1.2)(a) is satisfied.

From (a), (/?) and (y) it follows that:

With the trivial T-action on Q, the action p on X, and the

(**) product T-action on Q X X, Z is invariant under T, and

{/, </>} are T-equivariant.

It follows from the definition of a that there is a dense Zariski open set V of X

with the property that for v G V, b(a'\v)) = {Tx} U $+(x) U $"(*), where
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x E X^ C\ Xb . From this, and the construction of Q, it follows that:

There is a dense Zariski open set V of Q such that for q E V

(***) the fibre Zq of / has an image <j>(Zq) = {Tx} U <b+(x) U

$-(x), where x E X+ D Xb.

By (***) and the flatness of/it follows that all fibres of/are one dimensional. By

this and the definition of the Douady space, (0.1.2)(e) is verified.

There is a dense Zariski open set V" of Q such that the fibres Z of / are reduced

for q E V". Let © = V" n V, where V is as in (***). The map </> is surjective since,

as noted in (ß), b: G -> X is surjective. From this and (0.1.2)(e), it follows that <¡>:

/"'(©) — /"'(0)r -> X is a one-to-one map of a dense Zariski open set of Z onto a

Zariski dense constructible set of X. From this it follows that 4> is a bimeromorphic

holomorphic map of Z onto X. From this, and the definition of the Douady space, it

follows that (0.1.2)(b) is true. This also shows (0.1.2)(d).

Since for a dense set of q E Q the fibre Z of / is connected, and since / is flat, it

follows that for all q E Q, Zq is connected. Note that (0.1.2)(f) is true since

/«.-'(FJ) and/(*-'(FJ) are dense in Q by (0.1.2)(d).

(0.1.2)(g) follows from a general lemma of Fujiki [F2, (2.3)].

Let A be a reduced complex analytic space. We say that A is weakly normal (cf.

[A + N]) if given any x E A and any complex valued function / continuous in a

neighborhood U of x and holomorphic at the smooth points of U, it follows that/is

holomorphic on all of U. It is straightforward that (0.1.2)(h) would be true if Q is

weakly normal. If Q is not weakly normal then by [A + N] there is a weakly normal

complex analytic space Q' and a holomorphic map A: Q' -» Q which is a homeo-

morphism. Let Z' denote the fibre product of Q' and Z over Q. Let/': Z' -» Q' and

<j>': Z' -> X denote the induced maps. Since flatness commutes with base extension,

/' is flat. Since A is a homeomorphism, the induced map Z' -» Z is a homeomor-

phism. Using the last two sentences it is easily checked that (0.1.2) is true with

( Z', Q', /', «/»') renamed ( Z, Q, f, <f> ).    □
Next we define a large class of meromorphic actions (cf. (0.3)).

(0.2) Definition. Let p: T X X -> X be a meromorphic T-action on a normal

compact complex analytic space. We say that p is a locally linearizable action if given

any x E X there is a T-invariant neighborhood V of x and a proper T-equivariant

holomorphic embedding of V into CN with T acting linearly on CN.

(0.2.1) Slice Lemma. Let p: T X X - X be as in (0.2). Then given any x G X - XT

there is an irreducible analytic set D in a neighborhood B of x satisyfing:

(a) G • D = D, where G is the isotropy subgroup of T at x;

(b) (T X D)/G, where g E G acts on (t, d) by (t, d) — (tg'\ gd), maps biholomor-

phically and T-equivariantly on a neighborhood of Tx. D is called a local slice for T at

x.

The proof proceeds by using the definition of locally linearizable action to reduce

to the construction of a slice for T at x E CN. After pulling out an invariant

hyperplane of C^ we can assume the image of x in C^ has a closed orbit. Using the

standard result [Sc, p. 55ff], we are done.    D

The following is due to Holmann [Hol].
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(0.2.2) Lemma. Let p: T X X ^ X be as in (0.2). Let U Ç X - XT be a T-invariant

open set. Let U/T be the set of orbits of T on U with the topology given by declaring

W Ç U/T to be open if and only if the inverse image of W in U is open. If U/T is

Hausdorff, it possesses a unique structure of a normal analytic space consistent with the

above topology on U/T and such that the quotient map U -» U/T is holomorphic. U/T

is then called the geometric quotient of U by T.

Proof. Let ir. U -» U/T denote the quotient map. Given x EU, let D be a local

slice at x and G the isotropy subgroup of T at x. It can be assumed that D is Stein.

As a consequence of the properties of D in (0.2.1), it is easily checked that:

(a) D/G is homeomorphic to V/T, where V = tt~\it(D));

(b) letting 6T(V) and 0G(Z>) denote the holomorphic functions on V and D

invariant under T and G, respectively, it follows that the natural map

(*) 0r(F)-0c(Z))

is an isomorphism.

Using (a) and the natural structure of normal complex analytic space on D/G

compatible with D -* D/G being holomorphic, we see that U/T can be covered with

open sets each having a structure of a normal analytic space. It is easily checked,

using (b), that these structures are compatible and it: U -» U/T is holomorphic

when U/T is given this structure.

Assume that U/T could be given a second structure (U/T)' as a normal complex

analytic space so that it': U -* (U/T)' is holomorphic. By definition of the complex

structure on U/T in the last paragraph, we see that any germ of a holomorphic

function on (U/T)' must give rise to a holomorphic function on U/T. Therefore the

natural identity map ^: U/T -» (U/T)' is holomorphic and, therefore, since both

spaces are normal, \[/ is biholomorphic.    D

Note that since U is 2nd countable, U/T is also, and sequences suffice to study

questions like the Hausdorff property and compactness.

In the sequel, for any open subset U C X, U/T denotes the topological orbit

space (with quotient topology). However, if we refer to U/T as an analytic space, it

means that it has been proved or assumed that the geometric quotient of U exists,

and U/T stands for this quotient.

The next lemma yields the important Corollary (0.2.4), which shows that given

q G Q, <t>(Zq) has no "loops" or "kinks". Though often not indispensible, it

simplifies many arguments.

(0.2.3) Lemma. Let

t: (z,,...,z5; ux,...,uk;wx,...,wr) -+(ta*zx,...,ta>zs; «,,...,uk; tblwu...,tb'wr)

be an action of t EC* on Cs+k+r with a, > 0 and bj < Ofor all i, j. Abbreviate this as

(a; u; w) -» (taa; u; thw). Let (zn; un; wn) be a sequence of different points in Cs+k+r

withz„ ^ x ^0, u„ -*Qandw„ ^ 0. Let A = {(tazn; u„; tbw„);t G C*,n> 1}.

(a) 7/0+ (zn; un; wn) exists in Cs+k+r for almost all n, then wn = 0 for almost all n

and

A- A = {(0;0;0)} U ((íaJt;0;0);í6C*}.
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(b) If wn =/= 0 for almost all n, there exists y E Cr — (0) such that

Ä-A = {(0;0;0)} U {(tax;0; 0); t G C*} U {(0;0;/^);/eC*}.

Proof, (b) Assume (x'; v'; y') is on the boundary of A. Let {r J C C* be such

that, after possibly renumbering, t"nzn -* x', un -» v', tbnwn -> y'. Since un -» 0, v' = 0.

Assume first that x' ¥= 0. We can choose a subsequence of {/J, also denoted {t„},

that converges to t E C*. Then t$zn -+ tax and tbwn -» 0. Thus x' = t"x and / = 0.

Since (0; 0; 0) = 0+ (x'; 0; 0) G A - A, it suffices to assume that/ ¥= 0.

If >>' =7^ 0 then {t J can have no convergent subsequence with a limit t E C* U {oo},

otherwise we would have tbnwn -> f*-0 = 0 =/ (b¿ < 0 for ally). Thus |;J-fl and

x' = 0. By the reasoning of the last paragraph, if we have any other point

(0; 0; y") E A - A, then there exists a t E C* with tby' = y". Finally, notice that

since wn ¥= 0 for almost all n, there exists a point (0; 0; y'), withy^ ¥= 0, contained in

A — A. This proves (b).

The proof of (a) is similar, but simpler.    D

(0.2.4) Corollary. Let p: TX X -» X be a locally linearizable T-action on a

normal compact analytic space X. Given any q E Q (see (0.1.2) for definitions of Q, Z ,

<j>) we can choose {x,,... ,xk} C <¡>(Zq) — <¡>(Zq) with:

(a)$+(x,)eFi;$-(xjGFr;

(b) *"(*,) = ®+(xj+])forj = 1.fc- 1;

(c) if®~(Xj) = $+(*,), then i=j+ 1;

(d)r{*„...,*j=*(z,).
Moreover, <¡>(Zq) D F, = 0+ (*,) and <i>(Z?) n Fr = $1*J.

Proof. Let ä: be a subset of <f>(Zq) - <¡>(Z^) such that A" intersects any connected

component of <¡>(Z ) — <l>(Zq) in exactly one point. Using (0.1.2)(d) we see there

exists a sequence {q„} Ç 0 with qn ¥= q, q„-* q. Then by flatness of /it follows that,

for .4= U-=1*(Zflii),

[Ä-A] u[lim$+ (*(Z,J - Fr)] u[lim*-(*(Z,J - F,)] = ^(zj.

Using this, the hypothesis that p is locally linearizable, and the last lemma, we see

that:

(*) If for x, x' G K, $+ (x) = $+ (x') or $-(*) = Q-(x'), then x = x';

(**) For xEi, there is no x' E K such that ®~(x) = í>+(x') if and only if

$"(x) = lim $"(</>(Z^) - F,); similarly, for x E K, there is no x' E K such that

$+ (jc) = í»-(x') if and only if $+ (jc) = lim$+ («¿>(Z?) - Fr);

(***) ]im$+(<f>(ZJ - Fr) E F, n <^(ZJ and lim*"-(*(Z,) - Fr) G Fr n <l>(Zq).
Now it follows from (*), (**), (***) and (0.1.2)(f) that we may find a sequence

xx,...,xk composed of all elements of K so that (a)-(d) are satisfied. The order of

the sequence is uniquely determined by the properties, and any element of K occurs

in the sequence exactly once.

Since X is normal, X\ = F,, Xf = Fr (see A.3). Therefore the last part of the

corollary is also evident.    D

(0.2.5) Corollary. Let X and p be as in (0.2.4). For any connected component F( of

XT, Fx<Ft< Fr unless F, = F, or Fr.
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Proof. We can find q E Q such that <¡>(Zq) D F¡ ¥= 0. Then we may apply

Corollary (0.2.4) for this q and obtain F^F^ Fr.    D

(0.3) Theorem Let p: T X X -» X be a holomorphic T-action on a normal irreduci-

ble compact complex space X. Then p is locally linearizable if either of the following is

true:

(a) X is an algebraic variety and p is an algebraic action;

(b) XT = 0 and X can be equivariantly embedded in a compact Kaehler manifold Y

with a holomorphic action p: T X Y -» Y.

Proof, (a) is a consequence of Sumihiro's theorem [Su], (b) follows from [So2]

and a use of the Frankel-Matsushima Morse function [(C + S)2; F2; Kor2, Theorem

i].   a
(0.3.1) Remark. We do not know of any meromorphic T-action p: rxi^Ion

a compact normal analytic space X which is not locally linearizable.

(0.4) Sumihiro's theorem [Su] says that given any algebraic C*-action on X, an

algebraic variety, it follows that there is a C*-invariant cover by Zariski open sets,

each of which is equivariantly isomorphic to a closed sub variety of CN with a linear

action. This guarantees that given a Zariski open U E X — XT whose geometric

quotient U/T exists as an analytic space, then U/T is an algebraic variety and

U -» U/T is an affine map. For this reason people can be somewhat nonchalant

when dealing with C*-actions; all definitions of geometric quotients agree for

meromorphic actions on algebraic varieties. With other actions by reductive groups,

one must be more careful. There are a number of different definitions in use. The

following is the analytic version of the one used in [M + S, p. 180]; it is the

definition with the minimum number of requirements.

(0.4.1) Definition. Let p: G X U -» U be an algebraic action of an affine reductive

algebraic group, e.g., SL(2, C) or C*, on an algebraic variety U. A geometric quotient

of U by G is a pair (U/G, <j>) consisting of an analytic space U/G and a holomorphic

map <j>: U -» U/G satisfying:

(a.) for each point y G U/G, <t>~l(y) is an orbit of G on U;

(b) V Ç U/G is open if and only if4>'](V) is open;

(c)for each open V E U/G, </>*: T(V, 0 v) -> T(<¡>~l(V), 6^,-^yy) is an isomorphism of

T(V, 0 J onto the ring T(<j>'l(V), 6,,,-i(V))G of invariant functions on <i>~l(V).

There are two things to note:

(i) U/G does not have to be an algebraic variety, though it will be an algebraic

space in the sense of Artin [Ar] (see [P] for a discussion and details).

This is often not a very serious point. A point y of an algebraic space has an étale

neighborhood that is affine. Thus, for example, local results of Mumford [Mum]

often immediately carry over to the case of algebraic spaces as quotients.

A more serious point is

(ii) U -» U/G does not have to be affine.

U -* U/G is affine means that given y E U/G there is an étale neighborhood V ot

y such that U X V -> V is affine, where U X V denotes the fibre product of

U -» U/G and V -* U/G. In this paper (ii) is no problem; the geometric quotient

maps U -* U/G that we consider, where U is Zariski open in (P¿)", are affine.
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Appendix to §0. Here we prove the facts about meromorphic actions stated in

(0.1.1) and used in this paper.

(A.l) Lemma. Let p: TX X -» X be a meromorphic T-action on an irreducible

compact complex analytic space X. There is a unique connected component Fa (Fb) of

XT with the property that there is a T-invariant dense Zariski open set V0 (Vx) of X for

which 0+ : V0 -» Fa ($~: Vx -» Fb) is holomorphic.

Proof. Since X is irreducible it follows that Fa and Fb are characterized by the

above properties. It only remains to show that such V0 and Vx exist.

Let p: P¿ X X -» X be the meromorphic extension of p that exists by hypothesis.

Let T be the graph of p in P¿ X X X X. Let a: Y -» P¿ and b: Y -» X X X denote the

holomorphic maps induced by the product projections of P¿ X X X X. Let T, =

a"'(i) for / e P¿ and let ct: Y, -» X and d,: Yt -> X be the maps induced by the

compositions c and d of b and the product projections of X X X onto the first and

second factors, respectively.

Claim. There is a dense Zariski open set VEX such that c0: Cq](V) -» V is a

biholomorphism.

Proof. Since Y is irreducible and P¿ is a curve, all fibres Y, of a have dimension

equal to the dimension of X. Therefore the generic fibre of c0 is finite. Since for all x,

c0(x, $+(x)) = x and (x, <b+(x)) G ro, it follows that the generic fibre of c0

contains at least one element. The map c: r -» X is onto. Moreover, since dim Y —

dim X + 1, and since (a, c ° b): Y -» P¿ X X is bimeromorpbic, there is an open,

smooth and dense subset VEX such that, íor y E V, c~\y) is an irreducible curve.

Let;' G Vand let ay: c'\y) -* P¿ be the map induced by a. Then av maps c'l(y)

onto P¿. Now for any t E C* C P¿, a~x(t) is a one-element set {(t, y, ty)}, hence

(because P¿ is smooth), ay is an isomorphism. Thus, for any y Œ V, a~\0) is a

one-element set, i.e., c0: c$x(V) -* V is 1-1 and, hence, a biholomorphism. This

proves the claim.

It is immediate that V0 in the claim can be chosen to be T-invariant; if it was not

T-invariant, simply replace V0 with U,erp(?, V0).

Since (x, <b+(x)) G T0 for every x E X, the holomorphic map obtained by

sending x E V0 to b0(aQl(x)) is the map x -» <í>+(x). Since X is irreducible, V0 is

connected and, therefore, 0+ (V0) must belong to a connected component of XT. A

similar argument works for Vœ.    D

(A.2) Corollary. Let p: T X X -> X be a meromorphic action on a reduced

compact analytic space X. Then X can be written as a disjoint union of T-invariant

locally closed and irreducible constructible sets {E¡ \ i G /}, where I is a finite set and

both <ï>+ and $~ are holomorphic on each member of {E¡\i E I}.

Proof. It is easily seen that it suffices to show the above with only í>+

holomorphic. Let / = dim X and let k denote the number of irreducible components

of X of dimension /. Let X' be some /-dimensional irreducible component of X. Let 2

be the union of all irreducible components of X other than X'. Let V0 E X' be as in

the last lemma. Let V¿ = V0-%. Then $+ is holomorphic on V¿ C X. Let X* = X

— Vk. Since V¿ is T-invariant, X* is also. Either dim X* < / or dim X* — I and there
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are less than k irreducible components of X* of dimension /. By descending

induction on the dimension of X and the number of irreducible components of X of

maximal dimension, we are done.    D

(A.3) Corollary. Let (X, T, p), Fa, and Fb be as in (A.l) and assume X is normal.

Then Fa = X~ and Fb = X¿ . Moreover, if F, = X~ then i = a; if Fj = X+ thenj = b.

Proof. The following lemma, suggested by [F2, Lemmas (1.1), (1.3)] is the key to

the proof. Unfortunately there is a gap in Fujiki's proof of Lemma (1.1). (His

argument shows only that \¡>(gx) = px(g)^(x) when gx E U and g belongs to some

fixed neighborhood of S' C C*.)

(A.3.1) Lemma. Let (X,T, p) be as in (A.l) above. Moreover, assume X is normal.

Let x be a fixed point of T on X. There is a neighborhood Wx of x in X that is invariant

under S{ and a closed analytic subset Wx  C Wxsuch that:

(\)T has no negative eigenvalues on Tx x if and only if Wx contains an open subset

"{ofX such that T3 x;

(2) for y E Wx, $+(y) G Wj if and only if p(T, y) rneets W+ .

Proof. By a classical result of Kaup [K, Satz 4.4] there is a holomorphic

embedding /of a connected invariant neighborhood Wx of x in Xinto C^ such that:

(a)f(x) = 0 and/is S'-invariant with respect to the action on Wx induced by p,

S1 E Tand a linear S'-action on CN;

(b) df gives an equivariant isomorphism of Tx x with the tangent space to C^ at 0;

(c) there is an S'-invariant neighborhood 91 of 0 in C^ such that f(Wx) E 91 and

/: Wx -» 91 is proper.

Let p': T X C* -» C^ be the linear action induced by the linear S'-action. 91 can

be chosen so that

(d) if a G 91 and lim,_0p'C a) E CN-T, then

{p'(z,a)|0<|z|< 1} Ulimp'(i,a) Ç 91.

Let Wx+ = f~\CN-+), where CN'+ is the vector subspace of C* on which T acts

with nonnegative eigenvalues. If there were no negative eigenvalues then CN, + = CN

and Wx = Wx. Assume now that Wx contains an open subset Tof Wx and x E T.

Since X is normal it follows that X and, hence, Wx are locally irreducible. Therefore

since Wx is a closed analytic subset and contains T, an open set of Wx, it follows

that Wx must contain a connected component of Wx. Since x E T, this connected

component contains x. Therefore Wx contains a neighborhood of jc in Wx. Thus, by

(b) above, C^ = C^-+, and part (1) of the lemma is proven.

To see (2) let y be such that $+ (y) G Wj. Then A = {p'(z, y) \ 0 <| z |< e}, for

somee > 0, must belong to Wx since Wx is open. Note that f(A) U /($+ (y)) E CN' + .

This comes down to checking that/(^l) is part of an orbit of the C*-action induced

by the linear 5'-action. This in turn follows from the fact that any orbit of T = C*

in C^ through any point a Ef(A) meets f(A) in at least a circle p'(Sl,a) and,
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therefore, contains f(A). Assume, finally, that p(T, y) meets Wx . Let y' E p(T, y)

n Wx+ . By (d),

A = {p'(z,/(/))|0<|z|«l} U limp'(i, y') E 91.
r^O

By properness of/this implies that

B= {p(z,/)|0<H<l} UO+(/)ç Wx.

Since A ECN' + , B EW+ . This proves (2).    D

Let V0 be as in (A.l). There must be a point x G Fa such that the induced T-action

on TXx, the Zariski tangent space of x, has no negative eigenvalues. Assume

otherwise. Then from Lemma (A.3.1) and the compactness of Fa it follows that there

is a neighborhood Wx of Fa and a closed analytic set W+ of W] such that:

(a)    W\  D Fa and Wf contains no open subset of X;

(*) (b)    F0C Up(^,+ )UFa = X:.
oo

It is straightforward to show that (*) is true for a countable set of / > 0 (since

p(z, W\ ) C W\ when \z\ is small enough). A simple category argument based on

this and the fact that Wf is a nowhere dense closed subset of Wx shows that X*

cannot contain an open subset of X. This is absurd because of (*) and the fact that

V0 is open and dense in X.

Lemma (A.3.1) implies the condition

(**) T has no negative eigenvalues acting on Tx x

is true for an open set of x E Fa. We claim it is true for all x E Fa. Let fbe the set

of x G Fa for which it is true. Since Fa is connected and 'f is nonempty and open, it

suffices to show that ÍF is closed. Let x E ¥. Let Wx and Wx be as in Lemma

(A.3.1). Since x E 'fit follows that Wx contains an open subset of Wx and, thus, by

(A.3.1), (**) is true for x. From this it follows that *& — Fa and, thus, Xx~ = Fa. To see

that this characterizes Fa, it must only be shown that:

(***) If Thas no negative eigenvalues on Tx for some x E Fj, then Xf contains

an open subset of X.

This follows from (A.3.1).    □

(A.4) Remark. Further arguments show that under the conditions of (A.3), Fa and

Fb are irreducible and {$x+ , 0^-} are holomorphic.

1. On quotients.

(1.0) Throughout this section p: T X X ^ X is à locally linearizable meromorphic

action of T = C* on an irreducible normal compact complex analytic space X.

The main theorem is the union of (1.1), (1.3) and (1.4).

(1.1) Theorem. Let p: TX X-» X be as above. Then any T-invariant open set

U E X — XT with U/T a compact complex analytic space is Zariski open.

Proof. Since U is open it suffices to show that it is constructible. To show this it

suffices to show that U is the union of finitely many constructible sets. To see this it

suffices to prove the following lemma.
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(1.1.1) Lemma. Let E be a member of the set {Ek\k = \,...,N} from Corollary

(A.2). If En U^ 0, then E E U.

Proof of the lemma. Assume E %U. Choose a sequence {x n\ n — 1,2,3,...} E

E n U with xn -» y E E, but y G U. Pass to a subsequence of {xn} and renumber if

necessary so that the images {xj of xn in U/T converge to y E U/T. Since

{xn} U {y} E E, it follows by continuity of $+ and $" on F that $+ (x„) -* <P+ (y)

and $~(xj -» <¡>~(y). From this, and the fact that Ty = Ty U 0+(>>) U 0~( v-) is

compact, it follows that for each neighborhood V of Ty there is an N with Txn E V

for n > N.

Choosey' G U with the image of y' in {//Tequal to j>. Since 1/ -» U/T is an open

map, there is a sequence of neighborhoods Bn of y' with £„ ç U, Hn Bn — y', and

the images Bn of Bn in Í//T open. Thus, given any m > 0 there is an TY » 0 with

xn G ßm for all n > N. This implies (Txn)n Bm¥= 0 for all n > N. Choose a

sequence {xj with jc¿-»_)>' and where, after possibly renumbering, x'n G Tx„.

Choose an open set V D Ty so that y' G V. By the first paragraph we get that

Tx'n — Tx„ E F for all n' large enough. This gives the contradiction that >>' E V.    D

By (1.1.1) and (A.4) we see that ^>(/"'(0) -/"'(0)r) Ç U for any U as in (1.1)

and 0 in (0.2.1). In fact we do not have to use (A.4) here, since we can replace 0 by

0 n V0 n Vx. It follows that, given any T-invariant open set U E X - XT with U/T

a compact complex analytic space, we can identify the set 0 with a dense Zariski

open set of U/T.

(1.2) Lemma. Let p: T X X -> X be as in (1.0). Let U be a T-invariant open subset of

X — XT. Then U/T is a compact complex analytic space if and only if, given any

t E Q, there is an x G X such that Tx = <j>(Z,) n U.

Proof. We will only prove the "if part of the lemma; the "only if part is similar

and easier.

Assume U/T is non-Hausdorff. Then there are two points, q and q', of i//Tand a

sequence {qn} E 0 with qn-+ q and qn -» q'. By compactness of Q, it can be assumed

that qn -* q E Q after possibly passing to a subsequence and renumbering. Let

{x, y} E U be such that x goes to q and y goes to q'. Let ty and ty' be slices (cf.

(0.2.1)) through x and y, respectively. Since ty/G gives a model for a neighborhood

of x, where G is the isotropy group of x, it follows that we can choose a sequence of

points {xj with xn G <t>(Zq ) n ty and xn -» x; here, of course, the sequence might

only begin with a large n. Similarly, we can choose a sequence of points {yn} with

yn E <j>(ZqJ n ty' andyn -> y. From this, and continuity of«j>:Z^ X, it follows that

<t>(Zq) D Tx U Ty. Since {x, y} E U and q i= q', we get a contradiction.

By (0.2.2) we must only show compactness of U/T. Assume U/T is not compact.

Choose a sequence {qn} Ç 0 Ç Í//Twith ^ divergent, but qn -» <? G £)• By hypothe-

sis there is an x G t/ with Tx = <>(Z ) fl [/. Choose a slice ^ to Tx at x. By the

same reasoning, with ty as in the last paragraph, there is a sequence {xj with

x„ E <¡>(ZqJ n ty with x„ -> x. By continuity of U -» Í//T we conclude g„ -» x,

where x is the image of x in Í//T. This contradiction establishes the lemma.    D
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(1.2.1) Corollary. The inclusion 0 into U/T in the lemma extends to a holomor-

phic map of Q onto U/T.

Proof. We must only show there is a continuous extension. Lemma (1.2) gives a

set-theoretic extension, sending q to the image of x in U/T where 4>(Zq) U U = Tx.

To see it is continuous, it suffices to show that given a sequence {qn} Ç 0 with

qn - q G Q and qn -> x E U/T, then $(Zq) n U - Tx with x going to x. This is

clear by taking a slice ty of x and noting that ty/G gives a model of a neighborhood

ofx.    D

Note that the above shows that U/T is a meromorphic image of X. If A' is a

meromorphic image of a Kaehler manifold then U/T is also. Such spaces are well

behaved (cf. [F2]). If X is an algebraic variety, then U/T is also. In fact any orbit in

U is closed (in U), and any such orbit has an open T-invariant neighborhood in U

[Su, Corollary 2]. Hence, the geometric quotient U/T is an algebraic prevariety by

[Mum, Proposition 1.9]. Since U/T is Hausdorff when considered with natural

complex topology, U/T is an algebraic variety.

(1.3) Theorem. Let p: TX X -> Xbeas in (1.0). Let (A~, A + ) be a cross-section of

{1,..., r} ; here we use the notation of the introduction. Let

U=X-  U Xr -   (J  X/ .
i(=A- j£A +

Then U E X — XT and is a T-invariant Zariski open subset of X. The quotient U/T of

U by T is a compact complex analytic space.

Proof. It is clear by its definition that U is T-invariant and U E X — XT.

By (0.1.1) X~ and X+ are constructible for all i. Therefore it suffices to show the

following lemma.

(1.3.1) Lemma. UieA- X~ and UJeA + Xf are both closed.

Proof. Since the arguments are mirror images of one another, we will only show

that U/6/r X/ is closed. Let y E Xk for some k E A'. Let V be an irreducible

component of Xk such that y G V. Let F' be the connected component of VT

containing 0~(y). Then, by Corollary (0.2.5), F is *£ the sink of V. Let Fj bejhe

connected component of XT containing F'. Then F < Fk, since the sink of V is

contained in Fk. Because k E A~, hencey G A~ axidy G Xj E Uie/r X~.    □

We will use (1.2) to finish the argument.

Let q E Q. <j>(Zq) n U cannot be empty. If it was, then (by (0.2.4)) we see that the

set of i with F, n \(Zq) ^ 0 would all be in either A' or A+ . But again by (0.2.4)

this means that 1 and r both belong to either A' or A+ . This implies that either A'

otA+ is empty, and that contradicts the definition of a cross-section.

Let q E Q. It is not possible that Tx U Ty E <¡>(Zq) n U, where Tx and Ty are

disjoint. If this happened then either $+ (y) G Fb and $"(x) G Fa with Fa < Fb, or

$+ (x) E Fb and 3>~(y) E Fa with Fa< Fb. In either case we get a contradiction.

For example, if Fa < Fb and a E A', then x G X~ and thus x G U. This contradic-

tion establishes the lemma.    D
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(1.4) Theorem. Let p: TX X -» X be as in (1.0). Assume that U E X - XT is a

T-invariant Zariski open set with U/T a complex analytic space. The following are

equivalent:

(a) U/T is compact;

(b) A" — U has at least two connected components;

(c) X — U has two connected components;

(à)   U—X— U¡eA+ X+ - UJeA- Xj,  where  (A~,A+)  is  a  cross-section  of

{1,. .-,/■}.

Proof. First notice that because U/T is Hausdorff, it follows from the proof of

(1.2) that U n <j>(Zq) is empty or is an orbit for any q E Q. Hence by (0.2.4), any

connected component F, of XT is in the same connected component of X — U as F,

or Fr. This shows that (b) and (c) are equivalent, and if (b) holds then F, and Fr are

contained in different connected components of X — U. By (1.3) it suffices now to

show (a) =» (b), (c) =» (d).

Assume (a). Consider U/S1 -> U/T, where 5' = {z G C* ||z|= 1}. It is an easy

check, using the Slice Lemma (0.2.1), that this map is a fibre bundle with R+ as

fibre. Since U/T is a compact triangulable space, there exists a continuous cross-

section o of U/S1 -» U/T. Using the R+ action on U/S1 and noting that any

translate of a does not meet a, we conclude that Í//S1 — a is disconnected. In

particular, U — a' is disconnected, where a' is the inverse image of a in U. Since

X — a' is a normal analytic space and U — a' is Zariski open in X — a', we conclude

that U — a' can be disconnected only if X — a' is disconnected. Since U/T is

compact we know that the closure of a' in A" is a', and thus from the fact that X — a'

is disconnected, we see that X — U is disconnected. This proves (b).

Assume (c). Let Ax (A2) be the connected component of X — U that contains the

source (sink). We have already noticed this implies Ax ¥= A2.

Let A~= {i\Fi E Ax} and A+ — {j\Fj G^42}. It is an easy check, upon noting

that TAX E Ax and TA2 E A2, that (A~,A + )isa. cross-section.    D

(1.5) Corollary. Let p: rxi,-> X¡ be holomorphic actions of T — C* as in (1.0)

for i = 1 and 2. Iff: Xx -* X2 is a T-equivariant holomorphic map and U E X2 — X2

is a T-equivariant open set with U/T a compact complex analytic space, then

f~\U)/T is a compact complex analytic set.

Proof, i/is associated to a cross-section by (1.4). It is easy to check that/~'(t/) is

also associated to a cross-section. Now use (1.3).    D

For simplicity of notation we will denote F, < F and F¡ «£ F by i <j and / <£_/,

respectively, in the rest of this section.

(1.6) Theorem. Let p: TX X-> Xbe a holomorphic action of T = C* as in (1.0).

Let {Ux,...,Uk} be the collection of T-invariant open UXE X — XT, with U-JT a

compact complex analytic space. Then:

(a)

k

Ut/A=     U     C,7,   where Cij = X+nXj
X=l i^jorj-^i



790 ANDRZEJ BIAfcYNICKI-BIRULA AND A. J. SOMMESE

and, therefore, if X is projective, or a compact Kaehler manifold, then U*=1 Ux = X
-XT.

(b) In the case where X is a compact Kaehler manifold, the diagonal embedding

(1.2.1) of 0 into ][X(UX/T) extends to a holomorphic map u of Q into H\(UX/T) with

the property that u(q) = u(q') if and only if <t>(Zq) and <j>(Zq,) are equal as sets.

Proof, (a) Suppose i «£ j or j *£ i. If neither ; <j nor j < i, then C,- ■ = 0 and

C¡j C Uxt/X. Suppose i<j. Let A~Q - [l G {l,...,r} |/< /'} and A¿ = {I E

{1,... ,r} \j < I}. Then for /, G A~0, l2 G Aq , l2 ■$. /,. To see this, note that if l2 < /,

then/ < l2< ¡x < i and/ < /', contradicting our assumptions on {/', j).

Let (A~, A + )bea. maximal pair of subsets of {1 ,...,/*} satisfying the properties :

(a)A-DA~0,A+DA¿;

(b) iîp E A' and q G A + , then q ^ p.

Then (A', A + ) is a cross-section. To prove this it suffices to show that A'UA+ =

{l,...,r}. Let / G {l,...,r} — A+ —A~. It follows from maximality that there exist

p E A~, q E A+ such thatp > I and q < I. Therefore q < p, which gives a contradic-

tion. Ux determined by this cross-section contains CtJ. As in (0.3), a use of the

Frankel-Matsushima Morse function shows that < is an order in ( 1.0)(b) for which

/' <j and/ < /' is not possible for any i and/.

To see (b) choose {q, q'} E Q. If <t>(Zq) ¥^ §(Zq.) as sets then there is an

x G </)(ZJ — <t>(Zq)T which does not belong to <t>(Zq,). Let Ux 3 x be as in (a). The

map of Q -» U/T constructed in ( 1.2.1) sends q and q' to different points.    D

(1.7) Remark. We would like to call attention to the related papers [B-B + Sw

and G].

2. Cohomology of compact quotients.

(2.0) If X is a normal complex algebraic variety with a meromorphic T-action, and

if U is an open T-invariant subset with quotient U/T, then we already know that

U/T is compact if and only if X — U has exactly two connected components. Our

next result is of the same character. We show that if A' is a smooth complex algebraic

manifold with an algebraic T-action, then for any T-invariant open U E X with

compact quotient U/T, the Betti numbers of U/T are uniquely determined by

X — U (with the induced action of T).

First, we are going to summarize results concerning the Weil conjectures needed in

our proof of the result. Let Y be any complete algebraic variety defined over the

complex number field C. Any such variety Y is defined over a finitely generated

subring A of C, i.e. for some A = Z[ax,...,an] C C there exists an ,4-scheme YA

such that YAXA SpecC = Y. For any prime ideal/» Q A, let Y denote the fibre of

YA over/7, i.e. Y — YAXA Spec A/p. In particular, let Y0 be the generic fibre of YA.

For any such subring A E C, there exists a nonempty open subset V E Spec(/1) such

that for any p E V and a prime number / different from ch(A/p), the /-adic Betti

numbers of Yp and Y are equal (by constructibility of the direct images of constant

torsion sheaves and the proper base change theorem). On the other hand, by the

Comparison Theorem the /-adic Betti numbers of Y are equal to the corresponding

Betti numbers b¡(Y) (with respect to the natural topology) of Y. Finally, if m E A is

a maximal ideal and Ym is a cohomology manifold, then the /-adic Betti numbers can
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be computed using Weil conjectures proved by P. Deligne. More exactly, let

q = $A/m. Then there exist complex numbers ax,...,ar, ßx,...,ßs such that

tYm(GF(qn)f = 2a," - Ißj Moreover, if a,*ßj, i = l,...,r, j = l,...,j, then

the absolute value of any a, is of the form q"('\ where n(i) is a nonnegative integer,

and the absolute value of ßj is of the form qaG")+i/*t where n(j) is also a

nonnegative integer. Finally, the 2A:th /-adic Betti number of Ym is equal to the

number of a/s with absolute value equal to qk, and the (2k + l)st /-adic Betti

number of Ym is equal to the number of ßjs with absolute value equal to qk+l/2.

Using these results we are able to prove the following

(2.1) Theorem. Let X be a compact smooth complex algebraic variety with an

algebraic T-action. Let U be an open subset of X corresponding to a cross-section

(A~,A+).Then

t2dt _ t2d;

0) P(U/T)= 2 p(F,y   2   \   ,
,&A~ t 1

,2d; _ t2d+

(2) P(U/T)=   2   P(FjY    2    \     ,
j<EA+ t    -  1

where for any space Y, P(Y) denotes its Poincaré polynomial.

Proof. We shall prove the first equality. The proof of (2) is similar. We know that

0+ : A,+ -> F, is a locally trivial fibre space over F, with fibre an affine space yl,+ of

complex dimension df . Moreover, the fibres are T-invariant and the action on fibres

is linear in a properly chosen coordinate system. It follows from these results that

(A,+ - Fj,/T with the map <|>+ : (A,+ - FJ/T - Fi (induced by <J>+) is a Zariski

locally trivial fibre space with a weighted projective space F,+ = Af/T as a fibre.

The analogous results hold for the cells Xj of the ( — )-decomposition.

We may find a finitely generated ring A — Z[ax,.. .,am] EC such that the

following are defined over A: X, the T-action on X, U, U-> U/T, irreducible

components F, of XT, the ( + )- and (-)-decompositions of X, the morphisms <b+ :

A,+ - F„ 4>": X- -> F„ open coverings {UtJ} of F, such that ($+ y\U,-j) « UtJ X A+ ,

(í>")"'(Lf7) « Uu X A~, and, finally, coordinate systems in UtJ X Af , Utj X A] (i.e.

isomorphisms UtJ X A? -* Ui} X Cd*, UtJ X Aj -» Utj X Cd') for which the action

of T is diagonalized. Then there exists a nonempty open subset V of Spec(A) such

that, for any p E V, the fibre Xp (and hence (F¡) for i = \,2,...,r) is smooth.

Moreover, we may assume that, for/7 G V, the corresponding Betti numbers of U/T

and (U/T)p, F¡ and (F¡)p, for / = 1,... ,r, are equal. Since (U/T)p is a cohomology

manifold for/7 G V, we may for maximal ideals m E F apply the Weil conjectures to

compute Betti numbers and the Poincaré polynomial P((U/T)m).

First notice that

U=  U X; -  U Xj   where   U Xj Ç  (J A? ,
jGA' JE.A- jGA' jGA-

2 For any variety Z defined over a finite field K and its finite extension Kx, $Z(KX) denotes the number

of A",-rational points of Z. Moreover, GF(q") denotes the finite field with q" elements.
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and both of these unions are disjoint. Hence,

#([//T)m(GF(<?"))=   2   t{{Xj-FJ)/T)m{GF(q"))
j<EA~

-   1   t{{Xj~Fk)/T)m(GF(q")).

Since ((X/ - Fj)/T)m = (A"/ - Fj>JTm is a locally trivial (in the Zariski topol-

ogy) fibre space with fibre (P/1- )m (a weighted projective space of complex dimension

df - 1) and base (Fj)m,

t{(x; - FJ)/T)jGF(q")) =[#(F,)m(GF(</«))]■ [#(P/ )jGF(q"))].

If we prove that for a weighted projective space Pd of dimension d,

(*) t(P)m(GF(q")) = qd" + q<d~^ + ■••+</"+ 1,

then we obtain

t(U/T)m(GF(q")) = t(Fx)m(GF(q")){q"^-V + ■ • • +q" + l)

2   #(F,)m(GF(^))((^<-')+...+i7"+l)
JGA-

{qn(d]-\)+ ... +qn +  ijj

nndî —  nnd'i

ys-4- y        '

and it follows from the results quoted at the beginning of the section that

t2df _ t2d-

JŒA-

(1) P((U/T)m)=   2  P{(Fj)mY2dtt2    '"'■

Replacing " +" by "-" and "-" by " +", we obtain (2) of the theorem.

Hence it suffices to prove equality (*).

It is known that if T acts on any algebraic variety Y, then Y can be decomposed

into a finite number of disjoint locally closed subsets YX,...,YS such that for

/' = l,...,s:

(a) Yj is T-invariant;

(b) there exists the quotient Y¡ -» YJT, and the isotropy groups Tx, for all x E Y¡,

are the same and equal to T, E T;

(c) 7, is T-isomorphic to YJT X T/T, with the T-action on Yt/T X T/T¡ induced

by multiplication on the second factor.

If Y and the T-action on Y are defined over a finite field, then the decomposition

YX,...,YS and the T-isomorphisms Y¡ «* Y¡/T X T/T¡, i = l,...,s, are also defined

over some finite field GF(q). Suppose the quotient Y -> Y/T exists. Then Y/T is a
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disjoint union of locally closed subsets Y¡/T,..., YJT and, hence,

t(Y/T)(GF(q")) = 2 t(Y,/T)(GF(q"))
1=1

= 2 tYi{GF(q,'))/t(T/Tl)(GF(q»)).
/=i

If the T-action on Y is not trivial, then YT = 0 (since we have assumed that Y/T

exists and thus the orbits are of the same dimension) and T/T¡ « T for ¿: = 1,... ,s.

Therefore,

*(Y/T\(rFla»W - V=>Y,(GF(q»)) _ tY(GF(q»))t(Y/T)(GF(q ))-     p^GFiq'))     "      i" - 1      '

In particular, if y = /cm+' — 0 (where Ä: is a field) and the T-action is given by

í[x0,...,xm] = [t"°x0,...,tnmxm\, where n0,...,nm are nonzero integers all of the

same sign, then for the weighted projective space Pm = (km — 0)/Twe obtain

/    „\m+1 _  .

$Pm(GF(qn)) = „ _ ,-= q"m+ ••■ +q" + 1.    D

(2.2) Corollary [B-Bj]. Lei A 6e ai in (2.1). T/ie«

/=i /=i

Proof. This follows immediately from Theorem (2.1)(1), (2).    D

3. A criterion for certain sets to be contained in sectional sets.

(3.0) Throughout this section let p: T X A -» A be a meromorphic locally lineariz-

able action of T » C* on a compact complex manifold X. Given a subset VEX, let

A-(V)= {i\X+n V^ 0}    and   A+(V) = {i\X,m V¥= 0).

Let N(T) denote the linear algebraic group

t      0 \   It      0

.0   r'/'lo   r'
where t G C* and

H-°, ¡)-
We identify T with the subgroup

(3.1) Theorem. Let p, T, and X be as above. Let U be a Zariski open T-invariant

subset of X such that the geometric quotient U -* U/T exists. If

(*) there is no i G A~(U) andj G A+ (U) such that F} < F„

then there is a sectional set U' D U. Further, if p is the restriction to T of a holomorphic

action of N(T) on X, not both Fk < a(FJ and a(Fk) < Fk for any k E {1,... ,/•},

Af(T)   U= U, and (*) is satisfied, then U' can be chosen so that also N(T) ■ U' = U'.
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Proof. First we need a lemma.

(3.1.1) Lemma. Let p, T, and X be as above. Let UEX be a Zariski open

T-invariant open set such that the geometric quotient U -> U/T exists. Then A'(U) n

A+(U) = 0, i.e. for any i = \,...,r, either U D A,+ = 0 or U n Xj = 0.

Proof. Assume U n A,+ ̂  0 ¥= U n Xj. Then there exists a point x0 G A, such

that x, G Xj n Í/, with 3>+ (x,) = x0, and x2 G Xj n U, with $~(x2) = x0.

By the local linearizability of p, we may find a T-invariant neighborhood K of x0

that is T-isomorphic to a neighborhood of 0 in C" with a linear T-action. We may

therefore assume that x0 = 0, V E C", and the action of Ton C is diagonalized:

t(zl,...,zn) = (tn<zl,...,tn>zk,zk+l,...,z„t'"+'zl+u...,tn"z„)

for any t E T and (z,,...,zj G C", where «,,...,nk >0 and «/+,,...,«„ <0. In

the above coordinates,

■*l — V*l,l»- • •>■*!,*>">• • • '")

and

x2 ~ (0,- • ■ ,0, X2 /+],. .. ,x2 „).

Then the sequence {ym}, where

^m = («""'JCi.i,.. • ,w-"*x,¿0,... ,0, x2 /+l,... ,x2 J,

converges to x2 (when m -» oo), and for tm — m the sequence {tmym} converges to

x,. Since x,, x2 G U, it follows that ym and tmym belong to U if m is big enough.

Then the image of {ym} in U/T has two different limits corresponding to two

different orbits Tx, and Tx2. This contradicts the assumption that U/T is separated

(Hausdorff).    □

Let A~ be the set of all / such that either

(a) / G A~(U) or

(b) F¡ is not > Fj for any/ G A + (U).

Letv4+ = {l,...,r} — A~. We claim that (A', A + ) is a section. To see this we need

only show that if Fk < F, for some i E A~, then k E A~. But if k G A' then F¿. > Fy

for some/ G yí,+ . Therefore, F¡> Fk** Fj or F¡> Fj. By the definition of j4", this

imphes that /' G A'(U), which contradicts (*).

By Lemma (3.1.1) A+ D A + (U) and, therefore, U', the sectional set associated to

(A-, A + ), contains U,e/4-({/we/4+(t/)(A,+ n Xj) D Í7.

If p is the restriction of an iV(T)-action then it follows from

•a "')'-'-{•: ï)
that a(XT) = XT. By abuse of notation let o also denote the induced permutation of

{1,. ..,/•} given by a(F,) = Fo(l).

Let /I" denote a maximal element under inclusion of the subsets &~ of {l,...,r}

satisfying:

(a)(SB"no(fi")= 0;

(b)ff-D/i-(t/);
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(c) if Fk < F, for ï G <$,- then k G &~.

Claim. A'Ua(A-) = {\,...,r}.

Proof. First we must show that the set of subsets &' satisfying (a)-(c) is

nonempty. To see this consider &~, the set of all A: G {1,... ,r} with Fk *£ F, for some

/ G A~(U). Clearly &~ satisfies (b) and (c). To see that it satisfies (a), assume

otherwise. Therefore there is a k such that Fk < F¡ and Fo(k) < Fr for {/', /'} E A'(U).

Since a reverses the order < , we have

Fa(i) ^ Fo(o(k)) = F/c < Fj.

This contradicts (*) since N(T) U = U implies a(A~(U)) - A + (U) and, therefore,

a(i') E A + (U). Therefore &~ is a nonempty set.

To finish, assume that C = {\,...,r} — A'-a(A') is nonempty. Let k E C. Since

a(C) - C we conclude that a(k) E C also. By hypothesis, not both Fk *£ F„,k) and

Fa(k) < Fk are true. Therefore, by renaming if necessary, it can be assumed without

loss of generality that

(I) Fa(k)   is not    ^Fk.

Let A'~= A~U {j | Fj < Fk}. Clearly A'~ satisfies (b) and (c). It also satisfies (a). To

see this, assume otherwise. Then there is an Fj such that F. < F¡ and Fa(J) < F¡, for

{/', /'} G A''. The earlier argument with 6E~ shows that not both i and V can belong

to A'. Thus at least one of the {/, /'} can be taken to be k. By renaming if necessary,

it can be assumed without loss of generality that Fj < F, and Fa(j) < Fk where

i G A'~. Therefore

Either F, < Fk, in which case we get a contradiction to (J), or i G A~. But then by

property (c) of A~, a(k) G A~ and, hence, a(k) G C. This contradiction shows that

A'~ satisfies (a). By maximality of A~ we get the contradiction A'=A'', which

proves the claim.    D

In view of (c) and the claim, (A~, a(A'j) is a cross-section. Let U' be the

associated sectional open set. Note that since aU' = U' by construction, N(T)- U'

= U'. As before, U' D U.    D

(3.1.2) Remark. There are many variants of the above. For example, assume p is

the restriction to T of a holomorphic action on A" of a group G containing T If G

centralizes T, GU — U, and (*) holds, then there is a sectional U' D U satisfying

G ■ U' = U'.

When is (*) of Theorem (3.1) satisfied?

(3.2) Theorem. Let p: T X X -> X be as in (3.0). Assume that for any Fj < Fk it

follows that ~X~f D Xk . Then, given any T-invariant Zariski open set U E Xsuch that

the geometric quotient U -» U/T exists, it follows that (*) holds. In particular, there is

a sectional set U' D U. If, further, p is the restriction of a holomorphic action of N(T)

on X, a(Fk) ^ Fkfor all k E {\,...,r}, andN(T)- U = U, then U' can be chosen so

that, in addition, N(T)-U' = U'.
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Proof. If Fk < Fa(k) and Fa(k) < Fk for some k, then by the above assumptions

k ^ a(k) and, therefore, both X^ 3 X¿(k) and X*k) D A^" are true. This is absurd

and therefore (3.2) will follow from (3.1) if we show that (3.1)(*) is true for U.

Assume that Fj < Fk and that Xj n U ¥= 0 ¥- X¿ n U. Then 0 ¥= U n X¿ E U

n Xj+ by hypothesis. Therefore U n X+ ¥= 0. This contradiction of Lemma (3.1.1)

proves (*).    G

(3.2.1) Remark. The above theorem holds, of course, with the condition that for

any Fj < Fk it follows that Xj D Xj. This minus condition can hold when the plus

condition of (3.2) fails and vice versa; e.g., take the action [z0, z,, z2] -» [tz0, tzx, z2]

on P¿ and consider the induced action on P¿ with one point of {z2 = 0} blown up.

(3.3) Remark. The class of actions (A", p) satisfying the hypotheses of Theorem

(3.2) is clearly closed under taking products. Hence (3.2) holds for any nontrivial

N(T)-product action on a product of P¿'s.

4. Quotients by SL(2, C).

(4.1) Theorem. Let X be a projective manifold with an algebraic action of a

reductive group G. Let U be an open G-invariant subset of X such that for any x E U,

the stabilizer Gx is finite. The following conditions are equivalent:

(a) There exists a geometric quotient U -> U/G such that U -» U/G is affine with

U/G an algebraic space in the sense of Artin (cf. (0.4)).

(b) For any one-dimensional torus TEG, the geometric quotient U -» U/T exists

with U/T an algebraic variety.

Proof, (a) => (b) Assume (a). There exists a geometric quotient U -» U/T with

U/T an algebraic prevariety [Mum, Proposition 1.9, p. 37]. We have the induced

morphism r: U/T -* U/G. For any étale open affine V -» U/G, the inverse image

VX U/T is affine (since VX U/T=(VX U)/T and VX U is affine because

U -» U/G is affine). Hence the image of F X U/T in U/T is separated (in fact

V X U/T -+ U/T is induced from V -* U/G by base change U/T -* U/G).

If U/T were not separated there would be a valuation ring 0 C K(U/T) with

residue field K which would dominate local rings 0X , 6X of two different points x,,

x2 G U/T. Then since U/G is separated, it is easy to see that r(xx) = r(x2). Let

V -» U/G be an étale affine neighborhood of r(X|). Then x,, x2 belong to the image

of VX U/T in U/T. Since the image is separated, we have a contradiction. The

contradiction shows that U/T is separated.

(b) => (a) Assume (b). Then for any T E G the induced T-action on U is proper

[Mum, Lemma (0.5), p. 12]. Hence the G-action on U is proper [Mum, Proposition

2.4, p. 54]. Then by [P, Theorem 3.7] the geometric quotient U -» U/G exists with

U/G an algebraic space. Since the action in U is proper we may use (1.13) of [Mum,

Chapter 1, §4] in order to conclude that U -* U/G is affine.    D

Throughout the rest of this section p: G X X -» X will be an algebraic action of

G = SL(2, C) on a projective manifold X. By Sumihiro's theorem [Su], the action of
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is locally linear. The group denoted by N(T) in §3 is isomorphic to the normalizer of

T in G and will, by abuse of notation, denote this normalizer in the rest of this

paper.

(4.2) Theorem. Let p: G X X -» X be as above. Let U be a sectional subset of X for

the T-action. Then D    c gU is Zariski open.

Proof. Let U be defined by a section (A', A+ ). Then

u=x-[\J xju U x;\
\e,r j<ea*        >

and

C\gu=x- ijgl U A--U U x;\.
gee gee   ^ ¡œa- jeA+        '

Therefore it suffices to show that for any i E A~ and/ G A+ , both U c gXj and

U c gXj+ are closed analytic sets. The main theorem of [(C + S)3, §2] shows that

Xj is B~ invariant, where B~ is a Borel subgroup containing T. Hence the family

{gA,"}geC is also parametrized by G/B~. Since G/B~ is projective and U/e/1- Xj is

a compact analytic subspace, the union U 6Cg(UlE/4- Xj) is a compact analytic

subspace and, hence, a closed analytic subspace of A. Similarly, Uecg(U.6/( + Xj+ )

is a closed analytic subspace of X.    D

(4.3) Theorem. Let p: G X A -* X be as in (4.2). Let U be a G-invariant Zariski

open set such that the geometric quotient U -» U/G exists with U/G as a compact

algebraic space in the sense of Artin and U -» U/G an affine map with ^-dimensional

fibres. Assume U satisfies (*) of Theorem (3.1) for T and not both Fk < o(Fk) and

a(Fk)<Fk for any k E {\,.. .,r}, e.g., assume by Remark (3.3) that X=P¿

X ■ ■ ■ XP¿. Then there exists a T-sectional open set U' D U with N(T)-U' = U' and

u= ngeGgu>.

Proof. By Theorem (3.1) there exists a T-sectional open set U' D U satisfying

N(T)U' = [/'. By Theorem (4.2) 6H= ^geCgU' is Zariski open. It clearly con-

tains U since U is G-invariant. Since the geometric quotient U' -> U'/T exists as an

algebraic variety, and since all maximal tori of G are conjugate to T, it follows from

Theorem (4.1) that the geometric quotient % -* %,/G exists as an algebraic space.

We get a holomorphic map U/G -» %/G from the inclusion U -» %. Since U/G is

compact, U=%.    D

(4.3.1) Remark. If U/G is not compact, then the above proof shows %.=

D c gi/' is a maximal, G-invariant, Zariski open set of X such that the geometric

quotient exists.

(4.3.2) Remark. The assumption that X is projective can easily be relaxed to the

assumption that X is algebraic.

5. On a conjecture of Mumford.

(5.0) Throughout this section X = P¿ X • • • XP¿ (n copies). Further, p: G X A ->

X is the diagonal action of G = SL(2, C) defined by g(x,,... ,x J = (gxx,... ,gx„),

where the G-action on P¿ is induced by the canonical SL(2, C)-action on the affine
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plane. We are also going to consider the action of S„, the symmetric group, on X by

interchanging coordinates.

The following theorem completely settles the problem posed by D. Mumford

[M + S, p. 187].

(5.1) Theorem. Let p: G X X -» X be as above with n>3. Let UEX be a

G-invariant nonempty Zariski open set such that the geometric quotient U -» U/G

exists with U/G compact. Assume S • U = U. Then n is odd and

U — {(x,,... ,xj: at most (n — l)/2 coordinates are equal}.

The rest of the section will be devoted to proving (5.1).

(5.1.1) Lemma. There is a T-sectional open set U' which contains U and satisfies

N(T) -U' = U' and U = rigGG gU'.

Proof. This follows immediately from Theorem (4.3) if we show that U -» U/G is

an affine map of U onto a compact algebraic space in the sense of Artin, U/G. By

the theorem of Popp [P, Theorem 3.7] used earlier, only the affineness of U -» U/G

remains to be shown. For this it is enough to check that any such quotient map has

to be affine. Notice first that any 3-dimensional orbit SL(2)a in X is contained in an

open affine G-invariant Zariski open subset V such that all orbits of G in V are

closed (in V). This can be seen as follows: Let a = (ax,...,an). Since Ga is of

dimension three, we may assume ax ^ a2¥= a^^= ax. Moreover, we may assume

a4,... ,ai are different from ax and ai+x,.. .,an are different from a2. Now take the

map of X into a projective space defined by the linear system associated to the

divisor corresponding to the G-invariant form (homogeneous with respect to every

pair (xtf\ *(•>),(*£», x<2)),.. .,(x(0"\ x\n)) of variables):

IYx(1)x(2) - jc(I)jc(2)V (xmx& - x(1)x:(3)V  (r<2M3> - v<2M3>)lLVxo x\       x\ xa )   \xo x\       x\ xo )   \xv> x\       xx x0 ^j,

[(x<')xS4)-xi')x<4»)---(x('>xS')-x<"x<")],

[(x<2M'+1)-*i2)4/+1))--- W^AçPxi-))].

This divisor is very ample, G-invariant and a is not iri\its support. Thus its

complement Fis affine, G-invariant and a E V. Now if b = \bx,.. .,b„) E V, then

bx ¥=b2=£ b3¥=bx. Hence, every b E V has a 3-dimensional G orbit and all orbits

in V are closed (in V). Therefore A"s(Pre) (see [Mum, Definition 1.7, Chapter 1, §4])

contains all 3-dimensional orbits in X. Now it follows from [Mum, Proposition 1.9]

that the geometric quotient $: A"s(Pre) -> A"J(Pre)/G exists with Xs(Pre)/G being an

algebraic prescheme and 4> an affine morphism. If U E X admits a geometric

quotient, then U E A^Pre) (because all orbits in U have to be of dimension (3) and

thus the quotient map U -» U/G is affine. D

As in §4, N(T) denotes the normalizer of the subgroup T of G:

H(¡¡ >e4



QUOTIENTS by C* AND SL(2, C) actions 799

It is an easy check that any sectional set U EX is determined by a choice of a

family % — {BX,...,BS} of subsets of {1,...,«} with the property that

(A) B D B, implies B E%.

In fact, given {BX,...,BS} then the corresponding section is defined by A+ =

{(F,,... ,En): F, G {0, oo} and the set of indices where F, = oo belongs to ©}. The

corresponding sectional set U' E X is defined by

U' = {(xx,...,xn) E X: the set of indices /' where x,¥= 0 belongs

to $ and the set of indices i where x, = oo is not in ®}.

Then U' is JV(T)-invariant when

(B) B G <& if and only if -B G ®,

where -B denotes the complement of B in {l,...,r}. In this case, the point

(x,,... ,xj G t/' if and only if the set of indices i, where x, = oo, belongs to %, or

the set of indices i, where x, = 0, belongs to %. V)    cgU' is the complement of

those points (x,,... ,xj G X for which there exists B E % such that

(*) x, = Xj for all {/', /} E B, and x, ¥= Xj if i E B and/ G -B.

(5.1.2) Lemma. Let Ux and U2 be two N(T)-invariant sectional sets. If D eG gUx =

ngeGgU2^0,thenUx = U2.

Proof. Let $, and 9>2 be the sections associated to Ux and U2, respectively. Since

H G gUi for i = 1 or 2 is nonempty, it is Zariski open by Theorem (4.2). A generic

element of X, (x,,... ,xj, must therefore belong to HgeG gU¡. Such an element has

all coordinates distinct. Therefore it follows from (*) that

(**) there is no subset A G $, for /' = 1 or 2 with only one element.

Assume B E%x. Then a point (x,,... ,xj with

(***) x, = x for i ¥=j if and only if i and/ both belong to B,

does not belong to D eG gUx by (*). Of course it does not belong to D eG gi/2 =

fi    c gUx. Therefore by (*) and (**), B E %2. The same argument applies with the

roles of <$, and %2 interchanged.    D

Let U' be the JV(T)-invariant T-sectional set of Lemma (5.1.1). We claim that U'

is ^„-invariant. Indeed, assume there was a t G Sn such that t(7' ¥= U'. Since

t-N(T) = N(T)-r, tí/' is a T-sectional open set invariant under iV(T) and D U.

Note that

0 *U= HgU'= Dg(rU').
gee gee

By the last lemma tí/' = U'. This contradiction proves the claim. Note that the set

U' is S„-invariant if and only if there is a natural number s such that B E % if and

only if p > s. Finally U' is JV(T)- and ^„-invariant if n is odd and B G <& iff

#£>(«+ l)/2. Therefore if n is even there is no Sn- and G-invariant Zariski open

set U with a compact geometric quotient U/G. If n is odd this {/' associated to

»={*C{l,...,r}|#B>(« + l)/2}

gives rise to precisely the classical t/ described in Theorem (5.1).    □
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