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PREORDERINGS COMPATIBLE WITH PROBABILITY MEASURES1

BY

ROLANDO CHUAQUI AND JEROME MALITZ

Abstract. The main theorem proved in this paper is:

Let B be a a-complete Boolean algebra and > a binary relation with field B such

that:

(i) Every finite subalgebra B' admits a probability measure ¡i' such that for

p,qe B',p > qiffii'p>n'q.
(ii) If for every i. Pi, q G B andp, Qpi+¡ < q, then U,«.,,,,/), < q.

Under these conditions there is a a-additive probability measure ¡ion B such that:

(a) If there is 'a p G B, such that for every q Çp there is a q' Ç q with q' < q,

q' =fc 0, and q ^ q', then we have that for every p, q G B, ¡xp > \iq iff p > q.

(b) If for every p G B, there is a q Ç p such that q' Ç q implies q < q' or q' < 0,

then we have that for every p, q G B, p > q implies pp > ¡xq.

1. The main purpose of this work is to find necessary and sufficient conditions for

the existence of a-additive probability measures compatible with preorderings (i.e.

weak orderings).

These types of considerations are motivated by philosophical, heuristic, and

mathematical problems on the foundations of probability. For instance, let <$ be the

Boolean algebra of events. It is often not feasible, or even possible, to directly assign

probabilities to the events. However it may be possible to qualitatively compare

events with respect to probability. Thus, we may be able to introduce a preordering

> on Í6 which can be intuitively interpreted as meaning "qualitatively at least as

possible as". In this form the natural question arises about conditions on <$ and >

for the existence of a probability measure ¡x on % such that for all/?, q G %, we have

p > q   iff   \ip > nq.

(In this case we say that ju is compatible with > .) The least we could ask is that

p > q   imply   ¡ip > ¡iq.

(For this case we say that p. is weakly compatible with > .)

There is an extensive literature about the existence of compatible or weakly

compatible measures, finitely or a-additive. In this paper, we shall concentrate on

the a-additive case.

A survey of results, especially for the finitely additive case, appears in [KLST,

Chapter 5]. We use the following definition of that book.
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(9>, >) is a structure of qualitative probability if $ is a Boolean algebra and > is

a binary relation with field % such that:

1. > is a preorder on %, i.e. it is transitive and connected (complete).

2. 0 > 1 and/» > 0 for every/? G $.

3. If p,q,r, E <$ and/? n q = /? n r = 0, then </> riff/? U q> p U r.

(%,>) is a a-structure of qualitative probability if iß is a a-complete Boolean

algebra and the following holds in addition to 1, 2 and 3.

4. If/?,, q G® and/?, Epl+] <q for every/ =0,1,2,..., then U,<00/>,■ < </.

3'./? > 0 and/? =£ 0 for every/? G <& with/? ^ 0.

The existence of compatible (or weakly compatible) a-measures on a-structures of

qualitative probability can be reduced to those that are strictly positive (see [SC, p.

361] for a proof of this fact). So from now on we consider only strictly positive

a-structures of qualitative probability ($, >).

Conditions 1 -4 are obviously necessary for the existence of a compatible probabil-

ity measure. Villegas [V] proved that they are also sufficient in case % is atomless.

In [SC] it was claimed that they proved this without the assumption that 6i> is

atomless. However, this theorem is false, as can be easily seen from the example of

Kraft, Pratt and Seidenberg [KPS]. This is an example of a finite structure of

qualitative probability with no compatible measure (see [KLST, p. 205]).

This example shows that 1-4 are not sufficient in general for the existence of

compatible measures. So we add

5. Every finite subalgebra has a compatible measure.

This last condition can be replaced by a purely algebraic condition also due to

Kraft, Pratt and Seidenberg [KPS].

5'. For every n and every p0, />,,... ,/?„_, G % with Ul<n /?, = 1 and /?, D /?■ = 0

for i¥=j, if q0,...,qm-X and r0,...,rm_, are in the subalgebra generated by

p0, ...,/?„_,, every pi is contained in the same number of qjs as rjs, and g > r for

j — 1,..., m — 1, then r0< q0.

The purely atomistic infinite case has a mathematical interest in its own right.

Since it can be proved that there are countably many atoms, ■$ can be viewed as the

power set of u, P(w). Thus, the problem is to find necessary and sufficient

conditions on < for the existence of a compatible strictly positive a-additive

probability measure.

We are only able to prove from 1-5 the existence of a weakly compatible strictly

positive measure for this case (Theorem 5.3). It remains open whether these

conditions are enough for a compatible measure.

On the other hand, when there is a nonempty atomless part, we can prove that

1-5 imply the existence of a compatible measure (Theorem 5.7). Other results of this

nature also appear in §§5 and 6.

§2 is devoted to preliminaries and contains definitions and elementary facts that

will be used throughout the paper.

§3 is devoted to lemmas, including the fundamental Lemma 3.7, which will be

used in proving all the main theorems.
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In §4 we consider systems of linear equations and inequalities in nonstandard

models of analysis, which, with §3, provide model theoretic proofs of the theorems in

§5. At this moment we do not know of any purely algebraic-analytic proof.

Finally, in §7 we present some open problems and discuss the reasons why we

consider them important.

2. Preliminaries. Throughout we let i,j, k, I, m, and n denote nonnegative integers.

% is a a-Boolean algebra with partial ordering E . % will be identified with its

universe and 0, 1, U,U,n, H,~ have their usual meanings, p and q will denote

arbitrary elements of %. We write /? + q for p U q when /? n q = 0; 2 p¡ for Up,

when /?, D /> ■ = 0 for / ^ j.

A preordering on % is a transitive, connected binary relation with field %, i.e., if

/?, q, r E % then either p < q or q < p, and if p < q< r then p < r. We write p < q

ifp<q but q ^ p; p **> q if p < q and q < p.

We introduce binary relation symbols < and « (confusing these with their

intended interpretations in <$>), regard the elements of ÍB as constant symbols, and

let T be the set of all atomic sentences and negations of atomic sentences in these

symbols that are true in $.

A probability measure on <S> is a a-additive nonnegative real valued measure on %

such that 0 < jn(l) < oo. p. is compatible with < if for all/?, q E <$,

p < q   iff   up < pq.

jii is weakly compatible with < if for all p, q E 9>,

p < q   implies   pp < pq

(allowing the possibility that/? < q but pp = pq).

Throughout the discussion we assume that < has the following properties.

Property I. If 9' is a finitely generated subalgebra of<$> then there is a probability

measure p' on ÏÔ' that is compatible with < .

Property II. Ifp0 Q px c ■ • • and if px < qfor all i, then U /?, =* q.

By taking complements it is easy to see that the following is equivalent to II, so we

also denote it as

Property II. Ifp0 D /?, D p2D • • • and ifp¡ > pfor all i, then fl /?,>/?.
Note that Properties I and II are necessary for the existence of a probability

measure compatible with < .

Property I is model theoretic in character but can be replaced by an equivalent set

of algebraic conditions as described in §1.

For reasons mentioned in §1, we restrict our attention to atomic % except in

Theorems 5.7 and 5.8.

The problem of finding a compatible p for the atomic case reduces to that for %

atomic and each atom a > 0. To see this let í be the ideal consisting of those p « 0.

Let $* = ÍB/Í, the quotient algebra §> mod 1 If p is compatible with </i we

obtain a measure p compatible with < on iß by defining pp = p*(p/i). So from

now on we restrict our attention to atomic a-Boolean algebras % in which a > 0 for
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each atom. Moreover, since Property I gives a compatible measure for <$> finite, we

assume that % has infinitely many atoms.

We next observe that the atoms of 9> are arranged in a descending sequence.

a0> ax> a2> ■ ■ ■ with a0 > an+, infinitely often. For suppose that we have atoms

a0, ax, a2,... such that a 0 < ax < a2< ■ ■ ■. Let^4„ = 2" ai for« = 1,2,_Clearly

An D An+X for all n. Moreover, D An = 0. Hence by II a0 < 0, contradicting a > 0

for all atoms a.

WeletSn = 2,>na,,

Unless we state otherwise, we assume all equivalences p » q and inequalities

p > q, p > q when written are such that p E q.

3. Here we prove several lemmas that will be of use throughout the remainder of

the paper. In particular, 3.7 is of central importance.

Lemma 3.1. Suppose p > q. Then there is some n such that p D Sn > q n Sn.

Proof. Suppose p < q U Sk for all k. By Property II, p< r\k(qU Sk). But

(~]k(q U Sk) — q so /? < q—contradiction. Hence for some m, p > q U Sm. Now

suppose /? n Sk < q U Sm for all A:. Again by Property II, p = U^(/? D S¿) < ç U

Sm—contradiction. Hence for some /, /? D St> q U Sm. Now take n = min{7, w).

Lemma 3.2.1. Supposep0 < px < p2 < ■ ■ ■. Then there is a q such that:

(a) for all k there are infinitely many I such that q D Sk= p¡ D Sk; and

(b) Pi< q for all I and if p¡ ■< s for all I then q < s.

Lemma 3.2.2. Suppose p0 > px> p2> • • • > s > 0. Then there is a q such that:

(a) for all k there are infinitely many I such that q n Sk= p¡n Sk; and

(b) Pi> q for all I and if p¡ > r for all I then r < q.

Proof of 3.2.1. We first claim that there is some an E p¡ for infinitely many /; for

if not, then for each n there is a k such that p¡ E Sn for all / > k. It follows that for

each / and for all n,p¡< Sn. Hence by Property II each/?, =< Pi Sn — 0 and sop¡ » 0,

contradicting p0< px < p2< ■ ■ ■. Hence there is a least n0 such that an E pl for

infinitely many /, say /", /,°, l2,_Let/?) = p,o.

We next claim that there is some m such that an + am E p) for infinitely many /.

If not, then for each m there is a k such that p) E an U Sn for all / > k and, hence,

as above, p) < Hn(a„ U Sn) for each p) and so p) < an . But p) D a„o and so

p) » a„ for all /, contradicting/?¿ <p\< •••. Hence there is a least m, say nx, such

that an + a„ Ep] for infinitely many /; say /¿, /}, l\, —

Let pf = p,\ and continue.

Take q = a„ + a„ + • • •.

Clearly q has property (a).

If q < pm for some m then q U Sn< pm for some n by 3.1. But then there is a k

such that/?m -< pk E q U S„ < pm—contradiction. Hencepm < q for all m.

Suppose pm< s for all m. Then pm D Sn < s for all m and «. But for every n there

are infinitely many m such that />m n S„ = ^f n Sn. Hence </ n 5„ < 5 for all n. By

Property H, q < s. This proves (b).
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Proof of 3.2.2. The proof of (a) is similar to that just given for 1 and is left to the

reader. To prove (b) suppose that q > /?„ for some n. By Lemma 3.1 there is a k such

that q fi S~k > pn and so q D Sk > p¡ for all / > k. But by (a) there is an / such that

q n SkEpi and / > k, and so^nS^p,—contradiction. Hence q</?„ for all n.

Suppose r < /?„ for all n. It follows from (a) that r < q D S„ for all «. Hence r < </,

as needed to complete (b).

Lemma 3.3. Suppose p + p0> q + q0 where p U q E Sn for some n,p0, q0 E Sn and

p + /?, & q + qxfor all/?,, qx E Sn. Then there is somepx < p0 and some qx > q0, /?',

qx E Sn, such that:

(i)p + p0> p + /?' > q + q] > q + q0; and

(ii) if p + p0> p + p* > q + q* > q + q0, with p*, q* E Sn, then p* > px and
q*<qx.

Proof. Let K = {q*: p + p0 > q + q* and SnD q* D Sm for some m}. Notice

that K is countable and, if p + p > q + q*, with q* E S„, then q* E q* for some

q* G A"by3.1.

We claim that there is a qx E K such that qx > q* for all q* E K. If not then there

is an infinite sequence qx< q2< q-¡ < ■ ■ ■ cofinal in K. By Lemma 3.2 there is a q*

such that /? + /? > q + q* and each qi < q*. Then by Lemma 3.1 there is a k such

that p + Pq > q + (q* U Sk). We let qx = q* U Sk. Clearly qx is the maximal

member of K.

Now let L = {/>*: p + p* > q + qx,p* E Sn and/?* finite}. Clearly L is countable

and by Lemma 3.1 if p + p* > q + qx, with /?* E Sn, then there is some /?* G L

such that/?* Ep*.

We claim that L has a minimal member. For if not, then there is an infinite

decreasing sequence/?, > p2> p3> ■ ■ ■ cofinal in L. If there is no r such that/?, > r

for all i then clearly for each n there is a k such that for all l> k, p, E Sm. So for /

large enough, p, E Sm and p + Sm > q + qx. Hence by Property II we have p > q +

qx and so /?' can be taken as 0, which is in L. If there is some r for which 0 < r < /?,

for each /', take p* to be the q of Lemma 3.2. Since, for each m, /?* U Sm D /?, for

some i we have /? + (/?* U Sm) > q + qx. Hence, by Property II, p + p* > q + qx.

By 3.1, /? + /?' > q + qx for some finite /?' E /?*. But then /?' G L and is minimal

with respect to ' -< '.

It is now easy to see that (i) and (ii) are satisfied.

Lemma 3.4. Suppose p < q,p,q E Sn and for nop*, q* E Sn do we have p + />* «

q + q*. Then it is possible to find finitely many pairs {(/>', q') for i < n}, with

/?', q¡ E Sn, suchthat:

(i) p + p' > q + q' for each i; and

(ii) whenever p + p0> q + q0, p0, q0 E Sn, then there is an i < n such that p0 > p'

and q0 < q'.

Proof. Let K ={</?', q')\ p + p' > q + q', and if /?" < p' and q" > q and

p + p" > q + q", then p" »/?' and q" « q'}. Note that Lemma 3.3 shows that for
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any p" and q" such that p + p" > q + q", there is a ( /?', q') E K such that p" > /?'

and q" < q'.

For (p0,q0),(px,qx)EK define (p0, q0)~ (/?,, qx) if/?0~/?, and q0~qx.

This defines an equivalence relation on K and we let K' consist of one representative

from each equivalence class. Suppose (pQ,q0) and (px,qx) are distinct members of

K'. We cannot have either

(i)p+ p0>p + px>q+ qx> q + q0or

(ii) p + p0 >p+px >q + q0> q + <7, since both imply ( p0, q0)~ (px,qx).

Hence we must have either

p + p0> q + q0> p + px> q + qx

or

p+pl>q + qx>p+p0>q + q0-

If the first holds we say that (p0, q0) > (px, qx). So > linearly orders K'. Also, by

3.1 and the definition of K we see that K' is countable.

It will be enough to show that K' is finite.

Claim (1). There is no infinite increasing chain in K' of the form

■■■>p+ px > q + q1 >p+ p° > q + q°.

Otherwise, by Lemma 3.2, there is a p* and a q* such that for all n, p* n S„ E /?'

for infinitely many i and q* n Sn E q' for infinitely many n. Clearly, /? + (/?* U

Sm) > 1 + (l* n $n) f°r a" m ana* n- Two applications of Property II give p + p*

> q + q* and, since/? + p* « q + q* is ruled out by hypotheses,/? + p* > q + q*.

Hence, for some m and n,p + (p* D Sm) > p + (q* U Sm). But q* U Sm > q¡ for

all /', and for some (/?*, q*) G K we have <7* > «/*—contradiction. This establishes

Claim (1).

Claim (2). There is no infinite decreasing cofinal chain in K' of the form

p+p°>q + q°>p+px>q + qx>p+p2>q + q2>---.

If q' > r for some r > 0 and all /, let q* be the ¿7 of Lemma 3.2. Otherwise let

q* = 0. Similarly, applying 3.2 to/?0 > pl > ■ ■ ■ we get/?*. Since for all n there is a

A: such that p + (p* U S„) > ^ + 4* > ^ + ^*, it follows by Property II that

p + /?* > q + q*. Take n such that/? + (/?* n S,,) > <jr + (9* U S„) by 3.1. There

is an m such that pm D /?* n 5„ and qm < q* L) Sn. But this is impossible since

whenever />m > p" and <7m < q" and p + p" > q + q", then /?m « /?" and <7m « ?".

Hence ÍT' has no infinite descending sequence, giving Claim 2.

The two claims now establish the finiteness of K', completing the proof.

The next lemma has the same form as the preceding except the initial condition

p < q is replaced by p > q.

Lemma 3.5. Suppose p > q,p,q ES„ and for nop*, q* E S„ do we have p + p* «

q + q*. Then it is possible to find finitely many pairs {(p',q'): i < n} such that

P\ q1 Ç Sn,
(i)p + p' > q + q' for each i < n, and

(ii) if p + p0 > q + q0, with p0, q0 E S„, then for some i < n we have p0 > p' and

<7o < ?'■
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Proof. Let K and ä:' be as in Lemma 3.4. As before we see that the members of

K' form a countable linear ordering given by (/?', q') > (pj, qj) iff p + p' > q +

q' > p + pJ > q + qj, and the ordering has no infinite increasing subsequence in K'.

The proof will be completed by showing that there is no infinite decreasing

subsequence in K'.

Using Lemma 3.2 get q* such that p > q + q*, and whenever p > q + q*, then

q* > q*. Clearly, (0, q*) E K and we can choose K' so as to have (0, q*) E K'. We

cannot have (p0, q0)E K' with (0, q*)> ( p0, q0), for otherwise/? > p + pQ. Hence,

if there is an infinite decreasing chain it must look like

p+p°>q + q°>p+px>q + qx>p+p2>q + q2>--->p>q + q*.

By Lemma 3.2 we get q* such that for any n there are infinitely many i such that

q* n S„ — q' n S„. (Note that 3.2 yields such a q* since q' > q* for all /.) Again by

3.1 get /?* such that for each n there are infinitely many /' such that p* n Sn = p' D

Sn. Several applications of 3.1 give a k and an / such that

P + (p*nsk)>q+(q*us,).

For some m, /?"' D /?* n Sk and pm ^ p* n Sk and q* U S,D qm and q* U S, ¥-

qm. But then

p +pm>p + {p* H Sk) >q+(q*USl)>q + qm,

contradicting (/?"', q"')E K.

Definition 3.6. Let /„={/?: p E a0 + ax + ■ ■ ■ +an} and Tn = {/?: p E

2°L„+1 a,}. Let R be the first order theory of the reals with + and < . For ñ E T let

SI* = {p < q: p < q E iï} U {p = q: p <* q E iï}. Let !,„ = R U 2~, where 2; is

the set of all expressions of the form /? < q or p = q, where /?, q G Tn, that can be

deduced from RUT*.

Lemma 3.7. For every n there is a finite subset A„ÇT such that A* U 2„ 1= T*.

Proof. We first define A„. Let/?, q E In.

(1) If/? -< ̂ isin T put/? < qin A„. If/? « ^isin Tput/? ^ qin A„.

(2) If for some/?0, <70 G 7„ we have/? + p0^ q + q0, put one such instance in A„.

(3) If for no p0, q0 E Tn do we have p + p0 » q + q0, then put all of the finitely

many expressions/? + /?' > q + q' arising in Lemmas 3.4 and 3.5 into A„.

Clearly, any equality /? + /?'sK^-r-^'inris derivable from A„ U 2„ by (1) and

(2).
Now suppose /? + p0 > q + q0 is in T with p,q E In and p0, q0 E Tn. Three cases

arise.

Case (1). There is some/?1, qx G Tn such that p + px « q + qx. In this case there is

a /?" G Tn such that /?+/?" = </ + q" is in A*. In 2„ we have ç" + /?0 > /?" + ^0

(note that the plus signs in the last expression refer to usual addition in R and not to

disjoint union in $). From this it follows that A* U 2„ t= p + p0 > q + q0.

Case (2). p < q and for no/?1, ql E Tn do we have/?1 + p « qx + q. By Lemma 3.4

there is some /?* and q* such that p + p0 > p + p* > q + q* > q + q0, where
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/?+/?*> q + q*, p0 > p*, q* < q0 are all in A* U 2„. From this it follows that

A*.Li2„t p+pQ>q + q0.

Case (3). p > q and for no /?', qx G Tn do we have px + p ~ qx + q. This is

handled similarly to (2) by using 3.3.

4. In this section we consider finite systems of inequalities in nonstandard models

of analysis.

Lemma 4.1. Suppose that 5 is a finite system of equalities of the form

tn

2 auXj = Cj
7=1

for j < k, and each a, is finite and not infinitesimal or zero, and each Cj is finite. 7/S

has a nonstandard solution it has a finite solution. (Finite in a nonstandard model

means not infinite.)

Proof. Easy by a Gaussian elimination of variables.

Lemma 4.2. Suppose that § is a finite system of equalities and inequalities, say

§ = S, U S2, where

S, = j 2 <*iJxj = Cj'J= U---,k\

and

%2=llß,JXjAJdj.j=\,...,l\

where A is < or < . Also suppose that each a, and each /?, is finite and not

infinitesimal, and each cf and dj is finite. //§ has a solution then % has a finite solution.

Proof. By induction on /. If / = 0 the lemma reduces to 4.1. Suppose the

statement is true fox I — n and let / = n + 1. Let C be the solution set for S, U S",

where §>"= {'S,ßuxiL\JdJ: j — 1,2,...,«}. Let a be the remaining inequality

2ßn+\,jxj > dj (or =* dj). Let H be the half-space determined by a. Three cases

arise.

Case (1). H n C = 0. This is impossible since S has a solution.

Case (2). H 3 C. Then we are done since our induction hypothesis says that C has

finite solutions.

Case (3). There are points r and í such that r E H n C and s E H D C.

Since C is convex, the line segment ¿joining r to s is contained in C. Hence there

is a point t on L lying on the boundary of H. This point satisfies S* where

S* =S, U§-U{a#}anda#is2/S„+1^ = ^,

Since S* has only n inequalities, it has a finite solution r*. Hence, if a is a weak

inequality we are done.

If a is a strong inequality we consider the line segment L* joining r to r*. Note

that L* EC n H, where H is the closure of H.

If r is finite then r satisfies §.
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If r is infinite then L* is infinite in length and the point rx of distance 1 from r*

along L* satisfies S. (Note that rx is not on the boundary of H, otherwise L* would

be contained in the boundary, contradicting the fact that r is not on the boundary.)

5. In this section we prove the existence of probability measures weakly compati-

ble with < .

Let 9i = (R, +, • > be the reals with addition and multiplication.

Lemma 5.1. For each i there is a structure M, = <5l and a function p¡ on % into Mt

such that:

^)p¡p^Piqiffp<q;
(ii) p¡a¡ is not infinitesimal;

(iii) p¡aQ is finite and greater than 0.

Proof. Let 2 = Th (:¡í U r#, where T* is as in 3.6. By first order compactness, 2

has a model M.

If fl,M is not infinitesimal, take M¡ = M and for each/? G $ let p¡p = pM¡.

Suppose that a,w is infinitesimal.

We first note that there is some standard natural number n such that (naj)M > S¡M.

Indeed, it follows from Property II that at > 5- for some y > i. Hence 5, = (al+x

+ ---+aj + Sj)<(j-i+ l)a,.

Let vp = (p/aj)M. Note that v satisfies (i) and (ii).

Let S be the system of equalities and inequalities obtained from A,_, by replacing

a by a variable x, for j < i — 1 and each p E T¡_x by vp. S has a solution in M;

indeed assigning va] to x} gives us a solution. Hence, by Lemma 4.2 there is a finite

solution, say the assignment of r to x¡. Now let p¡a¡ = rj for j < /' and p¡ak = vak

for k > i. If p = p0 + /?, with /?0 G /, and px G I), define p¡p = ju,/?0 + vpx, where

PiP0 = 2{piak: ak E p0}. Clearly this assignment satisfies A*_, U 2, and, hence, by

3.7, T* is satisfied. It follows that (i), (ii) and (iii) are satisfied.

Lemma 5.2. For each i there is a standard probability measure ft, on 9> such that

(i) p,a, > 0,

(ii) p > q implies p¡p > p¡q.

Proof. Let /t, be as in Lemma 5.1. Let ¡¡.¡p be the standard part of p¡p for each

/? G °J5. Clearly (i) and (ii) are satisfied; also pt is finite, positive, and finitely

additive. It is enough to show that p¡ is monotone. This is clear if p¡aj — 0 for some

j, since then p:aJ+k = 0 for all k and the finite additivity of p¡ gives a-additivity.

On the other hand, suppose pfij > 0 for ally. Consider a sequencep0 Epx Ep2

E ■ ■ ■ such that fi¡pj < p^q for all /'.

Case (1). If PjPj < ptq for all j then pj < q for all j, so U ./?, < q. Hence,

M,( UjPj) < M/Í.so i»i( VjPj) < M, as needed.

Case (2). Suppose PiPj>Pjq for some j. Then p¡Pj< ^tPj+k f°r a^ ^> vet

/*,/?/ = A,?. so PiPj and PiPj+k differ by an infinitesimal for all /V. Since /x,a; is not

infinitesimal for all / and since p¡ is finitely additive, p- = /?.+/fc for all A. Hence,

p.= \J,p„soßi\Jtpl = ßiq.
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Theorem 5.3. There is a standard probability measure pon9> such that:

(i) pa, > 0 for all i;

(ii)/? > q implies pp > pq;

(iii) if p > q and if there are infinitely many n such that an (Z q, then pp > pq.

Proof. Let pp = 2^=QPi(p) • 2"(,+ 1), where ¡ü, is as in 5.2. Clearly ¡u satisfies (i)

and (ii). Suppose p > q and an <¿ q for infinitely many n. By 3.1 there is some k such

that p > q U Sk, and so some an such that /? > q + an. By (ii) pp> pq + pan. By (i)

pp > pq.

Corollary 5.4. Let b0, bx,... be a subsequence of a0, ax,... such that 2 b¡ ~t\ Sn

for all n. Let iß" be the a-subalgebra of% with elements {/?:/? Ç 2 b¡}. Then there is a

probability measure p on iB" such that for all p, q E iß",

p>q   iff   pp> pq.

Proof. This follows immediately from the previous theorem, noting that (iii) will

be satisfied by any q E iß".

Corollary 5.5. There is a (nonstandard) finitely additive measure p such that

(i)p>qiffpp>pq,
(ii) pa¡ is not infinitesimal for any i.

Proof. The following sentences are consistent with first order analysis.

(1) f(m, x) has domain N X % and range Ç [0,1] (where N is the set of natural

numbers).

(2) For each i E N,f(i, p) >f(i, q) iff/? > q.

(i)f(j, üj) > rj, where r} is some standard rational number such that pjOj > r}> 0

and pj is as in Lemma 5.1.

(4)F(p) = l^N2f(j,p)/(j + 2).

We consider a model M for these sentences along with a suitable portion of first

order analysis and let pp be the value of F(p) in M. Clearly (i) and (ii) are satisfied.

Definition 5.6. Let iß be a a Boolean algebra with a countable number of atoms

a0, ax, a2,— Let %' be the subalgebra generated by the atoms and let iß" be the

subalgebra consisting of those b E iß such that b E B", where %" = 2 a,. Let

B* = {a,: a, =< B"} and let iß* be the smallest a-algebra containing B* = {p:

P £ B"}.

Theorem 5.7. Let iß be such that neither %' nor iß" is empty. Then there is a strictly

positive probability measure pon% compatible with > . Moreover, if v is another such

measure then there is a constant c > 0 such that for all p G iß*, vp = cpp.

Proof. By a lemma in [SC] there is a sequence b0, bx,b2,... such that iß" = 2¿?,

and b¡^1jbi+x+j for all i. Let iß" be the atomic subalgebra generated by

{a0, ax,...} U {Z?0, &,,...}. Let T~ be the set of all expressions/? > qan&p > qin T

such that/?, q G iß". By Theorem 5.5 there is a nonstandard measure v~ on iß that is

compatible with > .

Let v'p = (v~B")-lvp for all/? G iß".

Of course p'(B") — 1, p'b¡ = \/2'+ ' and p~ is compatible with > .
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By Property II there is an Sm < B", and hence there is some an < B".

We claim that p'an is standard for all an < B". To see this it is enough to show

that a„ « 2,e/¿>, for some /. Let bk = 1i>k bt. Since Dk bk = 0, Property II implies

that an > bk for some k and, hence, am > b) for some /. Let bx0 be the first such. If

a„ « bx0, we are done; if an > b\ there is some b, such that an> b\ + b¡ (another use

of Property II). This gives ¿?',  with an> bx0 + b\. Continue the process to get

bx0, b\,_If the process ends in finitely many steps, we are done. Otherwise we get

an > 2 b). In this case we must get « . For if an & B" there is some ¿?, £2 b). If

there are infinitely many bj g 2 b), then a slight modification of the proof of 3.1 gives

a„ > 2 b\ + bj for some j, which is impossible by the definition of the b) 's.

Otherwise there is a A: such that 2 b) » 2JeJ bj + bk+x, where bk G {bj \J E J}. But

then 2 b) = 2jeJbj + bk, again an impossibility by the definition of the h) 's.

Let n be the largest m such that am < B". Let S be the system of equalities and

inequalities obtained from A„ by replacing aj, withy < n, by a variable xJt and each

p E Tn by p~p. S has a solution in a nonstandard model and so has a solution in the

reals, say one that assigns r. to x¡.

Now define pp = p'p for all p G Tn and ju2/i a, = 2* r¡ when 2* a, G /„. The

conditions of Lemma 3.7 are met and so /x is compatible with > on iß".

Let X be the unique probability measure on iß" that is compatible with >

restricted to iß". Clearly A¿?, = pb¡ for all i. Now extend p to all of iß by defining

/*( Po + P i ) = l" Po + ^P\ when/?0 G iß' and/?, G iß".

We claim that p is compatible with > . For suppose /? = p0 + /?,, <7 = <70 + #i>

p > q, Pq, q0 E %' and /?,, </, G iß". Then there is somep\ and gj such that p\ »/?,,

<7¡ « #,, and/?1 = 2,e/6„ <?¡ = 2>ey fy for some / and /. But/>0 + /?' > % + ii and

Po + Pi' io + q\ E ®~> so P-iPo + p'i) > mC/^o + 9¡)- A similar argument works for

p > q. Hence, p is compatible with > , as we wanted to show.

For the next theorem, and only for it, notice that the conditions on iß and > have

been changed.

Theorem 5.8. Let % be a a-complete Boolean algebra and > a binary relation with

field 9> such that:

(i) Every finite subalgebra admits a probability measure compatible with > .

(ii) If for every i, /?, E pi+, < q, then U,<00 /?, < q. Under these conditions there is a

probability measure p such that

(a) // there is a p G iß, such that for every q Ep there is a q' E q with 0 < q' < q,

then p is compatible with > .

(b) If for every p E% there is a q Ep such that q'E q implies q' ~ q, or q' ~ 0,

then p is weakly compatible with > .

Proof. This theorem is easily reduced to the preceding one by considering the

Boolean algebra iß' = iß/7, where iß/7 is the quotient algebra obtained from iß

modulo the a-ideal of elements equivalent to 0,1.

6. Examples and special cases. We now turn our attention to some additional

restrictions on T which yield compatible measures, and an example by Steve Leth

showing that some T force compatible measures to assign irrational numbers to the

atoms.
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Example 6.1 (Steve Leth). There is a T having a unique compatible measure p

such that pan is irrational for all n.

Let T" contain the equalities bn « Tn for n = 0,1,2,..., where bn = a2n + a2n+,

and Tn = 2^+, b¡. Clearly, if p is compatible with T~ then pbn = l/2"+1. For each n

choose an irrational c„ E (\/2n+2 - l/2"+4, l/2"+2) and let d„ = l/2"+1 - c„.

Clearly, c0 > d0 > cx > dx > c2 > d2 > ■ ■ ■. Each c can be expressed as a sum

2{2"': /' G /„}, and each dn can be expressed as a sum 2(2"-': j G Jn}. We now add

to T" all equalities of the form a2n » 2{a,: /' G /„} and a2n+x » 2{a,: y G /„}.

Clearly, there is a unique measure p compatible with T", and pa2n = cn and

pa2n+x = dn for all «. Now T" is completed to a total preordering T in the obvious

way.

Theorem 6.2. If an < Sn for all n then there is a probability measure compatible with

> .

Proof of 6.2. We need several lemmas.

Lemma 6.3. For every atom ak there is a q E Sk such that ak » q.

Proof. Let a„o — ak+x and, if ak > 2Jani, let a„ be the atom of lowest index

such that ak > 25+1 a„ . Let q — 2°° an. We claim that q « ak. Surely q < ak by

monotonicity. If q < ak then q D Sn for some n by Lemma 3.1 and the definition of

q. Let n* be the least n such that q D Sn. Note n* ¥= k since then q » Sk, but

ak < Sk. But if n* > k then an, <£ q and an. < S„,, contrary to the choice of the an.

Hence, q < ak is impossible, and we have q « ak.

Lemma 6.4. For every ak there is a q E Sk such that ak^ q and q D a¡ + am for

some I and m.

Proof. There are only finitely many i such that ak » a, (as shown in §2). Now

apply 6.3 to the atom an of highest index.

Lemma 6.5. For every p there is some q such that p » q and q 3 an for infinitely

many n.

Proof. If p = /?' + ak , where px E a0 + ax + ■ ■ ■ +ak _,, we apply 6.4 to ak

getting p ~/?' + q0. If q0 = qx0 + ak¡, where ql0 E a0 + ax + ■ ■ ■ +ak¡_x, we apply

6.4 to ak , getting /?=/?'+ qx0 + qx. We continue the procedure getting qx, q2,...

and q\, q\,... such that/?=/?'+ q\\ + q\ + • • • +q„. If some qn D a, for infinitely

many /, we are done. If not, we let q = px + qx0 + q\ + ■ • •. We claim that p « q.

Clearly,

<?US„D/?1+i71+«711 + ---+<7/~/>

for all / and n, so by Property II, q > p. On the other hand, for all n there is an /

such that q n Sn E px + qx0 + q\ + • • • +q, ¡=»/?, so by Property II, q < p. It follows

that q =» p as needed.

For the existence of a weakly compatible measure ju, we apply 5.3. In fact p is a

strongly compatible measure. For suppose/? > r. By 5.3(iii) if r ^ S„ for all n, then

pp > pr. On the other hand, if r D Sn for some n, we use 6.5 to get q =»/? with



PREORDERINGS COMPATIBLE WITH PROBABILITY MEASURES 823

q D ak for infinitely many k. There are qx, q*, rx such that q = qx + q* and

r = rx + q*. By 5.3(iii) pqx > prx, from which it follows that pq > pr and pp > pr.

This shows that p is compatible with T.

We suspect that the condition an < Sn for all n implies the uniqueness of the

compatible measure, but we do not see how to prove or disprove this.

Theorem 6.6. Suppose that an > Sn for all n. Let 2 r¡ be a series of real numbers

such that:

(i)2/-,= l;

(ii) r„ = 2I=„ ri+, whenever an » S„,

(iii) rn > 2, = n ri+, whenever an > S„.

Let pp = 2{/,: a¡Ep}. Then p is a probability measure compatible with > . In

particular, if an > S„ for all n and ak > Sk for at least one k, then there are infinitely

many probability measures compatible with > .

Proof. Let p be as above and suppose p > q. Without loss of generality we can

suppose p E q. Let m be the least n such that an E p or an E q. Since am > Sm and

either p E Sm or q E Sm, we must have am E p. Then pp > pam > pSm > pq. If

pp = pq then q = Sm and p — am (by the elementary properties of the series 2 r¡), so

am «K Sm by (ii) and (iii)—contradiction. Hence pp > pq.

An easy modification of the argument just given shows that if /? «< q then

pp = pq.
At this time we are unable to prove that if an > Sn for all n greater than some n*

then > has a compatible probability measure.

7. Problems and remarks. We conclude with some open questions and a few

remarks concerning our interest in them.

Are the conditions on T (i.e., finite satisfiability and monotonicity) sufficient for

the existence of a compatible measure? If not, then a counterexample might lead to

additional conditions, algebraic or analytic in flavor, that are sufficient.

This paper considers only total (i.e., complete) preorderings, where every pair of

elements /?, q E iß are comparable, p < q or q < p. There are several reasons why it

is desirable to extend these results to partial preorderings where not every pair /?, q

can be compared. Intuitively, we have no way of describing all of the uncountably

many events (subsets of iß), never mind comparing them. Moreover, in many

concrete situations our interest is only in a finite or countably infinite set of events,

and a measure compatible with these events would be sufficient. Secondly, generali-

zations of this kind open the way to mathematical applications in which different

measures have to be extended or combined.

A further step in generalizing the results from total preorderings to partial

preorderings is to demand of some of the events that they be assigned particular

numerical values. Intuitively, some of the events might be simple enough to

determine a probability while others might be so complicated that only comparative

probabilities can be given initially. Thus a compatible measure would assign to some

of the events their predetermined value and would honor all the comparisons in T as

well.
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There are some cases, for example if a„ » Sn for all n, when T admits only one

compatible measure. There are other cases, for example when an > Sn for all n, when

T admits many compatible measures. Can we characterize those T that admit a

unique compatible measure, or at least can we find very general conditions which

assure a unique compatible measure?

Let iß" be the subalgebra of the atomic Boolean algebra iß generated by the finite

Boolean operations from the atoms of iß, a0,ax,a2,— Let T" be the set of

equalities and inequalities of T which mention only the elements of iß". If u" is a

measure on iß" compatible with T" then p~ is uniquely extendable to a probability

measure p on iß honoring T (an application of the Carathéodory Extension Theo-

rem). Notice that T~ is countable, so we can talk about a recursive or recursively

enumerable T~. Several problems now arise naturally. If T~ is recursive or recur-

sively enumerable and a compatible measure exists, is there a recursive compatible

measure? (Here we want a recursive function f(n,m) such that f(n, m) is the wth

decimal place in pan, or a function f(n, m) such that when n = p¡ p¡ • • •/><, where

the /?'s are distinct primes, then f(n, m) is the /nth decimal place in ai + a¡

+ ■■■ +«,,)

Added in Proof. Steve Leth has recently proved that the condition an < Sn for

all n implies that the compatible measure of Theorem 6.2 is unique, answering the

question posed after the proof of 6.2. He also constructed a counterexample to the

third problem of §7 in which one term is assigned a fixed value and no compatible

measure exists.
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