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THE PROPERTIES "REGULARITY AND UNIQUENESS

OF C*-NORM IN A GENERAL "ALGEBRA

BY

BRUCE A. BARNES1

Abstract. In this paper two properties of a "-algebra A are considered which are

concerned with the relationship between the algebra and its C*-enveloping algebra.

These properties are that A have a unique C*-norm, and that A be '-regular. Both of

these concepts are closely involved with the representation theory of the algebra.

Introduction. The C*-enveloping algebra of a Banach *-algebra plays a fundamen-

tal role in the theory of ""-representations of the algebra on Hubert space. For

example in abstract harmonic analysis the algebra C*(G) is of central importance

(here G is a locally compact group, and C*(G) is the C*-enveloping algebra of

V(G)). In this paper we consider two properties that concern the relationship

between a *-algebra A and its C*-enveloping algebra C*(A). A collection 51 of

""-representations of A is separating for A if whenever <n(f) = 0 for all m E 51, then

/ = 0. If A has a separating set of ""-representations, then we call A reduced.

When is every separating collection of ""-representations of the reduced Banach

""-algebra A also separating for C*(^4)? It is not difficult to verify that this question

is exactly equivalent to the following one: When does A have a unique C*-norm?

Besides occurring naturally in the representation theory of a ""-algebra, this question

occurs and is of interest in various other contexts. In C*-algebra theory this question

has been asked of the tensor product algebra of two C*-algebras, and has received

considerable attention; see for example [12,20,21]. In harmonic analysis it is well

known that if /.'(G) lias a unique C*-norm, then G is amenable. The question of

whether the converse of this statement holds has been of interest and has only

recently been settled in the negative by D. Poguntke (personal communication).

Another basic property of a ""-algebra which we consider is called *-regularity. It is

being actively used and studied in harmonic analysis for the "-algebra LX(G) by J.

Biodol [4], D. Poguntke [17], J. Biodol et al. [5], Barnes [3], and others. Let n^

denote the space of primitive ideals of C*(A) equipped with the usual hull-kernel

topology [8,3.1]. Equivalently, n^ is exactly the set of all kernels of irreducible

""-representations of C*(A). A is ""-regular if for any closed set Y C n^ and P £ T,

there exists / E A such that / E Q for all Q £ T and / £ P. This concept is involved

in an important way in the question of how the representation theory of C*(A)
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relates to that of A. In this paper we develop the basic theory of the two properties

"-regularity and uniqueness of C*-norm. These two concepts are not unrelated. In

fact we prove an elementary but important result relating the two (we assume that A

is reduced). A is "-regular if and only if for every closed ideal / of C*(A) the

quotient algebra A /(A HI) has a unique C*-norm. This theorem is used as a tool

throughout this paper.

In §§1-4 we develop the fundamental properties of the two concepts, in §5 we

investigate when they are preserved with respect to tensor products of "-algebras,

and in §§6-7 we consider examples from general Banach algebra theory where they

hold.

1. Preliminaries. Throughout this paper A will be a "-algebra with a C*-norm.

When in addition A is a Banach "-algebra, A is called an /l*-algebra (this is the

terminology in C. Rickart's book [18] where the basic properties of A "-algebras are

derived). In this paper we often deal with "-algebras that are not necessarily Banach

algebras. One reason for this generality is to have a theory which applies to the

algebraic tensor product of two Banach "-algebras. In this work with general

"-algebras, some ideas and results of Theodore Palmer [16] are very useful. Palmer

defines a "-algebra A to be a PG*-algebra if for every "-representation m of A as

linear operators on a pre-Hilbert space K, it is true that "n(f) £ B(K) for all/ E A,

where B(K) denotes the algebra of all bounded linear operators on K. We use the

following results from [16].

1.1. Assume that A is a PG*-algebra. Then

(1) yA(f) = sup{||77(/)||: all "-representations w of A) is finite for all/ E A;

(2) a "-ideal in a PG*-algebra is itself a PG*-algebra;

(3) if / is a "-ideal of A, then A /I is a P(7*-algebra;

(4) if / is a "-ideal of A and it is a "-representation of /, then -n has an extension to

a "-representation oí A.

A Banach "-algebra is a PG*-algebra, and more generally, a (/"-algebra is a

PG*-algebra [16,14].

Let A be a PC*-algebra which is reduced (the set of "-representations of A

separate the points of A). Then yA as defined above in 1.1 (1) is a C*-norm, and in

fact the largest C*-norm, on A. The C*-enveloping algebra of A, denoted by C*(A),

is the completion of A with respect to the C*-norm yA. We consider A as a

"-subalgebra of C*(A) via the natural embedding of A in this completion, C*(A).

Often we suppress the subscript A, using the notation y for both the largest C*-norm

on A and the C*-norm on C*(A). Throughout this paper we assume that A is a

reduced BG*-algebra, and thus, that A has a largest C*-norm and that C*(A) exists.

Let n^ be the primitive ideal space of C*(A) equipped with the Jacobson

hull-kernel topology [8,3.1]. When Y C H.^, we denote the complement of Y in 11^

by T'. For a subset B of C*(A) define

h(B) = {P EUA:BCP}.

If / is an ideal of A, then

A/I={f+I:fEA}
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is the usual quotient algebra. If P E It,, and / E C*(A), then let f(P) =f+PE

A/P. Thus/(P) = 0 if and only if / E P.

Now we define "-regularity.

Definition 1.2. A is "-regular if given any closed set F C 17^ and P £ Y, there

exists/ E A such that/(T) = {0} and/(P) ¥• 0.

Uniqueness of C*-norm can be described in terms similar to those in the

definition above as follows.

Proposition 1.3. A has a unique C*-norm if and only if for every proper closed set

Y CYlA there exists f E A,f¥=0, such that f(Y) = {0}.

It is clear from Proposition 1.3 that when A is "-regular, then A has a unique

C*-norm. The proof of the proposition follows in a straightforward manner from the

next result. If P E n^, then C*(A)/P has a unique C*-norm ||-||, and we use the

notation ||/(P)|| = \\f + P\\,f E C*(A).

Proposition 1.4. For Y CYIA let

Tr(/) = sup{||/(P)||:P£r},       fEC*(A)

(for Y empty let xr be the C*-norm on C*(A)). Then every C*-seminorm on A is of the

form Tr for some closed subset Y of YlA.

Proof. The fact that Tr is a C*-seminorm is obvious. Now let ô be a C*-seminorm

on A. Since 8(f)<yA(f) for all/E A, 8 can be extended to a C*-seminorm 8 on

C*(A). Let

I={fEC*(A):8(f) = 0),

and let Y = h(I). Now both t(/+ /) = sup{||/(P)||: PET} and v(f+ I) = 8(f)
are C*-norms on C*(A)/I. Therefore they are equal by [18,Corollary (4.8.6)], and

thus for/E A,

5(/) = sup{||/(P)||:PEr}.

It is informative to consider the concept of "-regularity in the special case when A

is commutative. We do this now. Let <$fA denote the space of all nonzero multiplica-

tive linear functionals on A equipped with the w*-topology. We use the usual

notation /(<p) = <p(/), f E A, <p E <bA (there should be no confusion with the

notation / used above). Let

A, = {«p E *A: <p(/*) = rfjj for auf E A).

We call A hermitian if for all / = /* E A the function/ is real valued on <Í>A. This is

equivalent to the property that A^ = <bA. When A is a Banach "-algebra it is also

equivalent to: (1) the spectrum of /in A, denoted aA(f), is real for all / = /* E A;

(2) aA(f*f) is nonnegative for all/ E A; see [6,§41]. In this context we also use the

terminology that A is symmetric.

In general A^ is a closed subset of $A. Also, for/ E A

Y^(/) = sup{|/(«p)|:<pEA/<})
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and äA can be identified with $C.M) (<p £ $A is in äA exactly when <p has an

extension to a multiplicative linear functional on C*(A)). A is regular if given any

closed subset r C <&A and <p £ Y, there exists / E A such that f(Y) = (0) and

f(<p) ¥= 0. The concept of regularity is very important in the theory of commutative

Banach algebras and in harmonic analysis. We have the following elementary result.

Theorem 1.5. Assume that A is commutative (recall that under our standing

assumption, A is a reduced BG*-algebra). A is regular if and only if A is hermitian and

*-regular.

Proof. If q> E AA, then - denotes the unique extension of <p to C*(A). We use the

fact without proof that <p -» ker(<p) is a homeomorphism of A^ onto It,,. Also, note

that for / £ A, ¡(<p) = 0 if and only if / £ ker(rf ), if and only if /(ker( =)) = 0.

First assume A is regular. Now A^ is a closed subset of <bA, and if ^ E $A\AA (\

denoting set difference), then there exists / £ A such that f(AA) = {0}, f(\p) =£ 0.

Buttheny/)(/)= sup{|/(<p)| : <p £ A,,} = 0. This contradiction proves that A A = $>A,

that is, A is hermitian. Then the "-regularity of A follows from the homeomorphic

identification of A^ and n^.

Conversely, if A is "-regular and hermitian, then again A^ = <bA, and it follows

that A is regular, again from the identification of AA and IT^.

2. Ideals and quotients. This section contains many of the basic results of the

paper. For / a y-closed ideal of A, we investigate the relationships among A, I, and

A/I with respect to the properties of uniqueness of C*-norm and "-regularity. These

relationships are not completely predictable. For example, if A is "-regular, then A/I

is "-regular, but the analogous result for the uniqueness of C*-norm property does

not hold. In fact we prove that A/I has a unique C*-norm for all -y-closed ideals / of

A if and only if A is "-regular (Theorem 2.3). This central result is used extensively

in the remainder of the paper.

At the end of this section we give an example of a commutative, semisimple,

symmetric Banach "-algebrad with a unique C*-norm such that A is not "-regular.

When £ is a subset of A, we denote by E the closure of E in C*(A).

Proposition 2.1. Assume that I is a closed ideal of C*(A) and A/A D I has a

unique C*-norm. Then A D I = I.

Proof. Let J = A C\ I C I. Consider the maps

q>:A/Ar\I->C*(A)/I,       t: A/AD I - C*(A)/J

given by

<p(f + AD /)=/+/,       tl>(f+Ani)=f+J.

Both <p and \p are "-maps and are one-to-one. Hence

/-Y,(<p(/+/n/t))   and   f^y2(Hf+ir\A))

are C*-norms on A/A n / where y, and y2 are the natural C*-norms on C*(A)/I

and C*(A)/J respectively. Thus y,(/ + /) = y2(f + J) for all/ E A.
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Assume that g E I, but g £ /. Choose {g„} CA such that y(gn — g) -> 0. Then

y¡(g„ + I) -» 0 and y2(gn + /) -» Y2(g + -0^0. This contradiction proves that

/ = /.

Let A be a PG*-algebra with largest C*-norm yA. If / is a "-ideal of A, then as

Palmer shows in [16], 1.1 (4) implies that

Ji(f) = yA(f).    f^L

From this it follows that Yl, can be identified with the open subset h(I)' of n^. Now

let / be a y-closed ideal of A. Since Ï (1 A = I, C*(A/I) is isometrically "-isomor-

phic to C*(A)/(I). It follows that YlA/I can be identified with the closed subset

h(I) of IT^ [8, Proposition 3.2.1]. We use this information in what follows.

Theorem 2.2. Let I be a *-ideal in A.

(1) If A has a unique C*-norm, then I has a unique C*-norm.

(2) If A is *-regular, then I is *-regular.

(3) Assume that I is y-closed. If A is *-regular, then A/1 is *-regular.

Proof. First we establish (1). Denote by / the closure of / in C*(A). Now

n, = h(ï)' is an open subset of 11^. Assume W is a nonempty open set in II,. If A

has a unique C*-norm, then there exists /£ A, /# 0, such that f(W') = {0}. Fix

QEW such that f(Q) + 0. Since f(P) = 0 for all P E h(ï), then / E / n A. We

may assume ||(/*/)A(ô)ll = 1- Choose gEl such that y(/* - g)y(f) < 1. If

(gf)(Q) = 0, then

i = ll(/V)"(ß)ll = ll(/* - g)"(ß)/(ß)ll <y(r- g)y(f) < i-
Thus gfEl, (gf)(Q) ¥= 0 and (gf)\P) = 0 for all P £ W. This proves (1), and
essentially the same argument proves (2).

Now assume that A is "-regular and / is y-closed. Let U be an open set in 11^ such

that U n h(I) is nonempty (where / denotes as before the closure of / in C*(A)). If

QEU C\h(ï), then there exists g E A such that g(Q) ¥= 0 and g(U') = (0). Thus

(g + I)(Q) * 0 and (g + I)'(P) = 0 for all P £ h(ï)\U.

Remark. If A has a unique C*-norm and / is a y-closed ideal, then in general A/I

need not have a unique C*-norm. An example is given at the end of this section,

Example 2.9.

For T C n,, we set k(Y) = D {P: P E Y}.

Theorem 2.3. A is *-regular if and only if for every y-closed ideal I of A, A /I has a

unique C*-norm.

Proof. If A is "-regular, then for any y-closed ideal / of A, A/I is "-regular by

Theorem 2.2. Thus A/I has a unique C*-norm.

Conversely, assume that A/I has a unique C*-norm for every y-closed ideal L Let

T0 be a closed subset of 11^. Let

T= {P£n/4:/(P) = 0forall/Eyl n*(r0)}.

We prove that Y0 = Y. Suppose T0 ¥= Y. Let / = k(Y) n A. We have that A/I has a

unique C*-norm and k(YQ) n A —I. But by Proposition 2.1, / is y-dense in k(YQ).
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This is impossible since

ÎCk(Y)ck(Y0).

Proposition 2.4. (1) A has a unique C*-norm if and only if for every nonzero closed

ideal I of C*(A), I H A is nonzero.

(2) A is *-regular if and only if for every closed ideal I of C*( A), I n A is dense in I.

Proof. Let / be a nonzero closed ideal of C*(A). HI il A = {0}, then

T(/) = inf{y(/-g):g£/}

is a C*-norm on A, and furthermore t ¥= y on A. Thus if A has a unique C*-norm,

then/ r\A ¥> {0}.

Conversely, assume that t is a C*-norm on A and t ^ y on A. Let f be the

extension of t to C*(A), and let

I={gEC*(A):f(g) = 0}

Then / ^ {0}, but / D A = (0).

Now assume A is "-regular. By Theorem 2.3 if / is a closed ideal of C*(A), then

A/A n / has a unique C*-norm. Thus A n / is dense in / by Proposition 2.1.

Assume that A has the property that for every closed ideal / of C*(A), I n A is

dense in /. If Y C n^ is closed and P £ Y, let / = k(Y). Then / n ^ is dense in /.

Choose g E k(Y) such that ||g(P)|| = 1. Let / E A n / be such that y(g - /) < 1.

Then/(T) = {0}, but/(P) ¥= 0. Thus A is "-regular.

Proposition 2.5. Let B be a reduced GB*-algebra, and let A be a yB-dense

* -subalgebra of B. Assume that A is a GB*-algebra.

(1) If A has a unique C*-norm, then B has a unique C*-norm.

(2) If A is *-regular, then B is *-regular.

Proof. Let t be a C*-norm on B. Given fEB choose {/„} C A such that

yB(f„ — f) -* 0. Then t(/„—/)-* 0, and assuming that A has a unique C*-norm,

t(/b) = yB(/„) for »>1. Thus yB(/) = r(f). This proves (1).

Now assume that / is a yB-closed ideal of B. Then A D / is y^-closed in A. If /I is

"-regular, then by Theorem 2.3, A/A D / has a unique C*-norm. Since the map

f + a n i -/+ /,     /E/i,

is a "-embedding of A/A D / into a yB//-dense "-subalgebra of P/7, it follows from

part (1) that B/I has a unique C*-norm. Thus the "-regularity of A implies the

"-regularity of B by Theorem 2.3.

Proposition 2.6. Let I be a *-ideal of A such that I has a unique C*-norm and h(ï)

is nowhere dense in YlA. Then A has a unique C*-norm.

Proof. Ylr is homeomorphic to the open set U = h(ï)'. Let W be a nonempty

open subset of 11^. Since h(I) is closed and nowhere dense, U C\ W must be

nonempty. Therefore there exists g E I, g # 0, such that g(P) = 0 for all P £

U\(U n W). But also g(P) = 0 for all P £ h(I). Therefore, g(P) = 0 for all

P £ W'. This proves that A has a unique C*-norm.
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Theorem 2.7. Let A be a reduced BG*-algebra.

(1) There exists a y-closed *-ideal A/0 of A such that M0 has a unique C*-norm and

M0 contains every *-ideal of A that has a unique C*-norm.

(2) There exists a y-closed *-ideal A/, of A such that A/, is *-regular and A/, contains

every * -ideal of A that is * -regular.

Proof. We prove (2); the proof of (1) is similar. First assume that / and J are

"-regular "-ideals oí A. We prove that

(3) K = I + J is "-regular.

Recall that if M is a "-ideal of A then YlM may be identified with h(M)'. We have

YlK identified with h(K)' = h(I)' U h(J)'. Let V be an open subset of h(K)' with

P E V. We may assume that P E h(I)'. Then since / is "-regular, there exists/ E /

such that/(P) i= 0 and f(h(I)'\V) = {0}. But also/(/?(/)) = {0}, and thus/(F)

= {0}. This proves (3).

Let (/x}AeA be the collection of all "-ideals of A that are "-regular. Let

A/,=   (J {/X:XEA}.

From (3) it follows that M, is again a "-ideal of A. Now YlM is identified with

/,(M,)'=   (J {h(IJ:\EA}.

The same argument as above shows that if V is open in h(M])' and P E V, there

exists/ E /^ for some ft E A such that/(P) ¥= 0 and/(F') = {0}.

Finally, the y-closure of A/, in A is "-regular (since A/, is), and therefore A/, is

y-closed. This proves (2).

Example 2.8. Denote the set of integers by Z. Let w = {wn}neZ be a sequence of

positive real numbers such that

1 < wn+m< wnwm,       n,mEZ.

Let l\w) be the linear space of complex sequences {an}neZ such that ||{aK}||i =

2^°-oo I an I wn < +00. Define an involution * on a sequence {an} by {a„}* is the

sequence {¿>„}„<=z where bn = â{_n), n £ Z. With convolution multiplication, this

involution *, and the norm ||-||,, ll(w) is a commutative Banach "-algebra. These

algebras are discussed in [11,§19] where the notation W[w] is used in place of l\w).

Define

a°=1'      a" = log(M) + l '      "GZ>^°-

Then

(ü)\imn^x(an/n) = 0; and

(m)2:xxa„n-2=+<X.

Letw=K} = {e°"}.

Then by (i), 1 < wn+m < w„wm, n, m E Z. Note that by (ii), (wj/n = e(a"/n) -* 1

as n -» oo. It follows from [11, p. 120] that the carrier space of /'(w) can be identified

with the circle (z £ C: |z|= 1}. It can be directly verified that ll(w) is symmetric.

But by [9, Theorem 2.11] (hi) implies that ll(w) is not regular. Thus Theorem 1.5



848 B. A. BARNES

together with a result proved later, Theorem 6.3, imply that l\w) does not have a

unique C*-norm. This provides an example of a commutative symmetric semisimple

Banach "-algebra that does not have a unique C*-norm.

Now let B be such an algebra. Let ñ = [0,1] X $B. Define A to be the algebra of

all continuous functions f(t, <p) on Ü such that /(0, <p) = g(y), ipEOj, for some

g £ B. Here g designates the usual Gelfand transform of g £ P. Let A have the

involution/*(<o) = /(«), « E fi. For g E P, set||g||B = ||g||B. For/E A let

||/||„ = sup{|/(<o)|:<o£ß}.

We have yA(f) = \\f\\u,fEA. Then

11/11 = 11/11.+ 11/(0, Oil«
defines a complete algebra norm on A, so A is a Banach "-algebra. It is easy to verify

that <&A is homeomorphic to S2. Let

/= {fEA:f(0,<p) = 0forah>E<I>B}.

Then / is a y-closed ideal of A, and A/I is isomorphic to B. In particular, A/I does

not have a unique C*-norm, so by Theorem 2.3, A is not "-regular. If U is a

nonempty open subset of Í2, then

c=i/n ((o,l] x $B)

is open and nonempty, and therefore we can choose / E A, f¥=0, such that

f(V') = 0. Thus A does have a unique C*-norm. Note that A is symmetric. It is also

easy to see that A is not regular (since B « A/I is not regular).

3. Weak containment. Let B be a C*-algebra. Given (it, H) a "-representation of

B, a positive functional associated with m is one of the form

/-(»(/)í,í).       ÍEH,fEB.

Let ? be a family of "-representations of P. Then w is weakly contained in § if every

positive functional associated with -n is the w*-limit of a net of finite linear

combinations of positive functionals associated with "-representations in S. Fell

proves in [10, Theorem 1.2] that -n is weakly contained in S exactly when

f! ker(i-) C ker(w).
TES

Now assume B = C*(A) where A is as usual a reduced PG*-algebra. Let "31 denote

the collection of all "-representations of A. When it E 91, then denote by m the

unique extension of m to C*(A). If § C 91 and it E 91, then we use the terminology

77 is weakly contained in S to mean m is weakly contained in§= {t:tê§}.

Certain properties involving weak containment of "-representations of A are

closely related to uniqueness of C*-norm or "-regularity of A. In fact, we have the

following two characterizations of these properties.

Theorem 3.1. Let A be a reduced BG*-algebra.

(1) A has a unique C*-norm if and only if whenever S C <3l separates the points of A,

then every it E lilis weakly contained in S.

(2) A is *-regular if and only if for any S C 91 and any m E 91, it is weakly contained

in S is equivalent to riTegker(T) C ker(w).
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Proof. Assume S C 91 and S separates the points of A. For/ E C*(A) let

T(/) = sup{||=(/)||: = eS}.

t is a C*-seminorm on C*(A). Let / = ker(r) = {/E C*(A): t(/) = 0}. Since §

separates points of A, we have I D A = {0}. Thus if A has a unique C*-norm, then

Proposition 2.4 implies that / = {0}. It follows that I separates points on C*(A).

Therefore by Fell's basic result [10,Theorem 2.1] any "-representation of C*(A) is

weakly contained in S.

Conversely, let t be a C*-norm on A. Choose tr £ 91 such that

t(/) = M/)II,     feA.

Now {w} separates points of A (t being a C*-norm on A), and therefore by

hypothesis every representation of A is weakly contained in {tr}. Again using Fell's

Theorem, = must be faithful on C*(A). Thus ||w(/)|| = y(/) for all/E C*(A), so

that t = y. This proves that A has a unique C*-norm.

To establish (2), if ? C 91, let I(>) be the ideal

I(>)=   nker(r).

By Theorem 2.3 A is "-regular if and only if A/I($) has a unique C*-norm for all

choices of ? C 91. Then (2) follows from this fact plus (1).

4. Adjoining a unit. Many basic properties of a Banach "-algebra A are preserved

when a unit is adjoined to A. For example, if A is symmetric or regular, then Ax also

has these properties (here Ax is the usual algebra formed from A by adjoining a unit;

see [18, pp. 2-3]). Thus it is perhaps surprising to find that the uniqueness of

C*-norm property does not necessarily extend from A to Ax. An example is given at

the end of this section in which A has a unique C*-norm, but Ax does not. Also, it

follows from this example that another desirable extension property fails in this

case: A is an ideal in Ax with a unique C*-norm, the quotient algebra Ax/A being

one dimensional has a unique C*-norm, but Ax does not have a unique C*-norm.

First we prove a result characterizing when Ax has a unique C*-norm, given that A

docs.

Theorem 4.1. Let A be a BG*-algebra with a unique C*-norm, and assume that A

does not have a unit. Then Ax has a unique C*-norm if and only if C*(A) does not have

a unit.

Proof. It is easy to see that C*(A) can be identified with a closed maximal ideal

of C*(AX) of codimension one. First assume that C*(A) has a unit e. Then

(1 - e)C*(A) = {0}, so that M = {X(\ - e): A E C} is an ideal of C*(AX). But

M n Ax = {0} since (1 - e) £ Ax. Thus Ax does not have a unique C*-norm by

Proposition 2.4.

Now assume that C*(A) does not have a unit. Let

K={fEC*(Ax):fC*(A)={0}}.

If K ^ (0), then C*(AX) = K ® C*(A). In particular, 1 = u + e where u £ K and

e £ C*(A). But then eg = g for all g E C*(A), a contradiction. Thus K = {0}.
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Assume M is a nonzero closed ideal of C*(AX). Since K = {0} and MC*(A) CMÍ1

C*(A), M n C*(A) is a nonzero ideal of C*(/l). By Proposition 2.4, M D A ¥= {0}.

This proves that Ax has a unique C*-norm by Proposition 2.4.

Corollary 4.2. If A is a symmetric Banach *-algebra with a unique C*-norm, then

Ax has a unique C*-norm.

The corollary follows from the fact that if A is symmetric and C*(A) has a unit 1,

then 1 £ A (one could use Lemma 7.3 to prove this).

Corollary 4.3. Let A = L\G) where G is a nondiscrete locally compact group. If

A has a unique C*-norm, then Ax has a unique C*-norm.

Proof. By [7, Corollary 1] when G is nondiscrete, then C*(G) does not have a

unit. Thus Theorem 4.1 implies the result.

Example 4.4. We give an example of a Banach "-algebra A with unique C*-norm

such that the algebra Ax formed from A by the adjunction of a unit does not have a

unique C*-norm. Let

D= {(x,y,0) ER3:x2 +y2< 1}

and

R = ((x,0,í)eR3:Oíííl,-K^l).

Let ß = D U R (Í2 is the unit disk in the x-j'-plane with a vertical rectangle standing

on the line segment -1 < x < 1). Let B be the algebra of all continuous C-valued

functions / on ß such that / restricted to the interior of D is analytic. B is a Banach

algebra with respect to the sup norm over ß. For/ £ B, define

f*(x,y,0) = f(x,-y,0)    onD,      f*(x,0,t) = f(x,0,t)    on P.

Then / -» /* is an involution on P. It is easy to see that AB is identified with R (the

multiplicative functionals are point evaluations), and that

yB(/) = sup{|/(w)|:tvEP}.

Then C*(B) is identified with the algebra of all C-valued continuous functions on R.

It is straightforward to verify that P has a unique C*-norm.

Now let A be the closed "-ideal of B consisting of those / £ P such that

/(0,1,0)= /(0, -1,0) = 0. Now A does not have a unit, but C*(A) ^ C*(B) which

does have a unit (note that A is yB-dense in P, which implies the identification of

C*(A) with C*(B)). Since A does not have a unit but C*(A) does, Ax does not have

unique C*-norm by Theorem 4.1. However, A is an ideal of P, and hence A does

have unique C*-norm.

5. Tensor products. Given two "-algebras A and P, A ® P is the algebraic tensor

product of A and B [6, §42]. In this case A ® P is a "-algebra. A "-algebra A is a

[/"-algebra if every element of Ax is a finite linear combination of unitary elements;

see [14]. A Banach "-algebra is a [/"-algebra. Now assume A and B are [/"-algebras.

Then it is immediate that Ax <8» P, is a [/"-algebra since the tensor product of two

unitary elements is again unitary. Now A ® P is an ideal in Ax ® Bx. It follows that
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A ® B is a P(J*-algebra (1.1). In particular A ® P has a largest C*-seminorm y, and

the y-completion of A ® P is C*(^ ® P). When /I and P are reduced, then A ® P is

reduced. Given a norm »> on /I ® P, we denote the /'-completion of A ® P by

/I ®„P.

Unless explicitly noted otherwise, /I and B will always be reduced [/"-algebras.

Lemma 5.1. Assume that tt is a *-representation of A ® B. Then

H/®g)ll<Y¿(/)YS(g).       fEA,gEB.

Proof. Since /I ® P is an ideal in Ax ® Bx, there exists a "-representation w, on

/I, ® P, that extends 77 by 1.1 (4). Then for/E /l.g E P,

IK(/®g)ll = lM/®g)ll<lM/® 1)1111^,(1 ®g)ll^Y,(/)Yß(g).

Lemma 5.2. 7/(77, H) is a *-representation of A ® P, i/ie« 77 extends to a *-represen-

tationmofC*(A)®C*(B).

Proof. Consider the bilinear map \p: A X B — P(//) given byt//(/, g) = 7r(/® g).

By Lemma 5.1, ||^(/, g)|| < y,(/)yB(g) for a\l f E A, g E P. If/eC*(/l), gE

C*(B), then choose {/,} C A, {g,,} C P such that yA(f„ -/) - 0 and yB(g„ - g) -

0. Then

ll*(/». &,) - >M/„. gJ\\ = ll»U ®gJ~ *(/« ® gjll

< lMU, -/„,) ® g„)|| + ||77(/„, ® (g„ - g„,))||

< ?,<(/„ -/m)YB(g„) + Y^(/m)Ys(g„-gm) ^0 as«, m -> 00.

Define ^(/, g) = lim,,^ i//(/,, g„). It is straightforward to verify that t^is a well-

defined bilinear map from C*(A)X C*(B) into B(H) and that \\^(f, g)|| <

Y,4(/)Y»(g), /E C*(/4). g E C*(P). Thus, there _exists a unique linear map 77:

C*(A)®C*(B)^B(H) such that =(/® g) = £(/, g), /£C*(4 g E C*(P)

[6, Theorem 6, p. 232]. Elementary computations verify that 77 is a "-representation

oiC*(A)®C*(B).

Let v denote the largest C*-norm on C*(A) ® C*(P), and let y denote the largest

C*-norm on A ® P. Now y > p\A ® P. On the other hand, for ? E ,4 ® P

y(0 = sup{||77(/)||: all "-representations 77 of A ® P}

=£ sup{||7r(/)||: all "-representations 77 of C*(A) ® C*(P)}

by Lemma 5.2. Therefore y(0 «£ ?(/). We have proved that y = v\A ® P. Since p is

a cross-norm on C*(A) ® C*(P), it follows that /I ® P is p-dense in C*(/l)

®,C*(Ä). Thus C*(A ® P) is isometrically "-isomorphic to C*(/l) ®„C*(P).

Proposition 5.3. C*(/l ® P) « isometrically *-isomorphic to C*(A) ®VC*(B).

Now let C*(A) be the usual space of equivalence classes of irreducible "-repre-

sentations of C*(A). In place of the notation 11^ we use PRIM(C*(/4)) to denote

the primitive ideal space of C*(A) with the hull-kernel topology. If C*(A) is GCR,

then we call A GCR. When C*(A) is GCR, then given P E PRIM(C*(^)) there

exists an irreducible "-representation 77B of C*(A) with kernel P which is unique up

to unitary equivalence [8, Corollaire 4.1.10]. In fact, P -> irP is a homeomorphism of

PRIM(C*(^)) onto C*(A)   [8, Proposition 3.1.6].
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Lemma 5.4. Assume that both A and B are GCR. Then

(P,0)-ker(77P®77ß)

is a homeomorphism from PRIM(C*(/1)) X PRIM(C*(P)) onto

?RIM(C*(A) ®PC*(B)) ^?RIM{C*(A ®P)).

Here irP ® -nQ is the unique extension of mP ® 77^ from C*(A) ® C*(B) to C*(A)

®,C*(B).

Proof. By the remarks preceding the lemma

P -» ttp is a homeomorphism of ?R\M(C"(A)) onto C*(A) ,

Q -* 77ß is a homeomorphism of PRIM(C*(P)) onto C*(B)~,

and since C*(¿) ®PC*(B) is GCR, PRIM(C*(^i) ®„C*(P)), (C*(A) ®VC*(B))'

are homeomorphic. Furthermore, by [13,Theorem 5.5](77,<5)->77®áisa homeo-

morphism of C*(A)Y. C*(B) onto (C*(A)®V C*(B))\ By Lemma 5.3, C*(A)

®VC*(B) can be identified with C*(A ® P). Combining this information, the

lemma follows.

Now we prove the main result of this section.

Theorem 5.5. Assume that A and B are GCR.

(1) If A and B have unique C*-norms, then A ® P has a unique C*-norm.

(2) If A and B are *-regular, then A ® P is *-regular.

Proof. We prove only (2), the proof of (1) being similar. By Definition 1.2 it

suffices to show that given U an open set in PRIM(C'*( A 0 P)) and R(> E U, there

exists h £ A ® P such that A(P0) ^ 0 while ä([/') = {0}. By Lemma 5.4 there exists

an open set V C PRIM(C*(^)), an open set W C PRIM(C*(P)), P„ £ V, Qu E 1^

such that ker(77Bo ® 77ßo) = P0 and ker^ ® 77e) E U for all P E V, Q E W. By

the "-regularity of A and P we can choose/ E A, g £ P such that

/(Po)^0,      /(F) = {0},       g(ßo)^0,       g(w/') = {0}.

Then /®g has the properties (/® g)*(P0) ^ ° and (/®g)"(i/')= {0}. This

proves the theorem.

Before proving the converse of Theorem 5.5, we state one lemma.

Lemma 5.6. Let X be a linear space, and Y a linear subspace of functional acting on

X such that Y is total (i.e., if for some x E X, a(x) — 0 for all a E Y, then x = 0). If

{xx,.. .,x„) is a linearly independent set in X, then there exists {ax,... ,an} C Y such

that

<*j(*k) = i ifj = *;    «/(■**) = o tfj * k-

Proof. Routine linear algebra.

Theorem 5.7. Assume that A and B are GCR.

(1) If A ® P has a unique C*-norm, then both A and B have unique C*-norms.

(2) IfA ® P is *-regular, then both A and B are *-regular.
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Proof. We prove (2). Let U be an open set in PRIM(C*(,4)) with PEU. Then

by Lemma 5.4 {ker(7rB ® 77ß): P E U, Q £ PRIM(C*(P))} is an open subset of

PRIM(C*(y4 ® P)). Fix S E PRIM(C*(P)). Since A ® B is "-regular, there exists
n

such that /i(ker(77R ® <nQ)) = 0 for all R £ U and all Q E PRIM(C*(P)) while

h(ker(irP ®its))¥= 0. Choose m such that (fm ® gj (ker(TTP ® tts)) * 0. Then/m(P)

¥= 0. We now show that fm(R) — 0 for all P £ U, and this will complete the proof

that A is "-regular. We have

(3) 2 K(/J*„i?.)("e(s*)*2''h)=0,
k=\

whenever P £ U, Q E PRIM(C*(P)), £„ tj, £ //^ and £2, tj2 £ 77^. Let F be the

span of the following set of coordinate functionals on C*(B):

[g - {«Q(g)t, v)--Q£ PRIM(C*(P)), t, 7, £ //J.

The space Y is total in the dual of C*(B). Also, if a E Y, then by (3)

2 K(/*)E..U.Mg*) = 0,
k=\

for all P £ Í/ and all £,, tj, ê 7/^. We may assume that {g,,... ,g„} is a linearly

independent set. Then applying Lemma 5.6, we have in particular that TTR(fm) - 0

for all R £ U. Thus fm(R) = 0 for all R £ U, while as previously noted, fJP) ^ 0.

Now we give some applications of the main result, the most important of these

being a theorem concerning locally compact groups Gx and G2 that are GCR: if

L\GX) and L\G2) have unique C*-norms (are "-regular), then LX(GX X G2) has a

unique C*-norm (is "-regular).

We denote the projective tensor product of A and P by A ®p B; see [6, pp.

233-234].

Theorem 5.8. Assume A and B are U*-algebras and that both A and B are GCR.

(1) If A and B have unique C*-norms, then A ®PB has a unique C*-norm.

(2) If A and B are *-regular, then A ®pB is *-regular.

Theorem 5.8 follows immediately by applying Proposition 2.5 and Theorem 5.5.

Let Gx and G2 be locally compact groups. It is well known that L\GX X G2) is

"-isomorphic to L\GX) ®pL\G2); see [6,Example 14, p. 234]. Thus the following

application is a corollary of Theorem 5.8.

Theorem 5.9. Let Gx and G2 be locally compact groups which are GCR.

(1) If L](GX) and L\G2) have unique C*-norms, then LX(GX X G2) has a unique

C*-norm.

(2) IfLl(Gx) andL\G2) are *-regular, then L\GX X G2) is *-regular.

Example 5.10. Let ß be a locally compact Hausdorff space, and let P be a Banach

"-algebra. The algebra C0(ß, P) consisting of all continuous P-valued functions on ß
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that vanish at infinity is a Banach "-algebra with respect to the norm

11/11 = sup{||/(co)||B: co Eß},

and the involution/ -* /* where

/*(«) = (/(«))•,        coEß,/£C0(ß,P).

If g E C0(ß) and b £ P, we denote by bg the function in C0(ß, P) given by

(6g)(co) = /j(g(co)),        coEß.

We prove that spm{bg: b £ P, g E C0(ß)} is dense in C0(ß, P). Fix/E C0(ß, P)

and e > 0. Let

/C={co£ß:||/(co)||B>e/4}.

K is compact. For w £ K let

tf„ ={«EÖ: ||/(5) -/(«)||B<e/2}.

Let {Vx = UU¡,V2 = UUi,...,V„= UUJ be a finite cover for K. By [19,Theorem

2.13] there exists (g,,... ,g„} C C0(ß) with the properties

(i) g,(<o) + • • ■ +g„(co) = 1 for all w E K;

(ii) 0 < g;(co) « 1, a E Q, 1 <j < k;

(iii) support of g- C ^-, 1 </ < n.

Thus by (i)

/ = «i/+ft/+■••+&/   on/C

Let ft = /(tó,)g, + /(co2)g2 + • • • +/(co„)g„. Fix to E tf. Let M = {j: co E Vj). Then

||/(«)-A(«)||B<  2 g,(")tl/(")-/(^)llS<f-
j(=M

Let y = {co: ||/(co)||B > e/2} C K. Choose g E C0(ß) such that g(co) = 1 for all

co E J, g(co) = 0 for all w £ K, and 0 < g(co) < 1 for all co. It is straightforward to

check that ||/ - gf\\ < e/2. Also,

||g(co)/(co)-g(co)Ä(co)||B<|    for co £ K,

g(co)/(co) - g(co)/i(co) = 0    forco£Ä".

Thus, ||g — gh\\ < e. Since gh £ span{M: b E B,k £ C0(ß)}, we are done.

Proposition 5.11. Assume that B is a Banach *-algebra which is GCR.

(1) If B has a unique C*-norm, then C0(ß, P) has a unique C*-norm.

(2) If B is *-regular, then C0(ß, P) is *-regular.

Proof. We prove (1); the proof of (2) is similar. The map 9: C0(ß) X P -> C0(ß, P)

defined by <p(/, b) = ft/is bilinear. Let <p: C0(ß) ® P -> C0(ß, P) be the correspond-

ing linear map determined by <p. It is straightforward to check that <p is an algebra

"-isomorphism. Assume that P has a unique C*-norm, so that by Theorem 5.5,

C0(ß) ® P has a unique C*-norm. Let y be the largest C*-norm on C0(ß, P). Then

-(C0(ß) ® P) has a unique C*-norm and is norm-dense, hence y-dense, in C0(ß, P).

Therefore C0(ß, P) has a unique C*-norm by Proposition 2.5.
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6. Some cases where uniqueness of C*-norm and "-regularity are equivalent. In this

section we consider some special cases where A is a "-algebra for which the

properties of uniqueness of C*-norm and "-regularity are equivalent. Throughout, A

is as usual a reduced PG*-algebra.

First assume that G is a topological group that acts on n^, and denote the action

of x £ G on P E YlA by x ■ P. We write the group operation of G as multiplication

and the unit of G as e. We make the natural assumptions that

(xy)-P = x- (y-P),       x,yEG,PElJA;

e-P = P    forallPEn^.

Furthermore, we assume that

(#) for each fixed P £ YlA the collection of sets {[/• P}, where U runs through

the set of open neighborhoods of e in G, is a collection of open neighborhoods of P

that forms a neighborhood base at P.

For / £ A, x E G, denote by /,. the vector-valued function on n^ given by

fx(P)=f(x-P).

Theorem 6.1. Let A and G be as above and assume (#). Also assume that iff £ A

and x E G, there exists g E A such that g = fx. We denote this element g by fx. Then A

has a unique C*-norm if and only if A is *-regular.

Proof. Assume that A has a unique C*-norm. Let V be an open set in 11^ and

P E V. By (#) there exists an open neighborhood U of e such that UPC V. Since

G is a topological group, we can choose an open neighborhood W of e such that

W2 C U and W = W'x. Now A has a unique C*-norm so that by Proposition 1.3

there exists / £ A and w E W such that f((W ■ P)') = {0} while f(w-P) # 0. If

Q E V, then w-QE W-P (for otherwise, Q E (w~xW)-P C W2■ P C V). Thus

fw EA by assumption, /„(P) =/(vv P) ^ 0, and /„.«?) = 0 for all Q E V. This

proves that A is "-regular.

Corollary 6.2. Let G be a locally compact abelian group. Assume that A is a dense

*-subalgebra of LX(G) such that

(i) A is a BG*-algebra;

(ii) A^ is homeomorphic to G; and

(ÏÛ) if f E A,XE G, then Xf E A.
Then A has a unique C*-norm if and only if A is *-regular.

Proof. The topological group G acts on YlA ̂  AA x> G by multiplication. Hy-

pothesis (iii) implies that for/ £ A and x £ G,fx E A. Clearly (#) is satisfied in this

situation. Thus the result follows from the theorem.

Theorem 6.3. Let A be a commutative Banach *-algebra with $A homeomorphic to a

subset of the real line (or of the unit circle). Also assume that AA = <bA (A is

symmetric). Then A has a unique C*-norm if and only if A is * -regular.

Proof. Assume that A has a unique C*-norm. Since A is symmetric, by Corollary

4.2 we may adjoin an identity to A if necessary and the algebrad, will have a unique

C*-norm. We give the proof in the case where A has a unit and $A is homeomorphic
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to a compact subset of the real line. We identify <bA completely with this compact

subset of R in what follows.

For a £ R, let Ka = <bA n (-00, a] and Ja = $A n[a,+ 00). Fix a, ß £ $A with

a < ß. We prove that there exists/ £ A such thai f(Ka) = {0} andf(ß) = 1. First

suppose there exists 5 £ Q>A such that a< 8 < ß. Then Js is open and compact in <bA

so by the Shilov Idempotent Theorem there exists e £ A such that ê(Ks) = {0} and

!(/*) = {!}•

Now assume (a, /J) C $/). Let

r = {9 E $A : /(ç>) = 0 for all/ E .4 such thatf(Ka) = {0}}.

Suppose (SET. Since there exists g E ^4 such that g(<p) = 0 for all 9 E ®A\(a, ß)

and g ¥= 0, there exists t £ T with a < t < ß. Let

/={/£^l:/(r) = {0}}.

Now O^/i is homeomorphic to Y. Thus there exists an idempotent h + I in A /I such

that (h + I)'(<p) = 0 for all 9 E T, 9 < t and (ft + 7)"(9) = 1 for 9 E Y, r < 9.

But then h(Ka) = {0} while h(ß) = 1, a contradiction. Thus there exists/ E ,4 such

that/Uj = {0} and/(j8) = 1.
A similar proof shows that if a, ß £ $A, ß < a, then there exists / E A such that

/(/„) = {0} and/(ß) = 1.

The result follows.

7. Some examples from general Banach algebra theory. In this section we discuss

several general types of Banach "-algebras A which are either "-regular or have

unique C*-norm. In each case the result depends on the existence of "sufficiently

many" self adjoint idempotents in A.

The first case we consider is where there exists S C A such that if g E S, then

g = g* and aA(g) is at most countable, and S is y-dense in (/ £ A: f = /*}. We may

assume that A has a unit 1. If g E S, then the closed "-subalgebra (g) of A

generated g and 1 is regular since <¡><g) is homeomorphic to aA(g) which is at most

countable. If t is a C*-norm on A, then r(g) = yA(g) for all g E S by Theorem 1.5.

If/ = f*EA, then there exists {g„} C S such that yA(gn - f) -> 0 and r(gn - /) ->

0. Thus

Y,(/)-Y,(gn)=T(g„)-T(/).

Thus yA(f) = r(f) when/ = /* £ ^4, and hence for a¡\ f E A. This proves that ^4

has a unique C*-norm. Now if I is a y-closed ideal of A, then /4/7 satisfies the same

hypotheses that A did. Therefore A/I has unique C*-norm, and A is "-regular by

Theorem 2.3. We state this result as a theorem.

Theorem 7.1. Let A be an A*-algebra. Assume that iff = /* E A, then there exists

{g„} CA,g„ = g*,suchthat

(l)yA(gn-f)^0;and

(2) aA(gn) is at most countable.

Then A is *-regular.
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The next example concerns the situation where C*(A) has the property that for

every maximal commutative "-subalgebra C of C*(A), $c is totally disconnected.

Before stating and proving the result we develop some preliminary information

concerning this situation.

Lemma 7.2. Let B be a C*-algebra with the property that every maximal commuta-

tive *-subalgebra of B has totally disconnected carrier space. If Y is a closed set in YlB

and P £ Y, then there exists e* = e2 = e E P such that ê(Y) - {0} and ê(P) ¥= 0.

Proof. Choose fEB,f>0, such that f(Y) = {0} and ||/(P)|| = 1. Let C be a

maximal commutative "-subalgebra of P containing/. Let

K= {íú£$c:/(w)>A}    and    U = (co £ *c:/(w) > {}.

Since the open-closed sets form a basis for the topology of $c (Oc being totally

disconnected), a standard topological argument using the compactness of K yields

the existence of an open-closed set ß such that K C ß C [/. Let e E C be the

function with ê(co) = 1, co E ß, ê(co) = 0, co £ ß. Then f>fe > \e and ||/-/e||

If Q E Y, let 7TQ be a "-representation of P with kernel Q. Since / > \e, we have

for Q £ T, 0 = irQ(f) > \irQ(e), so that e £ Q. Thus ê(r) = {0}. On the other

hand, since \\f- fe\\ < £ and ||/(P)|| = 1, it follows that ê(P) ¥= 0.

We state the next piece of information we need as a lemma. The result is well

known; see for example the proof of [2, Proposition 3].

Lemma 7.3. Let A be a symmetric A*-algebra. Assume e = e2 = e* £ C*(^4). Then

there exists f = f2=f* E A such that y(e — f) < 1.

We shall apply Lemma 7.3 in conjunction with the following.

Note. Assume that e and / are selfadjoint idempotents in a C*-algebra P and that

y(e-f) < 1. Now for all P E nB, ||e(P)|| = 0 or 1 and ||/(P)|| = 0 or 1. Since

1 > y(e -/)> \\ê(P) - f(P)\\, it is clear that ||ê(P)|| = ||/(P)|| for all P E IIB.
Now we prove the theorem.

Theorem 7.4. Assume that A is a symmetric A*-algebra with the property that every

maximal commutative *-subalgebra of C*(A) has totally disconnected carrier space.

Then A is *-regular.

Proof. Assume Y is a closed subset of 11^ and P £ Y. By Lemma 7.2 there exists

a selfadjoint idempotent e £ C*(A) such that ê(r) = (0) and ||ê(P)|| = 1. Then by

Lemma 7.3 there exists f = f2 =/* E A with y(e -/) < 1. Finally, the note stated

above implies that/(r) = (0} and/(P) # 0.

A symmetric Banach "-algebrad has the important property that

^(/) = «cW/)    forall/EA

We prove this with the assumption that A has a unit 1. It suffices to show that if

f/E A and/"' E C*(A) then/"1 E A. By [15,Theorem, p. 523] the set of invertible

/ elements in A is an open set with respect to yA. Now (¿1 +/*/)"' £ A for n > 1,

and

Y^((il +/*/)"'/*/- l)-0    as«-oo.
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This implies that (¿1 +/*/) '/*/has an inverse in A for n sufficiently large. But

then /has a left inverse g £ A. Therefore/"1 = g E A.

Corollary 7.5. Let B be a C*-algebra with the property that for every maximal

commutative *-subalgebra C of B, $c is totaly disconnected. Let A be a *-subalgebra of

B such that A is dense in B and such that A is a symmetric Banach * -algebra. Then the

following are equivalent:

(\)A is * -regular,

(2) A has a unique C*-norm;

(3)yA(f) = \\f\\Ballf = f*EA;
(4)aA(f) = aB(f)allf = f*EA.

Proof. That (1) => (2) => (3) is clear.

When (3) holds C*(A) can be identified with P. As noted above, because A is

symmetric, aA(f) — ac,{A)(f) for all / = /* E A, so (4) holds.

Now assume (4). As just noted, aA(f) — ac,(A)(f) for all / = /* E A, and

therefore

yA(f) = sup{|A| : A E ac.(A)(f)} < sup{|À| : A £ aB(f)} = ||/||B.

Thus again, C*(A) can be identified with P. Then A is "-regular by Theorem 7.4.

Let H be a Hilbert space and denote by B(H) the algebra of all bounded linear

operators on H. We denote the usual operator norm of T E B(H) by ||P||op. Let

F(H) be the ideal in B(H) consisting of those T E B(H) with finite-dimensional

range. A subalgebra A C B(H)is finite dimensionally spanned (FDS) if

span{79: T E A C\ F(H), 9 E H) is dense in H.

Theorem 7.7. Assume that A is a *-subalgebra of B(H) and A is FDS. If t is a

C*-norm on A, then

t(P)>||P||op,       TEA.

Thus if A has a faithful FDS representation 77 such that the extension of m to C*(^4) is

also faithful, then A has a unique C*-norm.

Proof. It is sufficient to show that for T — T* £ A

r(T)>\\Sn'l(T(S^),S^)

whenever \p £ H and S — S* E A f~\ F(H). Now for S as above, SAS is a finite-di-

mensional "-subalgebra of B(H), and such an algebra must have a unit E. In fact, E

is the range projection of 5. It suffices then to show that

r(T)>\\ETE\\op.

Since EAE has a unique C*-norm, we have

t(T)>t(ETE) = \\ETE\\op.

Now let 77 be as in the statement of the theorem, and let 77 also denote its

extension to C*(A). Since this extension is faithful, y(f) = ||7r(/)|lop,/£ C*(A). If

t is any C*-norm on A, then by the previous argument we have for all/ E A,

t(/)>H/)||„ = xí(/).
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