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INVARIANT DENSITIES FOR RANDOM MAPS

OF THE INTERVAL

BY

S. PELIKAN1

Abstract. A random map is a discrete time process in which one of a number of

functions is selected at random and applied. Here we study random maps of [0,1]

which represent dynamical systems on the square [0,1] X [0,1]. Sufficient conditions

for a random map to have an absolutely continuous invariant measure are given, and

the number of ergodic components of a random map is discussed.

1. Introduction. In this paper we investigate the following kind of question:

consider two maps from [0,1] to itself—for example, let Tx(x) — x/2 and T2(x) =

2x(mod 1). Select an initial point x0 E [0,1], and choose one of the maps at random

(Tx with probability px and T2 with probability p2). Define x, = 7](x0) with

probability /?,, i = 1, 2. Continue in this manner, selecting maps at random and

setting xn+x — Tj(x„) (prob. />,). How is the "trajectory" {x„} distributed? We say

that a Borel probability measure u describes the distribution of {xn} if

lim  — card({x0,...,xn_x) Ci A) = n(A)
n — oo   ri

for every open set A with n(dA) = 0. In the specific example mentioned above we

prove that when p2> 1/2 there is a unique measure, which is absolutely continuous

with respect to Lebesgue measure m and which describes the distribution of the

sequence {*„} for w-almost every choice of initial condition x0 and "almost every"

selection of the maps T¡.

More generally, let Tx(x),...,Tn(x) be maps of the unit interval and define a

"random map" T by T(x) = Tt(x) with probability/?,. A measure u will be called

^-invariant if fi(A) = 2"=, piri-(T~ U) for each measurable set A. We study a class of

random maps for which it is possible to describe the distribution of almost every

trajectory. This description is accomplished through the demonstration of three

facts. The first fact is that every random map may be realized as a transformation of

the square [0,1] X [0,1] to itself. This construction, the pseudo-skew product (see

§2), makes the phrase "almost every selection of the maps 7)" precise.

The second component of the description is Proposition 6 (§5) which shows that

sets which are invariant for a pseudo-skew product map are products. The third fact
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814 S. PELIKAN

is contained in Theorem 1, which gives sufficient conditions for a random map to

have an invariant measure which is absolutely continuous with respect to Lebesgue

measure. Such a measure has a finite number of ergodic components (§5); taken

together these components describe the distribution of almost every trajectory of the

random map T.

I would like to express my thanks to Professor J. A. Yorke for suggesting this

problem and for his continuing interest in this paper.

2. Background.

(A) Definitions. A random map of [0,1] is a process T(x) specified by a finite

collection of measurable functions 7): [0,1] X [0,1], / = l,...,w, and a probability

vector P = (Px,...,Pn). That is, P¡ » 0 and 2"=, P, = 1. We define T(x) = T¡(x)

with probability P¡, and assume that the selection of the functions is an independent

identically distributed process so that Tm(x) = T¡ ° T¡ o ... o 77 (x) with prob-

ability H"'=xPi. A measure u on [0,1] is defined to be ^-invariant if ¡i(A) =

2"= i PiP(T/ X(A)) for each measurable set A.

(B) Pseudo-skew products. Random maps of [0,1] may always be realized as

transformations of a larger space. Suppose that T' — T¡ (prob. P¡), i = l,...,n, is a

random map. Let ñ = {w — (w,y*L0: vv, £ {1,2,...,«}} be the set of all infinite

one-sided sequences of the symbols in S = {1,2,...,it}. The left shift a: ß -» ß is

defined by (a(w,-))- = wj+x,j = 0, 1,2.The topology on ß is the product of the

discrete topology on S, and the Borel measure ¡ip on ß is defined as the product of

the distribution on 5 given by Prob(y ) = P.. Note that there is a 1-1 correspondence

between the ways in which the maps ... 7), T¡ ,..., T¡ can be selected and points

in ß. The phrase "for almost every selection of the maps T" means for selections of

the maps T¡ which corresponds to a subset of ß having ¡xp measure one.

In the space ß X 7 define a map R by R(w, x) = (aw, Twx). The measure v is T

invariant if and only if ¡tip X v is R invariant. We say the random map T is ergodic

wrt v when R is ergodic wrt u   X v.

Because there may be no measure on [0,1] which is preserved by each of the T¡,

the map R is not a skew product in the traditional sense [AR]. We will refer to Ä as

the pseudo-skew product (PSP) determined by the random map T.

To realize the random map T as a map 5 of [0,1] X [0,1] to itself we use the

following measure theoretic isomorphism: (ß, a, p.p) « ([0,1], m, fp), where / is

defined as follows. Let /,,...,/„ be a partition of [0,1] into intervals of length

P„... ,P„, so that /, = [0, Px], and Ij = [2y_1 P„ VP,]. For x E Í¿ define (Figure 1)

//,(*) ~-pX-—.
j j

The random map Tis then to be represented by S(x, y) = (Tt(x), fp(y)) for y E I¡.

Note that T has an absolutely continuous invariant measure v « m if and only if 5:

[0,1] X [0,1] *D has an invariant measure v X m which is absolutely continuous wrt

2-dimensional Lebesgue measure.
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Figure 1. The graph of f

(C) Lasota-Yorke maps and the Frobenius-Perron operator. A transformation T:

[0,1] -* [0,1] is called nonsingular (wrt Lebesgue measure) if m(T~ XA) = 0 whenever

m(A) = 0. If T is a nonsingular transformation, the action of T* on measures

(T*n(A) = n(T~xA)) preserves the class of measures absolutely continuous wrt

Lebesgue measure. By restricting the domain of T* one obtains an operator on

tx([0,1], m) given by T*(f) — [dT*fi/dm], where dp. = fdx with / E £', or equiva-

lent^, ¡A T*(f)dx = fT-iA fdx for/ E £' and every measurable set A. This operator

is called the Frobenius-Perron (F-P) operator of T and will be denoted by PT.

We say T: [0,1] -» [0,1] is a Lasota-Yorke type map (L-Y type map) if T is

piecewise monotone and C2, and T is nonsingular. Piecewise monotone and C2

means that there is a partition of [0,1], 0 = a0 < ax < ■ ■ ■ < ak= 1, so that for each

/' = 0,1_,k — 1, T\(a       , is monotone and extends to a C2 map on [a¡, ai+x].

If T = Ti (prob. Pi), i = 1,. • - ,n, is a random map and each Ti is nonsingular, we

define the F-P operator of T to be PT(f)'-= 1"=\P¡PT(f). Then PT has the

following properties:

(i) PT is linear,

(ii)PYII<L
(iii) PT is nonnegative ( / > 0 => PT( f) » 0),

(iv) PT(f) — f «=> í/ju. = /¿/x is a T-invariant measure,

(v)/J#(/) = 7Jr,(/).

When each 7] is a L-Y map we obtain an explicit formula for PT as follows. Let

/,,... ,Ik be a partition of [0,1] into intervals of joint monotonicity of the 7]'s. That

is, each 7] is monotone on Ij and extends to a C2 function on Ij. Set

Hj=Tt{lj)t    V={n,y     and    a/

One then computes that

PT(f)(x) = 2pMx)o/(x)xhí(x),

where X/ is the characteristic function of the set I.
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By (iv), we can prove the existence of an absolutely continuous ^-invariant

measure by showing that PT has an eigenvector for the eigenvalue 1. This will be

accomplished by the use of the mean ergodic theorem [DS], To show that PT satisfies

the hypotheses of the theorem we estimate V {, PT( f ) in terms of V x0 f, for / a

function of bounded variation. The following lemmas are useful for this. The first

two appear in [K].

3. The main theorem. In what follows BV denotes BV([0,1]), m is Lebesgue

measure, tx denotes £'([0,1], m) and 'fEBV means 3 g E BV so that f=g

a.e.(m).

Lemma l.LetfE BV([0,1]) and<p E tx([0,1], m). Set $(x) = f0x <p(t) dt. Then

\ff(t)<t>(t)dt<    V/(0 + sup|/(jc)|  ||$|U.

Lemma 2. Let f £ BV([0,1]). Then V {,/ = sup,,, | f0x f(t)<p(t)dt\, where the sup is

taken over those # £ £'([0,1], m) with the properties that (i) /0' <j> dt = 0 and (ii)

supx\j¿ <¡>(t)dt\< 1.

Lemma 3 (Change of variables). Let I — [a,b] and fEBV(I). Suppose T:

I ^J isaCx function with T'(x) ¥= 0. Set x\> = T~ '(x) and a = \ dyp(x)/dx \. Then

V Mx)o(x) < ( V/+ Sup(/))( Va + Supa
v  / / ' v j j

Proof. Let ^> be as in Lemma 2,

f(f° yp) ■ a -<f>dx= ff- z^dt,    where zJ\P(x)) = <¡>(x).

Hence, by Lemma 1,

J(fo yp)-a-<pdx  =  jf-Z+dt  < ( V/+ SUp|/(x)|)(sup|jf^(/)í/í ).

But

fz^dt = f$(Tx)dx = ¡\(Tx)a(Tx)\T'x\dx
■'a ■'a •'a

= ( <p(t)a(t)dt<¡ y a + sup a)\mx.
JT([a.x}) X   j J       '

Taking sup over <£'s as in Lemma 2 completes the proof.    D

Lemma 4. Let T, yp and a be as in Lemma 3, but assume that T is C2. Then there

exist constants ß > 0 and K > 0 so that, for each f E BV(I),

V(foxp)a<ßVf+K\\f\\x.
j i
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Proof. First note that

V/+sup|/|<2V(/)+||/||1.
/ / /

Let /,,... ,Jm be a partition of J, and set /, = yp(J¡). Put a, = sup, a and a = sup, a.

Then applying Lemma 3 to each J¡ yields

(1) 2  V/(^))a(x)<2    2V/ + /|/|dx     «,.+ Va

<2aV/+22 V(/)Va + «2 (f\dx\
i i, J, '.

+ 2 Vafl/ldx.

Since V j o = jj\o'\dx*i (sup | a' |/inf a)/y o dx := Kx length( /.),

(2) 2 Va/|/|dx + «2/1/1^ < («y + «)ll/lli := «ll/lli-

Since V j o ^ sup, | a' | length(7,), we have

(3) 22 V/Va<2sup|a'|Í2 V/) • max {length /.},
i,    j, j        \      i,    *

and this term may be made arbitrarily small by refining the partition Jx,...,Jm.

Combining 1, 2 and 3 gives V jf(yp(x))o(x) < 2a V ,f+ K\\f\\x. Note that the ß

of the lemma may be taken as 2 - supyo.    D

Lemma 4 may be used to provide another proof of Theorem 1 of [LY]. We now

prove

Theorem 1. Let T(x) = Tt(x) (prob. p¡), i — l,...,m, be a random map of[0,1],

where each T¡ is a L-Y type map. If, for all x E [0,1],
m

2 7^-T <Y<1.
,=. |77(*)|

then for all f E Lx([Q,l], m):

(1) The limit

1 ""'
lim  - 2 Pí(f)=f*    exists in £'.

(2)P(f*)=f*.
(3) V q/* < C||/||, for some constant C > 0 which is independent off.

Remarks, (i) T¡(x) may have two values at some points in [0,1], which we denote

by T¡(x + ) and T{(x — ). The hypotheses of the theorem require only that

m _ m

2-<Y<1    and     2-<Y<1.
,=i \t;(x+)\ ,r, |77(*-)|
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(ii) Keller [K] has proved a similar theorem under the stronger hypotheses that, for

all/and x, l/\T,'(x)\< 1.

Proof. Our goal is to show that there are constants 0 < a < 1 and K > 0 so that

vô'"v(/)<avô/+tf|l/lli. for some N £ N. This will suffice, as in [LY], to

show that P* = lim„7;2"=d PJ exists and is a (nonzero) projection onto the eigen-

space Ex of eigenvectors of PT with eigenvalue 1.

Select N so that yN < 1/3, and consider the map TN. This is a random map

defined by L-Y type functions: TN(x) = TJn o Tj ° • • • o Ty(x) with probability

n£L|/j. The maps defining TN may be indexed by {1,2,...,«}^. Set

TjN° ••• o Tj(x) := Tw(x) where w = (/,,... ,jN) and Pw = U?=x fl. We then have

that

fl _ V V r7,^
2 T-fTT7= 2

:(1. tw(x)\    v7:e{,.„,«- ,-=, \t;(t-(x))\\t:,(x)\

= y —Ee_y _Ei_<Yy   fl~   ^ ... <vjv<1

f |iS(*)l A |27(r**)|     ílijxl 3'
Thus, to simplify notation we may assume that y < 1/3 and show that f E BV =■

V PTf<a V /+ K\\f\\l fora £ (0,1) and K > 0.
Recall that /,_,1/ (where /,• = (a¡_x, a¡)) is the partition of [0,1] into maximal

intervals of joint monotonicity and C2-ness of the maps {T¡)^LX. We define

HJ = T,(lj),       i= l,...,m,j= l,...,l,

(T,\,y     and   a/ =

Let | be the partition of [0,1] by all the endpoints of the intervals ///, and % be the

partition of [0, 1] defined by all inverse images of endpoints of J under all ^possible

7/s. Each interval of % is mapped by each Tt into exactly one interval of j-. Finally,

let £ = {Lk} be a refinement of DC into intervals the maximum length of which will

be specified below.

To estimate V x0PT(f) we compute as follows: suppose/ £ BV([0,1]),

1     m I

(4) v 2 Pi 2 /(*/K(*)xw,
o  ,= i    ,=i

m       I

< 2   2A(|/(«y-i)k/(7;(«,-1))|+|/(a,)|a/(7:.Û7.))
,= i/=i

m      I

+ 2 2 flv/(*/*)«,/(*).
i-iy=i     h;

The first sum on the right-hand side of (4) is

(5) 2 ( 2 fl*/(^-.)))lM-.)|+ ( ÏpMta'j)))\f(«j)\

<y2|/K)|+IM-,)|<y(v/+2||/ii1)
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because

|/K-,)| + |/(û,-)|< V/+ 2 inf l/l < V/+ 2/|/|dx.
i, '< h

The second sum in (4) we estimate as follows:

m       I ml

2 2 a v/(*/*)„/(*) < 2 2 a    2      v /(+/*)«/(*)•
i=l/=1       //^ ;=1/=1 A with        7-,(/.t)

T¿LK)<ZH/

By Lemmas 3 and 4,

(6) V   f(yp/x)o/(x) < ( V/+ sup(/))(   V   a/ +   sup (a/)
7K¿*i v /■* v t;(¿*)       ï/(la)

«(
V 7",(

sup o,AVf+Klk(  \f\dx

oÍlMx)
— Vf+Klk[ \f\dx,

LK J'k

where Klk = sup | a/' |/inf a/ + sup a/. Combining (5) and (6) gives

m      n m ~\

(7) 2 2 flV/U,'x)a/(*)<2 2 —^— V/+A1I/II,
'=1 J=\       H> k   i=\   mtZ.KM,^l   LK

<2yxV f+K\\f\\x,
0

where y1 = max* 2r=i(fl/inf/.J 77(x)D and K=^llkK¡k. Combining (4), (5) and

(7) gives

(8) Vfl,(/) < (y + 2Y<) V (/) + (2y + K)\\f\\y < 3y' V/ + (2y + K)||/||,.
0 0 0

We now show that the partition £ can be chosen so that 3y' < 1. Select ô so small

that

y-'--<—    whenever |e,| < 8, i— 1,... ,m.

\t;(x)\ + e,   3

Then, since T¡ \L is C2, select e so that | T¡(x) — T¡(y) |< ô whenever x and y are in

the same interval of £ and \x — y\< e. Finally, select t= {LK} so that

max^lengthiL^)} < e. Then

Y' = max  2 -^<4-
k    ,= , inf J 77*|      3

We have shown that, when/ EBV[0,l], V \PT(f) « a V \f+ K\\f\\x for some

0 < a < 1 and K > 0 independent of /. The assertions of the theorem now follow

immediately, as in [LY or T].    □



820 S  PELIKAN

4. An example. In this section we describe a family of random maps which

demonstrates that the hypotheses of Theorem 1 are not necessary for the existence of

an absolutely continuous invariant measure. The random maps discussed here have

the form

T(x)
f(x)

g(x)

prob./?,

prob, q,

where / is an expanding map (\f'(x)\> k > 1) and g contracts no faster than /

expands (1 >\g'(x)\^ l/k). We will impose extra hypotheses and show that when

the probability of applying the expanding map is larger than 1/2, there is an

absolutely continuous invariant measure. We assume

(1) g is C2, g(0) = 0, g"(x) > 0 and 4 < g' < 1 and

(2) / is a L-Y type map with partition /„,/,,... ,/„; that f'(x)>2 whereever

defined,/(0) = 0 andf'(x) > 0 for x E 70, while/(x) < x for x E /„.. .,/„.

The specific case where f(x) — 2x(mod 1) and g(x) — ßx (\ < ß < 1) is an

example of a pair of maps which possess properties (1) and (2).

Theorem 2. Let T be as above, where f and g satisfy properties (1) and (2). If p > {-

then T has an absolutely continuous invariant measure.

Proof.   Select  r £ (0,1)  so  that  2x~r £ (1, p/q).   This  can  be  done  since

lim,_, 2'   r = 1 while p/q > 1. Changing variables by y = y(x)

random map

F(y)     prob./?,

gives a new

T(y) =
G(y)    prob, q,

where F(y) =y(f(x(y))) and G(y) =y(g(x(y))). Note that Fand G are still L-Y

type maps. By the chain rule.

G'(y)
dy(g(x(y)))/dx     dg

dy(x(y))/dx        dx
(x(y))

g(x)
g'(x)

g(*y

(i)'

since, by convexity, g'(x) > g(x)/x and g(x) > x/2. On the interval y(I0) we

compute, as with G(y), that F'(y) > 2x~r, while ony(Ix),... ,y(I„) we have

dy{f(x(y)))/dxdF

dy
ÉL
dxdy(x(y))/dx

x on 7,,... ,In. Hence

>2>2'

\F'\
< 1

sincey' is decreasing andf(x)

1

\G'\

because qx + p/x < 1 for x E (1, p/q). Thus f satisfies the hypotheses of Theorem

1, and so f has an invariant density <p of bounded variation. From <p we obtain an

invariant density for the random map T by setting yp(x) — <p(y(x)) dy/dx. Note that

yp(x) is not of bounded variation if $(0) > 0, since dy/dx = (1 — r)x~r.
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""" Hi-i-1-1-1-

*"    1/4 1/2 1

Figure 2. The invariant density of the random map

T(x) = \X/2,   .,      q' with 1/2 <p < 2/3.
v   ;      [2.xmodi,    p, ' '

In the specific case where f(x) = 2x(mod 1) and g(x) — x/2 it is possible to

construct the density of an absolutely continuous T invariant measure explicitly

(Figure 2). In this case we can prove the

Claim. When p > 1/2 the random map T has a unique absolutely continuous

invariant measure v . The support of v is all of [0,1]. The density of the measure,

\dvp/dm\, is unbounded when p < 2/3. With respect to vp the random map T is

ergodic in the sense that the associated PSP is ergodic.

Proof. We begin by finding the F-P operator for the random map

f Tx(x) = 2x mod 1,    prob./?,
r(x) = <

{72(x) = x/2, prob. q.

Since T2 is invertible,

PTi(f) = d{T2x(X))/dx-f(T2x(x)) • x^o.n = 2/(2x) • Xro,,/2]-

The map Tx is monotone on 2 intervals on which it has the inverses x -» x/2 and

x -> (x + l)/2. Hence

The F-P operator of T is then

(9) PAf)=pP4f) + qPTlU)

= f(4f)+/(£Ti))+2^2-)-x[o,,/21.

Assuming that PT( f) = f, (9) can be rewritten as

0°) f(j)=jf(x)-^Xlo,v2Áx)f(2x)-f(^).
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Then, assuming/ is a positive constant on (1/2,1), (10) can be used to define /

successively on the intervals (l/2"+l, 1/2"), n = 1,2,3.It is immediate that,

defined in this way, / is constant on each of these intervals. We now show that / > 0

and that/ E £'([0,1], w).

Define r„ = f\//2«+\ f(x) dx, and an = f\)/r"'.\/2"y Integrating (10) and changing

variables we have

1 a 1
rn = yn-y--rn-2-^T^       »>2,

2 4a
—a„_, - an,       n >2and2"+1r„ = a„.

P   "   '       P

Then

so that

A\!"   )--U*).    where^'/fl
i/      2"+l\0/' \    1, 0

'o\       ¿   ..-,    1
(11) "r       =¿"+I   n     *   2^"

^■-^iH(î)
The eigenvalues (eigenvectors) of /I are A, = 1, e, = (1,1) and A2 = g//?, e-,

(1, p/q). With respect to the basis ex,e2 the matrix in (11) may be rewritten as

" 1
y a"-' ■

y = 0 L

1/1+1

2 °

, q\"+x      (l"+1/2) - (q/p)n+]

\ \P> (p-2q)/p i

Hence, r„+x/r„ = (ab - qc„)/(ab - pcn) where

a=p/(p-q),    b= \/(p~ q)(p-2q)

and

c„ = 2"+x(2(q/p)"(l -/?"-')-/?)-

When 2<///? > 1, so that p < 2/3, we have that c„ -> oo as « — oo and limn(r„+ ,//•„)

= <///?. But <///? < 1 for /? > 1/2, and so /0' /Jx = 2£L0 r¡ < oo converges by the

ratio test. For 1/2 < p < 2/3 we also have that

an+x  _ 2"+xr„+x       2q

2"r,
-2- > 1.

so that {an} is increasing and unbounded. Thus, when normahzed,/is the density of

an invariant probability measure vp. The assertion concerning the uniqueness of vp

and the ergodicity of T follows from the fact that vp is equivalent to Lebesgue

measure and Corollary 7 of the next section.    D
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5. Ergodic components. In this section we continue to assume that T(x) = Tt(x)

(prob. /?,), i = 1.n, is a random map of [0,1] specified by L-Y type maps, and

that T satisfies the hypotheses of Theorem 1. R denotes the PSP associated with T

(see §2) and ¡if denotes the measure with d\i,/dm = f.

The proof of Theorem 1 shows that some power of PT is quasicompact as an

operator on BV. This implies (see [K]) that the eigenspace Ex corresponding to the

eigenvalue 1 is a finite-dimensional vector sublattice of BV C £'. In particular, Ex

has a basis of nonnegative functions vx(x),...,vk(x) with min(t?,-, u-) = 0 when

/ #_/. Set At — support(u,) = {x: t?,(x) > 0}. Since v¡ E BV, each A¡ differs from a

union of intervals by a set of zero Lebesgue measure.

In this section it will be shown that the PSP R is ergodic with respect to each

measure u^ X ut,. The projection

1 ""'
P*(X[o.i]) = lim- 2 fl(x(o,n):= 1*

"      n   /=0

is nonzero onto each basis vector v¡(x). Hence, the number of ergodic components

of R wrt u X u,„ is the maximum possible for any product measure the second

factor of which is absolutely continuous wrt Lebesgue measure. The sets A¡ are

invariant under T in the sense of the following

Lemma 5. m(A, A U"J=X T/A,)) = 0.

Proof. Set S = A\ U"=XTI(AI). If m(S) > 0, then uc(S) > 0 since S C A,. But

T~X(S) = U"=XT~X(S) EAci so pv(T~xS) = 0, which contradicts the fact u„. is

^invariant. Similarly, suppose S = Ü"J=xTJ(Ai)\A¡ has m(S) > 0. Then uD.(S) = 0

because S E A\ while ¡xv(T~xS) > 0 because each T¡ is nonsingular with respect to

m and hence m(T' XS D A¡) > 0. Again, this contradicts the assumption that u„ is T

invariant.    D

The significance of the sets Ai is seen by the following characterization of the

invariant sets of the PSP R.

Proposition 6. Suppose that ju. = p X v is R-invariant and that A C ß X / is an

invariant set of positive ft measure (R(A) E A and p(A) > 0). Then there is a set

B C [0,1] so that fi(A A (ß X B)) = 0, and B is T-invariant in the sense that

v(BAUnJ=xTJ(B)) = 0.

Proof. First note that if a measurable set U C ß has pp(U) > 0, then

limn¡xp(a"(U)) = 1. Suppose that A is not of the form ÜX B. Then 3 S C [0,1]

with v(S) > 0 so that for v almost every x £ S we have 0 < pp(Ax) < 1 — e, where

Ax — {« E ß: (<o, x) E A) is the x-section and e is some positive number. Define a

sequence of measurable functions by f„(x) = pp(a"(Ax)). Then fn -» 1 pointwise

almost everywhere on S, and there is a set S' E S with v(S') > 0 so that/„(x) -» 1

uniformly on S'. Select N so that n s* 7Y and x £ 5' implies f„(x) > 1 — e/2.

Poincaré recurrence guarantees that almost every point of A n (ß X S') returns to it
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under the iterates RN+j,j = 0,1,2,..., and consequently »»-almost every x E S' has

pp(Ax) > 1 — e/2, contradicting the definition of the set S. We have shown that

A = ß X B (except for a set of zero jti X v measure). By the invariance of the set A,

it is immediate that U'j=xTi(B) C B. Since R(A) C A, we have n(R~x(A)\A) = 0.

This implies that n(A\TA) = 0, and hence p(5\ U"=17}5) = 0.    D

The assumption that vx(x),. ..,vk(x) is a basis for Ex implies that no A¡ has a

proper subset (SC/Í, 0 < nv(S) < p,v(A)) which is invariant in the sense of

Lemma 5. This fact, together with the previous proposition establishes a 1-1

correspondence between the sets A¡ and the ergodic components of R wrt u   X u,„.

We now have enough information to describe "almost every" trajectory of the

random map T. Set A~x = {(w, x): Rk(w, x) E ß X A} for some k > 0} =

U"=0Ä~A"(ß X Aj). If (w, x) E A~°°, the distribution of the sequence {x,,} (where

x„ ~ Pw„ ° " ' ° TWo(x)) ¡s given by ¡j.v . Since, U*L, ^r°° = ß X I, up to sets of

measure zero wrt pp X m, this is a "complete" description of the ways in which

trajectories of the random map T can be distributed. We now assume that one of the

maps specifying T, say Tx, is an expanding map (| T[(x) |> 1 wherever defined). For

such a map Li and Yorke [LiY] have shown that (with respect to any absolutely

continuous Tx -invariant measure) there are a finite number of ergodic components.

They also show that each component must contain at least one point of discontinuity

of the function dTx(x)/dx. This result gives an easy method for determining an

upper bound for the number of ergodic components of an expanding L-Y type map.

Because of the fact that the ergodic components of the PSP R associated with a

random map T are products, we may apply the Li-Yorke result as follows.

Corollary 7. Suppose Tx is an expanding map. Let Cx,...,Ck be the ergodic

components of Tx wrt the measure u(du = P%[X[o.\]) dx). Define C¡ ~ C if

m(Tit °T¡i¡° ••• ° TffAZ,) D Cj) > 0, for some (i,,...,/',). Then ~ is an equivalence

relation, and the number of ergodic components of R wrt u X ¡xx, is the number of ~

equivalence classes. In particular, the number of ergodic components of R is bounded by

the number of discontinuities of dTx/dx.

Proof. Under the iterates of Tx almost every (m) point is mapped into C = U C¡.

This implies, because A¡ is invariant in the sense of Lemma 5, that each set ß X A¡

contains at least one set of the form ß X Cj. Thus each C. C support(l*) and

u, (Cj) > 0. To show that ~ is an equivalence relation: C, ~ C, since fl(C,) C C,. It

follows from the definition that ~ is transitive. The fact that ~ is symmetric follows

from the Poincaré recurrence theorem, since fi^C,) > 0. By Proposition 6, C, ~ Cj

iff ß X C, and ß X C are in the same ergodic component of R.    D
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