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ABSTRACT. In this paper we study identities between certain functions of many 
variables that are constructed by using the elementary functions of addition x + y, 
multiplication x . y. and two-place exponentiation x '. For a restricted class of such 
functions, we show that every true identity follows from the natural set of eleven 
axioms. Thc rates of growth of such functions, in the case of a single independent 
variable x. as x ~ 00. are also studied. and we give an algorithm for the Hardy 
relation of eventual domination. again for a restricted class of functions. Value 
distribution of analytic functions of one and of several complex variables, especially 
the Nevanlinna characteristic, plays a major role in our proofs. 

Introduction. To make precise the questions we consider, it is necessary to 
introduce a formal language containing the expressions which define the elementary 
functions to be studied. This language has variables XI' X 2' ... , a set S of constants 
(representing a given set of fixed numbers) and function symbols for addition, 
multiplication and exponentiation. The terms (that is, the function-defining expres-
sions) are obtained inductively starting with the variables and constants and 
continuing according to the rule: if t and s are terms, then so are (t + s), (t . s) and 
({'). (We follow some standard conventions for dropping parentheses and· below.) 
Let us refer to these as the exponential terms over S. 

In most cases considered here the constants in S represent positive real numbers. 
In such a case, every term t represents a function which is defined for all positive 
real values of the variables which occur in it. We write t == s to mean that t and s are 
terms which define exactly the same function (for positive real values of the variables 
appearing in t or s). It is necessary to distinguish between this function equality 
relation t == s and a formal expression of equality between t and s, which we write in 
the form t = s. The relation t == s is a mathematical relation between certain 
elementary functions; the expression t = s is a purely formal expression which is 
susceptible to formal proof within various axiomatic systems. 

A closely related topic concerns the orders of growth of functions of one variable 
defined by exponential terms. If t and s are such terms which contain only the single 
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variable x, we write t ~ s to mean that there exists a number a > 0 in R such that if 
x ? a, then the function value defined by t at x is,;:;; the corresponding function 
value defined by s. (That is, t ~ s means that s defines a function which eventually 
dominates the function defined by 1,) 

Investigation of these relations == and ~ has a long history. For example, G. H. 
Hardy [HAR) showed that the eventual dominance relation ~ is a linear ordering on 
a large class of elementary functions including all the ones defined by exponential 
terms over R. (Hardy's class is closed under log as well as under addition, 
multiplication and exponentiation. Such a linear ordering result for a much larger 
class of functions has recently been obtained by M. Boshernitzan [BOS).) Remarka-
bly, ~ is a well-ordering on the functions defined by one-variable, exponential terms 
over the set N of positive integers, as shown by A. Ehrenfeucht [EHR). It is an open 
problem to determine the ordinal of this well-ordering. Also it is not known if there 
exists an algorithm for deciding whether t ~ s holds, where t and s are one-variable 
exponential terms over N. In this paper we give an algorithm for the relation t ~ s, 
where t and s come from a restricted class of exponential terms. Earlier, H. Levitz 
gave a noneffective analysis of ~ on this class of terms and showed that in this case 
the order type is EO [LEV). 

For exponential terms t, s (in many variables) over N, A. Macintyre [MAC) has 
given an algorithm which decides whether or not t == s holds. Earlier D. Richardson 
[RIC II) had given such an algorithm for one-variable terms. A central problem for 
exponential terms over N has been A. Tarski's High School Algebra Conjecture. (See 
[MAR or TAW).) This asserts that if t, s are exponential terms over Nand t == s, 
then the formal identity t = s can be derived from certain elementary identities plus 
numerical axioms which give the facts of addition, multiplication and exponentiation 
for positive integers (e.g. 23 = 8). The identities proposed as basic axioms by Tarski 
express the fundamental laws of addition, multiplication and exponentiation which 
are taught in basic mathematics education: 

x+(y+z}=(x+y}+z, 
x + Y = Y + x, 
x ( y z) = (xy) z , 

xy = yx, 
x( y + z) = xy + xz, 

I . x = x, 

r~ - ( r)~ X· - X· , 

(xyr = x~· y~, 

Xl = x, 
I' = 1. 

Tarski's conjecture for the full class of exponential terms has been shown to be 
false by A. Wilkie [WIL II). In this paper Wilkie also proves a positive result toward 
a version of Tarski's conjecture. He expands the formal language of the original 
problem by adding a function symbol/for each polynomial p( x I" •• , x n ) which is 
positive for all positive values of XI"" ,xn • To the Tarski identities in the larger 
language he adds all true polynomial equations (using the new function symbols). 
Wilkie's main result asserts that if t and s are exponential terms in the original 
language and if t == s, then there is a proof of the equation t = s from the enlarged 
system of axioms in the larger language. In this paper we show that when the class of 
exponential terms is suitably restricted. Tarski's conjecture is true without passage to 
the larger language. 
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In a final section (§5) we treat a slightly different class of exponential 
functions-those with exponentials restricted to constant bases and allowing com-
plex numbers to appear as constants. Let exp( . ) be a function symbol corresponding 
to exponentiation with the constant base e. Then ~ is the class of formal terms 
defined starting with variables and constants and then containing (t + s), (t . s) and 
exp(t) for any terms t and s. Each term t in ~ defines a holomorphic function on C/, 
where n is the number of variables in t. We prove a form of Tarski's Conjecture for 
~: if t, s E ~ and t == s, then the formal equality t = s is derivable from a list of 
elementary identities together with numerical axioms giving the facts of addition, 
multiplication and exponentiation in C (Theorem 5.2). This result was proved 
independently by van den Dries [VDD] and, for one-variable terms, by Wilkie [WIL 
I]. From this follows a similar completeness theorem for identities involving +, " 
sin and cos. Finally we settle positively a conjecture of S. Schanuel concerning the 
class ~, which asserts essentially that it is "closed under logarithms". Specifically, we 
show that if t E ~ and the function on cn defined by t is nowhere equal to 0, then 
there exists a term s in ~ so that t == exp( s). In particular, for example, this shows 
that there is no term in ~ which defines the function on C equal to exp( sine z) / z). 

The methods used by Wilkie to study Tarski's conjecture are those of differential 
algebra, while van den Dries uses a direct algebraic approach. Therefore their results 
apply somewhat more broadly than ours to a class of "exponential rings". Moreover, 
it seems likely that most of the results we give here concerning the provability of 
identities could be proved using an algebraic or differential algebraic approach. 
Several people have suggested this possibility to us; to our knowledge no detailed 
argument has yet been provided. An exception to this possibility seems to be our 
positive solution of Schanuel's conjecture, for which no direct algebraic approach 
has been suggested. 

To our knowledge, this is the first time value distribution theory (N evanlinna 
theory) has been applied to questions in mathematical logic. A brief example will 
show why this theory might be useful in studying identities of exponential functions. 
Suppose, for example, j, g and h are entire functions satisfying the identity e f + e g 

= e h . Letting F = j - hand G = g - h we see e F + eG = 1. Therefore e F omits 
both of the values ° and 1. By the Little Picard Theorem it follows that F, and hence 
also G, are constants. 

The Nevanlinna characteristic provides the tool for applying similar arguments in 
a much wider setting. 

The results proved here concern a restricted class reS) of exponential terms. This 
class contains the variables XI' X 2 , . •. and constants from S; also it contains (t + s) 
and (t . s) whenever t, s are terms in r( S); the closure under exponentiation is 
restricted, however; we require that e( S) contain (t') whenever s is in e (S) and t is 
a constant> I from S or a variable xJ or a power of a variable xj for some constant 
a from S. In general we require that the set S of constants should represent numbers 
that are;;' I. Thus, for example, e(N) does contain 
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but it does not contain the exponential term (x, + X2Y' because the base of the 
exponential in it contains +. 

Our main results for reS) are given in §§3 and 4. We show that Tarski's High 
School Algebra Conjecture is true for terms in reS) (Corollary 3.S). This is derived 
from a Normal Form Theorem for reS) (Theorem 3.4). Also we give an algorithm 
which decides the eventual dominance relation t ~ s for one-variable terms in r(N) 
(Theorem 4.1). 

The one-variable terms in r(N) were studied by H. Levitz [LEV], who showed that 
the ordinal of the ordering ~ on them is exactly EO. 

The technical details of our approach to these results are given in §§ 1 and 2. In § 1 
we give a close analysis of the orders of growth of functions defined by one-variable 
terms in e (S). (See especially Theorem 1.7.) We also treat the orders of growth of 
many-variable terms in e (S) when one of the variables tends to 00 and the others 
are held fixed. The main technical fact used later is a lemma on exponential growth 
(Corollary l.lS). 

Our main innovation in treating these problems lies in the use of the Nevanlinna 
characteristic. This is described in §2. Each term in e (S) gives a holomorphic 
function when its variables are taken to range over the complex domain Q, which is 
the complex plane slit along the negative real axis Q = C\( -00,0]. The domain Qn is 
biholomorphically equivalent to the polydisc D n , D = {z E Ci 1 z 1< I}. We use this 
shifting of viewpoint together with the Nevanlinna characteristic for meromorphic 
functions on the polydisc to handle the connection between many-variable and 
one-variable terms in reS). 

At the beginning of §2 we give an essentially axiomatic description of the 
Nevanlinna characteristic (see properties (C2.0)-(C2.6». In addition we must make 
an explicit estimate for the Nevanlinna characteristic of certain functions defined by 
terms in reS) (Lemmas 2.2 and 2.3). The object of our use of Nevanlinna theory lies 
in a linear independence lemma (Lemma 2.1) which is a version of a result proved 
for functions of one variable by Hiromi and Ozawa [010]. This result, together with 
Lemma 2.2, gives all the consequences of N evanlinna theory which are used in the 
main results of the paper in §3. 

In §3 we not only prove Tarski's High School Algebra Conjecture for reS), which 
is closed only under a restricted form of exponentiation, but also for two other 
classes of terms. One of these, &(S), is the class of all exponential terms over S in 
which only exponentiation occurs (and no addition or multiplication). When S = 0 
this was proved earlier in the thesis of C. Martin [MAR] by a proof-theoretic 
argument. Here it turns out that all true identities are provable from the identity 
(x"y = (xzV. We also treat the class &~(S) of all exponential terms in which 
only exponentiation and multiplication occur. Both &(S) and &~(S) are in fact 
closely related to reS). 

The methods of this paper should be useful in treating other classes of elementary 
functions and their identities. For example, consider the class of terms 0t(S) :2 reS), 
where 0t(S) is defined to be closed under formation of terms (t + s) and (t . s) and 
also (pI) where t, s are any terms in 0t(S) andp is any polynomial with coefficients 
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in S. The counterexample found by Wilkie to the Tarski Conjecture for the full class 
of exponential terms over N is "just outside" 0L(N). It seems possible that the 
methods of this paper can be used to prove Tarski's Conjecture for the classes 0L(S). 

More generally one hopes to discover, where possible, simple systems of identities 
for many classes of elementary functions from which it is possible to formally derive 
all true identities. (Some limiting undecidability results have been proved by D. 
Richardson [RIC I].) 

We gratefully acknowledge helpful conversations, correspondence and preprints 
from many people, including M. Boshemitzan, A. Macintyre, W. Stoll, L. van den 
Dries and A. Wilkie. 

1. Orders of growth of certain exponential terms. Here we define precisely the 
restricted class of exponential terms which will be studied in this paper and we give 
an explicit analysis of the eventual dominance ordering ~ on the I-variable terms in 
this class. The terms we consider are very closely related to the ones studied by H. 
Levitz [LEV]. Our main generalization is to allow an arbitrary set S of positive, real 
constants. The case treated by Levitz corresponds to letting S = N = {I, 2, 3, ... }. 
We are also interested in the special cases where S = R+ = {r E R I r > O} and 
S=R:;;"= {rERlr;;;'I}. 

Fix a set S of positive real numbers which contains 1 and satisfies the closure 
condition: 

a, bE S = a + b, a . b, a b E S. 
DEFINITION 1.1. The Levitz class of exponential terms (with constants from S), 

which we denote by e(S), is the smallest class e of formal terms which satisfies: 
(I) e contains a constant for each element of S and contains the variables 

X" x 2 , x 3, •••• 

(2) If t, sEe, then t + sEe. 
(3) If t, sEe, then t . sEe. 
(4) If tEe and BE S satisfies B > 1, then Bt E e. 
(5) If tEe then for each variable x n ' x~ E e; moreover, for each a E S the term 

(x~r is also in e. 
Note. (1) While (x~r is formally different from x~·t, they do represent the same 

function over R. Our reason for including both terms in e(S) is. to allow the Normal 
Form Theorem proved below to be expressed in a simpler way. 

(2) If we restrict to a single variable x,, the terms in e(N) are essentially the same 
as the ones studied by Levitz [LEV]; this is our reason for calling e(S) the Levitz 
class in general. 

(3) The constants which can appear in terms in e(S) are all positive; no 
subtraction or division operations are permitted in e(S) either. 

DEFINITION 1.2. e,(S) is the class of terms in e(S) which only involve the single 
variable x,. 

(For convenience we will write x instead of x, when considering terms in e,(S).) 
In this section we give an explicit analysis of the orders of growth of the terms in 

e,(S) and prove a Normal Form Theorem. This is similar to the analysis done by 
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Levitz [LEV], but we give a constructive (and very simple) procedure for obtaining 
the normal form of a given term. In §4 we will show that this provides a decision 
procedure for the eventual dominance relation ~ on e I(N) and some other classes of 
this kind. 

Each term in t:1(S) has an interpretation as a function on R' = {r E Rtr > O}. 
We define t == s (for t, s E t:1(S» to mean that t and s represent the same function 
on R + . We write t ~ s to mean that there is an a > 0 so that on the interval 
a .:;; x < 00 the function represented by t is .:;; the function represented by s. We 
define t -< s to mean (t ~ sand t ~ s). 

Since the terms in e I(S) define real-analytic functions on R+ , we see that (t ~ s 
and s ~ t) implies t == s. G. H. Hardy [HAR] showed that ~ actually defines a 
linear ordering: for any t, s E t:1(S) exactly one of the conditions t -< S or t == s or 
s -< t must hold. Hardy showed this for a much larger class of terms, including the 
class of exponential terms. (See the Introduction.) Ehrenfeucht [EUR] observed that 
on this class the relation ~ is actually a well-ordering. In particular, this is true on 
C I(N). This is a remarkable fact, but it will play no role in this paper. 

The class X of terms treated by Hardy is closed under division, subtraction and 
logarithms, as well as multiplication, addition and exponentiation. He showed that if 
f E X then f(x) is eventually monotone as x approaches infinity, so that f(x) 
approaches a (possibly infinite) limit there. 

It follows from this that if t, sEe I(S) then such expressions as tis, 10g(t)/log(s), 
etc. all approach limits as x --> 00. 

DEFINITION 1.3. We define for t E t: I( S), the concept t is an atom by induction on 
the number of symbols in the formal term t: t is an atom if it is of the form 
U('U~2 ... u~;, (n ;;;. 1) where: 

(i) each uj is either a constant B > 1 in S or of the form x a for some a E S; 
(ii) each tj is either 1 or an atom; 

(iii) if uj is a constant, then tj must be an atom; 
(iv) if u f ' uj are constants and i =1= j, then t i , tj are distinct terms; 
(v) if u i ' uj are both of the form x a (but not necessarily with the same a) and 

i =1= j, then t i , tj are distinct terms; 
(vi) u~' ~ ... ~ U~2 .:;; U('. 
DEFINITION 104. An atom t = ul' ... u;;, is exponential if no tj is the constant 

symbol 1. 
DEFINITION 1.5. Let t = ul' ... u;;, and s = v~' ... v~;" be atoms. Define Lex( t, s) 

= the sequence (ti' u l , t2 , U2 , ••• ,tn, un) is lexicographically earlier than the se-
quence (s I' V I' S 2' V 2 , • .. , S m' vm ), where the ordering -< is used at each coordinate. 
(That is, either the first sequence is a proper initial segment of the second, or, at the 
first coordinate where the corresponding entries do not define the same function on 
R + , the entry of the first sequence is -< the corresponding entry of the second 
sequence. For example, Lex(t, s) holds if tl == Sl and u l -< VI or if tl == Sl' u l == VI 

and t2 -< S2') 

Note that Lex(t, s) defines a linear ordering on atoms in the sense that for any 
atoms t and s as above, either Lex( t, s) or Lex( s, t) or n = m and for each 
l':;;j':;;n,tj==sjanduj==vj" 
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The particular restrictions which appear in our definition of "atom" may be easier 
to accept after considering identities such as these: 

(AB)I == AI. BI, (xo+hf == (xOf . (Xh)l, (XI)1 == Xl. 

The restrictions given in the definition turn out to be adequate to give a Normal 
Form Theorem. 

According to Definition 1.3 every atom is a nontrivial term containing x I. In 
particular no constant is an atom. To see the relation between general terms and 
atoms, see Proposition 1.9(2). 

LEMMA 1.6. If t is an atom in el(S), then for some a E S, XO "'" t. 

PROOF. By induction on the number of symbols in t. If t has a factor of the form 
(xo)1 then we are clearly done. If not, then t has a factor of the form US where s is an 
atom and u is x b (b E S) or B (B E Sand B > I). In that case there exist B > I so 
I < B "'" u and a E S so XO "'" s by the induction hypothesis. Hence XO "'" B X " "'" US 

"'" t. 
Consider a factor US which may occur in an atom t. If s is I then u' is (XO)I for 

some a E S, and represents a function of polynomial growth. Otherwise XO "'" s for 
some a E S (by Lemma 1.6) and u is either a constant B > I or Xh for some b E S, 
so that US represents a function with exponential growth (Ax" "'" US for some A > I 
and some a > 0). 

Note also that an atom t = u(' ... u~n can contain at most one factor u;J of 
polynomial growth. Moreover, if such a factor occurs, then it must be the factor u~n 
of slowest growth. 

THEOREM 1.7. Let t and s be atoms in e I (S). 
(1) If Lex(t, s) holds, then XC • t "'" s for some c > o. (c need not be in S, but it can 

be taken to be b - a where a < b and a, b E S.) 
(2) If t == s, then t and s are identical as terms. 
(3) If t and s are exponential and Lex(t, s) holds, then B X " • t "'" s for some B > I 

and some a E s. (B need not be in S, but it can be taken to be a rational number.) 

PROOF. We prove (1), (2) and (3) simultaneously by a lengthy induction on the 
total number of symbols in the pair of terms t, s. We write t as u(' . .. u~n and s as 
v~' ... v~m as in the definition of "atom". Also write uJ as xO, or Aj and Vj as Xl,) or B j , 

as appropriate. (aj , bj E S; Aj' B) E Sand> I.) 
The basis step of this induction is where t, s are each of the form BX for some 

B> I in S or the form (xo)1 or (xoy for some a E S. In these cases (1), (2) and (3) 
are trivial. 

Now fix atoms t, s and assume the induction hypothesis that (1), (2) and (3) hold 
for all pairs of atoms t', s' which have fewer symbols than t, s. 

PART (a): We prove first (3) for t, s. Assume Lex(t, s) holds and t, s are 
exponential atoms. 

Case I. Suppose (t I' u l , ... , tn' un) is a proper initial segment of (Sl' VI'· •. ,sm' vm). 
That is, n < m and for each} ..; n we have tj == Sj and uJ == Vj. Then s has at least one 
extra factor and it is a factor of exponential growth. Hence the conclusion of (3) is 
true. 
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Case 2. Suppose II -< SI. We may apply (I) to II' SI and to sp II. This plus the 
linearity of our lexicographic ordering shows that Lex( IpS I) must hold. Hence there 
exists c > ° as in (1) so that XC • II ",. SI. Choose B > 1 so that B -< ul and use the 
lemma to choose a E S so that xU",. II. Then for some a> 0, U;'+I ",. x a ",. v{ since 
U I and VI are constant or constant powers of x. Hence 

B X" BX" I I (I )"+ I . 1== . u l ' ... u';''''' u l ' 

and we see that (3) is true. 
Case 3. Suppose II == SI and ul -< VI. Since I and S are exponential, the terms II 

and SI must be atoms. By (2) of the induction hypothesis, they must be identical. 
First consider the case where n = 1 and I consists of a single factor ul'. Choose a 

constant B> 1 so that B . U I -< VI' using the fact that U I and VI are constants or 
powers of x. Use the lemma to choose a E S with XU",. II. Then 

Thus we may assume n > l. Apply the induction hypothesis (3) to the pair of 
terms ul ' and V~', obtaining A > ° and a E S such that AX" . ul' ",. V~'. Take 
1 < B < A. We claim that BX" . I ",. V~' (and therefore"" S as needed.) Consider 

log( W" . I) _ log( B X " • ul ' ... u~,) 
log( V~' ) log( V~' ) 

= log( W" . ul ' ) + ± l)og(uJ ). 

10g(v~l) j=2 sllog(v l) 

The choice of B and a insure that the first term of this sum approaches a limit which 
is strictly less than l. We will show that the rest of the terms approach 0, which gives 
the desired result. 

Fix j ~ 2. The linearity of our lexicographic ordering insures that either 
Lex(ul', uY) holds or ul ' == uY or Lex(uY, ul ') holds. Since we have assumed u} ",. ul ' , 
induction hypothesis (3) rules out the first possibility. The second is also ruled out, 
since the induction hypothesis (2) would imply that ul ' and uy were identical, which 
contradicts the definition of "atom". Therefore Lex( u5J , ul' ) must hold. 

Suppose I j -< II" Applying the induction hypotheses (1) and (3) to both pairs II' I j 

and Ij' I I yields that XC • tj ",. I I for some c > 0. In particular, 

I)og( uj ) _ I)og( uj ) log( uj ) log( uJ 
--"---"--,- - ~ ~ -_-::"---:-
sI10g(vl) Illog(V I) xClog(v l) xClog(u l)· 

Since U I and uj are either constants> 1 or powers of x, this last term approaches ° 
as X tends to 00. 

Otherwise Ij == I I and uj -< ul. Induction hypothesis (2) implies that I j and I I are 
identical terms. Since t is an atom, this yields that uj is a constant> 1 while U I is x a 
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for some IX E S. But then 

and this last term approaches 0 as x tends to 00. 

Case 4. Suppose tl == Sl and U I == VI. The induction hypothesis (2) implies that tl 
and s I are identical. Also U I' V I must clearly be identical. Since Lex( t, s) holds, we 
must have n > I and m > 1. Let t' = U~2 ••• u~, and s' = V2' ... v~,m. Evidently 
Lex(t', s') holds, so the induction hypothesis (3) yields B > I and a E S such that 
B X " • t' ~ s'. But this gives B X " • t ~ s, as desired. 

PART (b). Now we prove (n for t, s, again assuming (1), (2), (3) for all pairs with 
fewer symbols. Suppose Lex(t, s) holds. Write t = t' . x a and s = s' . x b where each 
of t', s' is an exponential atom or 1. (If t, for example, is exponential then we take a 
to be 0; in that case t is identical to t'.) We may apply (3) to the pair t', s'. Note that 
Lex(s', I') cannot hold, since Lex(/, s) does hold. If Lex(t', s') is true, then for some 
dES and B > 1 we have B xd • t' ~ s'. Then the exponential growth of B xd insures 
that for any c > 0, XC • t ~ s. (In fact, 

AX: . t ~ s 

for 1 < A < B, in this case.) 
If Lex(t', s') and Lex(s', 1') both fail, then the induction hypothesis (2) insures 

that t' and s' have exactly the same factors, and hence I' is identical to s'. Since 
Lex(t, s) holds, this means a < b. Thus if we set.c = b - a, then xc. t ~ s as 
desired. 

PART (c). Now we prove (2) for t, s. We assume (1), (2), (3) for all pairs of atoms 
with fewer symbols; Part (b) gives that (1) is valid for both pairs t, sand s, t. This 
shows that if 1== s, then Lex(t, s) and Lex(s, t) must both fail. Hence n = m and for 
all} = 1, ... ,n, tj == Sj and uj == Vj. Induction hypothesis (2) yields that tj and Sj must 
be identical for each}. Also uj and Vj must be identical, since they are constants or of 
the form xa. That is, t and s are identical. 

This completes the proof of the theorem. 

COROLLARY 1.8. Let t and s be atoms in el(S). Exactly one of the following 
conditions is true. 

(1) For some B > 1 and a E S, BX" . t ~ s. 
(2) For some B > 1 and a E S, B X " • s ~ t. 
(3) For some a, b, Xh . t == x a • s. (Here a, b are equal to 0 or are in S.) 

PROOF. Theorem 1.7 shows that if (1) and (2) both fail, then t and s have the same 
exponential factors. From this one gets (3) immediately. 

The next proposition shows how general terms in el(S) are related to atoms. It is 
proved using very simple algebraic manipulations. 

PROPOSITION 1.9. (1) Let tl, ... ,tn be terms in el(S) and let uI, ... ,un be allowed 
bases (i.e. each uj is eilher a constant B > 1 from S or a power xQ for some a E S). 
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Then there exists a constant C in S and an atom t in t' I( S) so that 

(2) For every term t in t' I( S) there exist constants cl, . .. ,cll in S and terms t I' ... ,til' 
which are either atoms or 1., such that 

t == clt l + ... +Clltll . 

PROOF. First suppose each tj in (1) is an atom. Then it is easy to rearrange and 
consolidate factors, obtaining an atom t satisfying t == u;' ... u;;'. If each tj is an 
atom or 1, then.it is only necessary to let C be the product of all uj which are 
constant and have tj equal to 1. Again the remaining factors can be rearranged and 
consolidated to yield an atom t which will satisfy C • t == u;' ... u;;'. 

EXAMPLE. 

(X 2)1 . (3)X' . (2)1 . (X 3)1 . (2/ . (Xl),' = 2· (Xl)". (6)" . (x 5( 
Now suppose each of the terms tj can be represented as in (2). For example, 

consider tl == CIS I + ... +cmsm' where cl' ... ,cm are in s and each s; is loran atom. 
Then 

and each uri is == to a constant> 1 in S or to x a for some a E S. Then each factor 
U5.i reduces in this way, and we proceed as earlier. 

Now we prove (2) by induction on the number of symbols in the terms being 
considered. Suppose t and s can be represented in the desired way: 

where each cj and d j is in S and each tj and Sj is an atom or 1. Evidently t + s is 
represented in the correct form. Also t . sis == to a sum of terms cj • d j . tj . Sj. Since 
each product of atoms is == to an atom (this is shown as part of the earlier 
argument), t . sis == to a term of the desired type. Finally, if u is a constant B > 1 in 
S or a power x a for a E S, then u t was shown earlier to have the desired form. 

THEOREM 1.10 (NORMAL FORM THEOREM FOR t'1(S)). For each term t in t I(S) 
there exist unique terms t I' ... , tn' each an atom or 1, and unique constants CI,· .. ,cll in 
S such that til -< til-I -< ... -< tl and t == c i • tl + ... +cll . til. 

PROOF. The existence of CI, ... ,C" and tl, ... ,tll follows from Proposition 1.9(2). 
(Rearrange the t/s and consolidate to insure that til -< til-I -< ... -< tl.) Suppose t is 
a term with two distinct representations of this type, say 

t == c i • tl + ... +cn . tn == d l . Sl + ... +d", . sm. 

Without loss of generality we may assume ci • tl is distinct from d l . Sl. 
Case 1. t I and s I are distinct. By Theorem 1.7(2) we have t I ~ S I' and we may thus 

assume tl -< Sl. By Theorem 1.7(1) there exists C > ° so that xc. tl -< SI. But then for 
some constant k > 0, 

t == c i • t + ... +cn . tTl "'" k . tl -< d l . SI "'" d l . SI + ... +dm • s'" == t, 

which is impossible. 
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Case 2. t l, Sl are identical and c i =1= d l. We may assume c i < d l. Using Theorem 
l.7(1) we may obtain c > 0 so that for each);" 2, XC. tj -< tl. Take 8 > 0 so that 
CI + 8 < d l • Then 

t == CI . tl + C2 . t2 + ... +cn . tn -< CI . tl + 8 . tl ~ d l . Sl ~ t, 

which is again a contradiction. 
This completes the proof of the Normal Form Theorem. 
We remark that in the case where S equals N = {I, 2, 3, ... } this result gives a 

converse to an observation of Levitz [LEV]: this shows that every atom is an additive 
prime in his sense. For e I(N), we have the same normal form representation as that 
given in [LEV], but here we show how to obtain the normal form rather explicitly. In 
§4, we will show that this procedure gives an algorithm which decides t ~ s for terms 
t, s in e I(N). 

In the remainder of this section we draw some conclusions for terms in many 
variables that can be obtained from the results above for I-variable terms, just by 
specializing variables in various ways. 

DEFINITION 1.11. (i) A tower in e(S) is any term of the form ut , where t E e(S) 
and u is a constant B > 1 in S or u is one of the variables Xj. 

(ii) A tower u t is exponential if t itself is a product of nonconstant towers. 
(iii) A monomial in e(S) is a term of the form ao · X~l ... X~k where ao, 

a I' ... , a k E S. (This includes constants as trivial monomials.) 
We will be mainly concerned with products of towers (including the trivial 

product I). Such a product will be called exponential if it is a nontrivial product of 
towers, each of which is exponential. 

LEMMA 1.12. For each term t there exist monomial terms M I, ... ,Mk and exponential 
products of towers tp ... ,tk (including possibly 1), all in e(S), such that t == MI· tl 
+ ... + Mk . tk • Moreover, if t is itself a product of towers, then we may take k = 1 in 
this expression. 

PROOF. This representation of t is the result of a straightforward use of basic rules 
of algebra. 

Now we consider "substitutions" which lead from e(S) to el(S). Let t be a term 
in e(S) and suppose the variables in t are among XI' ... ,xn. Let Sl' ••• ,sn be terms in 
e I( S), with each Sj being either a constant> 1 from S or a power x a for a E S. Let 
t ' be the result of replacing Xj in t by Sj (1 ";;;')";;;' n). Then t' is a term in el(S), as is 
easily proved by induction on the number of symbols in t. 

We are particularly interested in the case where Sj is x (for some fixed) and Si is a 
constant ai > 1 from S for each i =1=) (1 ,,;;;, i,,;;;, n). In that case we will write the term 
t ' as tea). 

PROPOSITION 1.13. Let t E e( S) be a product of towers, whose variables are among 
XI'.·. ,xn- Fix) (1 ";;;')";;;' n) and let a l,··· ,a}-I' a}+I' ... ,an be constants.> 1 from S. 
Then there exist a constant c E S and a term s E el(S) which is either 1 or an atom 
such that tea) == c . s. 
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PROOF. By Proposition 1.9(1) it suffices to prove this when t is a tower. In that 
case tea) is of the form d'(u,) where v is XU or a constant> 1. The result follows 
using Proposition 1.9(1). 

COROLLARY 1.14. Let t" t2 be products of towers in 15:(S) and let a l, ... ,aj~I' 
aj+ I" •• , an be constants> 1 from S. Exactly one of the following conditions is true: 

(1) For some B > 1 and a E S, B X " • tl(a) ~ tl(a). 
(2) For some B > 1 and a E S, B X " • tia) ~ tl(a). 
(3) For some a, b, c, d, d· x b • tl(a) == c . XU • tiaj). (Here c, d are in Sand 

each of a, b is either 0 or is in S.) 

Note. Our main application of this is where S = {r E R I r ;;;. l}; in that case the 
expression B X " can be replaced by B X in clauses (1) and (2). Hence we have 

COROLLARY 1.15 (BX LEMMA). Let t l, t2 be products of towers in I:'.(S) where 
S C R;«I = {r E Rlr;;;'l}. Let al, ... ,aj~I' aj+I, ... ,an be constants> 1 in S. Ex-
actly one of the following conditions is true: 

(1) ForsomeB > I,B x , tl(a) ~ tiiI). 
(2) For some B > 1, W . t2(a) ~ tl(a). 
(3) For some a, b, c, d (with c, dES and a, b either 0 or in S), 

d· Xh. tl(aJ == c· xu. t2(a,). 

PROPOSITION 1.16. If t, s are products of towers, with hoth t and s heing exponential, 
and if M, N are monomials, then Mt == Ns = t == s. 

PROOF. Let the variables in M, N, t, s be among XI"" ,x". Fix} (1 ~) ~ n) and 
let k be any integer> 1. Define terms tk , sk in I:' reS) by replacing every Xi in t, s by 
kx and by replacing every Xi (i =1= j) in t, s by x. A straightforward induction 
argument shows that each tk , Sk is == to an exponential atom in C reS). On the other 
hand, under the same substitutions M and N become == to monomials MA NA in 
15: 1(S) (i.e. terms of the form ax b ). If Mt == Ns then MktA == NASA for each k. Hence 
by the B X Lemma (Corollary 1.15) tk == Sk for each integer k ;;;. I (and each choice of 
j = 1, 2, ... , n ). 

If M is CXfl ••. x~" and N is dxt' ... x;,.., then this yields that for eachj = 1,2, ... , n 
and each k ;;;. 1, 

where A = 'i:.aj and B = 'i:.bJ • It follows that M and N are identical and, hence, that 
t == s, as desired. 

COROLLARY 1.17. Suppose t, s are products of towers in t(S). If there exist 
monomials M, N (not necessarily in 15:(S» such that Mt == Ns, then there is one 
product of towers t I in 15:( S) and monomials M" N, in I:' (S) such that t, is either 1 or 
an exponential product of towers and t == Mlt l, s == Nit,. 

PROOF. By Lemma 1.12 there exist t" Sl (which are each either 1 or an exponential 
product of towers) and monomials M I , NI such that t" s" M" N, are all in I:'(S) and 
t == Mltl and s == NISI' Then MMltl == /fN,s" so tl == Sl by Proposition 1.16. 
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2. Applying the Nevanlinna characteristic. In this section we will apply the methods 
and ideas of value distribution theory for functions defined by terms in the Levitz 
class e(S) (Definition 1.1). For technical reasons it seems necessary for us to assume 
that every constant c in S satisfies c ~ 1, and we make this assumption throughout 
this section and the next. 

We first observe that all functions defined by terms in e(S) are analytic on the 
domain obtained by letting each variable range over the planar domain n = 
e\(-oo,O] which is the complex plane minus an infinite slit along the negative real 
axis. (If t E e(S) has variables among x" ... ,xn then t defines an analytic function 
on the domain nn in complex n-space.) 

Consider first the case n = I: each t E e,(S) defines a function analytic on n. 
This domain may be viewed as an angular region (of opening 2'17"), and Nevanlinna 
[NEV I] has defined and studied his characteristic in such regions. However his full 
analysis applies only for functions of finite order; so far as we know, no one has yet 
succeeded in proving the Lemma of the Logarithmic Derivative (LLD-see (C2.6» 
in this context. The LLD is an essential tool for our purposes. 

One could turn instead to the characteristic developed by Tsuji [TSU], and this 
might succeed. However, it is rather clumsy for making the kind of specific estimates 
we need (see especially Lemma 2.3). 

Instead, we use the simple device of mapping the unit disc D = {I Z 1< I} onto n 
by an explicit mapping 1/;. We identify a function f in our class with the function 
F = f 0 I/; on D, and write Tg(r, f) = To(r, F), where To is the usual Nevanlinna 
characteristic for the disc. (Later, we will drop the subscripts on the T's; the context 
will make it clear which domain is intended.) With this characteristic everything goes 
through smoothly. 

The mapping 1/;( z) which maps the unit disc D conformally onto n is 

1/;( z) = ( (I + z) ) 2 
(I - z) 

One possible difficulty in passing from To to Tg via a conformal mapping I/; is that 
the derivatives of F = f 0 I/; involve derivatives of f combined with derivatives of 1/;. 
In this case, however, I/; and all its derivatives are of bounded characteristic, so this 
causes no trouble in the end. 

In the case of several variables, n ~ 2, we work by just mapping the polydisc 
Dn = {z = (z,,. .. ,zn) E en: 1 Zj 1< I for j = 1,2, ... ,n} onto the product domain 
nn on which our functions are defined. For this situation then, we need a character-
istic for functions on the polydisc. There has been a rather extensive development of 
the Nevanlinna characteristic for several complex variables, but most of it uses an 
exhaustion of en by balls Brn = {z = (z" ... ,zn) E en: Iz,12 + ... +l znl2 < r2}, ° < r < 00. Thus, also, the characteristic is developed for balls, while we require a 
Nevanlinna theory for polydiscs Drn={ z=(z" ... ,zn) E en: 1 z,l<r, ... , 1 zn 1< r}. (See 
[GAU] for a treatment of the characteristic based on balls.) 

In response to a request from us, W. Stoll has kindly provided a detailed 
manuscript [STO] where the polydisc characteristic (complete with LLD) is worked 
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out. (In particular, his paper has a detailed history of LLD in several complex 
variables, to which we refer the reader for the background of the subject. We merely 
mention here the book of Ronkin [RON] and the paper of Taylor [TAB] that give 
early mention of the characteristic for polydiscs, but do not do LLD.) We shall 
borrow heavily from this useful manuscript of Stoll, giving only enough of the 
definitions and results for the applications we have in mind, since the details are 
rather lengthy. The Stoll paper works out the theory from scratch, and is complete in 
itself. 

Consider first the case of one variable, n = 1. For merom orphic functions f of one 
variable, defined on the unit disc D = {z liz 1< I}, the characteristic function is 
defined for 0 < r < 1 by 

T(r, I) = mer, f) + N(r,j); 
this is a sum of two terms: the proximity function 

1 f'll mer, I) = 2'lT _}og+lf(re ill )ld8, 

which measures how close, on the average, f is to 00, and the averaged counting 
function 

N(r, I) = {net; I) dt, 

where n( r) is the number of poles of f in the disc 1 z 1 ~ r. Here, r ranges over the 
interval 0 < r < 1, and appropriate modifications must be made in the definitions of 
N(r, f) if f(O) = 0 or if f(O) = 00. The function log+ (t) is defined by setting 
log+ (t) = log(t) for t ~ 1 and log+ (t) = 0 for 0 ~ t ~ l. The growth of the 
characteristic T(r, f) as r ..... 1 gives a very useful measure of the growth of f. The 
basic properties which we shall use are listed below. 

(C2.0) 
(C2.1) 
(C2.2) 
(C2.3) 
(C2.4) 
(C2.5) 

T( r, f) is a nondecreasing function of r and a convex function of log r. 
T( r, f + g) ~ T( r, f) + T( r, g) + o( 1 ). 
T( r, fg) ~ T( r, I) + T( r, g). 
T(r, 1/(f- a)) = T(r, f) + 0(1) for any complex constant a. 
T( r, fig) ~ T( r, f) + T( r, g) + O( 1 ). 
T(r, eg)IT(r, g) ..... 00 as r ..... 1 if T(r, g) is unbounded. 

Proofs of these results may be found in W. Hayman's book [HAY]. (C2.5) is a 
special case of a result of Clunie (see [HAY, p. 54]). The other basic fact we need 
about the characteristic T(r, f) is the Lemma of the Logarithmic Derivative: 

(C2.6) (LLD) 

mer, I'll) ~ O(IOg(T(r, f)) + log 1 ~ r)' 

except possibly for r lying in a set E C (0, 1) which is "thin" in the sense that 
fEdtl(l - t) ~ 2. 

In particular, the above estimate on mer, 1'1f) holds for some r in the interval 
p < r < p' provided that ro < p < 1 and 1 - p' < (l - p)/e 2 • 
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When it comes to several variables the theory is substantially the same and the 
basic properties we need are still expressed in the same form (C2.0)-(C2.6). (See 
[STO] for the details of proofs.) For a meromorphic function f( Z I' ... ,z n) defined on 
011, 

where 0 < r < 1. Also N( r, f) is defined much as before, as an averaged counting 
function of the poles of f. Note that if f is a holomorphic function on on, then 
T(r, f) = mer, f). 

(In [STO], a characteristic T( r, f) is developed for a vector variable r = (r l ,· .. ,rn ), 

but we use only the diagonal case r l = ... = rn = r.) 
The basic properties above, including LLD, are shown to hold in [STO] or follow 

exactly as in the case of one variable (e.g. (C2.S)). One thing which needs explana-
tion is the derivative f' that occurs in the LLD. When n ~ 2 we shall take f' to stand 
for the Euler operator 

f' = Df = Z ji + ... + Z ji. laz l nazn 

This has the useful property that Df = 0 if and only if f is identically constant. (This 
is because f may be expanded as a nicely converging sum of homogeneous polynomi-
als and because DP = mP for any homogeneous polynomial of degree m.) 

Our basic tool is a lemma (proved in one dimension by Hiromi and Ozawa; see 
[HIO]) which we will state after a short discussion of it (Lemma 2.1). In essence, it 
goes back to the work of R. Nevanlinna [NEV II], and is used in studying linear 
relations between entire functions. The proof depends only on the properties we 
have listed of the characteristic function T(r, f). In particular, it uses LLD. So now 
it carries over, without modification in the proof, to polydiscs. (We note that 
Brownawell [BRO] has a result in several variables that includes the H-O Lemma, 
but his characteristic is for balls rather than for polydiscs, so we cannot use it here. 
We mention also the one-variable study by H. Cartan [CAR] which obtains results 
similar to what can be proved using, say, the H-O Lemma. However, there does not 
seem to be agreement that the proofs in [CAR] are complete.) 

We now state the polydisc version of the H-O Lemma. As mentioned above, its 
proof is formally the same as the proof given in [HIO] for dimension 1, employing 
the polydisc version of the characteristic. 

LEMMA 2.1 (H -0 LEMMA). Let ao( z), ... , a n( z) be meromorphic functions and let 
gl(z), ... ,gn(z) be holomorphic functions, defined on the domain ON. Suppose that 
these functions satisfy 

(a) 
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foreachJ = 0,1, . .. ,n; 

(b) 

for at least one i = 1, 2, ... ,n. Under these hypotheses, if the identity 
II 

~ a/z)eg,<Z) = ao(z) 
j= I 

holds for zED N, then there exists constants c I' ... , C n (not all 0) so that 

for all z E DN. 

11 

~ cj ' aj(z )e g / Z ) = 0 
j=l 

Our use of the Nevanlinna theory tools previously discussed comes entirely 
through this H -0 Lemma. Indeed, we use it only in cases where g I' ... , gn are 
holomorphic functions, so that T(r, egr ) = mer, eg,) (and the prohibition that the 
function not take the value 0 at the origin is satisfied), and in cases where 
ao, a l, ... ,an are slowly growing functions. Because the H-O Lemma plays such an 
important role in our approach, and because it is published in a relatively inaccessi-
ble place, we give here the short proof from [HIOj. We first note that on writing 
f' = (f'/f)fwe may use (LLD) and (C2.2) to estimate T(r, f') whenfis holomor-
phic. We give our proof in the context of the plane C. Minor modifications carry it 
over to the other domains we consider. Now let Gv(z) be avCz)eg,(Z). Then we have 

II 

(i) ~ Gv(z) = ao(z). 
v=1 

By differentiating both sides of (i), we have 
II 

(ii) ~ G~Il)(Z) = a~)(z), 
v=1 

which we rewrite as 

(iii) }J-=I, ... ,m-l. 

We regard this as a system of simultaneous linear equations in the Gv ' Now we have 

G~Il)(Z) = PIl(av, a~, ... ,a~lll, g;, ... ,g,~Il))eg,(Z) 
. h . bl I . I P f h . d' d f' r (Il)' (Il) WIt a smta e po ynomla Il 0 t e III lCate unctIOns av' av"" ,av , gv"" ,gv . 

Thus we have 

( G(Il) ) ( II ) (j+) T r, Gv ";;O(T(r,av) + T(r,gv)) =0 v~lm(r,eg,,) 

outside a set of finite Lebesgue measure. Suppose, for the simultaneous equations (i) 
and (iii), the determinant Ll :r= O. By solving (iii) with respect to Gj , J = 1, ... , n, we 
have, by Cramer's rule, 
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where 

Since 

we have 

~= , 
G(n-I) 

)-1 

G)-I 

T{r,~) = o( ~ m{r, eg,)), 
v-I 

a' o 

G~/GI/ 

G(I/-I) 
;+1 

G,+I 

T(r,~J =o(~m{r,eg,)), 

outside a set of finite Lebesgue measure. Thus we have 

m{r, eg,) = T{r, eg,) .;; T{r, aJ + T{r, Gv ) 

17 

j = 1, ... ,n, 

.;; T{r, av) + T{r,~) + T{r, ~v) = o( vt m{r, eg,)), 

and, hence, 

outside a set of finite Lebesgue measure. This is a contradiction. Consequently, the 
Wronskian ~ == 0 and the result follows. 

In the context of DN instead of C, a few small changes must be made. First, (#) 
should be replaced by 

off the exceptional set, because we inherit the log (1/1 - r) term from LLD. Then 
(*) is to be replaced by 

(*)(*) T(r, G~~») =oL~lm{r,eg,)) + O(10g 1 ~r) 
off the exceptional set E. 
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Now let p" ~ 1- so that 

T(Pn,eg')/Iog(I - p"r l -. +00. 

Then by LLD we can find r" outside the exceptional set E such that 

1 - p" > 1 - r" > (1 - p,,) /9. 

It follows that r" ~ 1 and 
1 1 

log ~ = log ~ + 0(1) = o(T{p", e g,)) = o(T(r", e g,)). 
r" p" 

Hence m(r", eg')/log(l/(l - r,,)) ~ 00, and we reach, as before, the contradiction 

vt m(r, e g,) = o( vt m(r, e g,)), 

and the H-O Lemma for DN is proved. 
The other specific way in which Nevanlinna theory comes into this paper (and the 

one thing which prevents us from taking a purely axiomatic approach using 
properties (C2.0)-(C2.6)) is in Lemma 2.3. Here we must make an estimate of the 
Nevanlinna characteristic of quotients of certain of the functions which are defined 
using the Levitz class terms we study here. 

We now use the Nevanlinna theory concepts and methods discussed above to treat 
certain aspects of identities between terms in the Levitz class, especially those 
involving products of towers (see Definition 1.11). 

The next result, the Small Characteristic Lemma (SCL), shows that only in trivial 
cases does the characteristic of a quotient of products of towers grow no more 
rapidly than loge 1 - r t I. (This is the "dividing line" below which the N evanlinna 
characteristic on the polydisc is not a useful tool.) 

LEMMA 2.2 (SCL). If Q is a quotient of products of towers in e(S) and if 
T(r, Q) = O(log(l - rtl), then there exist monomials Mp M2 so that Q == M I/M2. 

Note. We do not assert here that MI and M2 are in e(S), but this can be deduced 
from Lemma 2.2 using Corollary 1.17, if desired. 

PROOF. Using the exponential form of Lemma 2.4, we reduce this result to a 
collection of I-variable problems. These we handle using the BX Lemma from § I 
(Corollary l.l5) together with the following standard estimate for the growth of 
functions defined on nn, transposed from the polydisc D" using our conformal 
mapping tJ;(z) = «1 + z)/(l - z)? 

LEMMA 2.3. Let f be a holomorphic function defined on n". If 

T{r, f) = O(log(I - rrl), 
then there exists a positive constant a such that fj(x) = O(xav'X) for positive, real 
x -> 00, where fj(x) = f(x l, ... ,Xj-I' x, X j + P ... ,xn) for fixed positive real values of 
XI' ... ,Xj _ l , Xj+I'···,X n • 

It is this estimate which entails our blanket assumption, made in this section and 
the next, that every constant in S is ;;;. 1. 
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PROOF. We define F(zl"" ,zn) for Z E on by 

( 1 + Z )2 lj;(Z)= ~ . 

Then Fis holomorphic on on and T(r, F) = O(log(l - rtl) as r -> 1-. (Recall that 
the characteristic of f over Qn is defined to be the same as the characteristic of F over 
on.) Let /3 > 0 be such that 

i:'" i:IOg+IF(reiO" ... ,reiOn )ldO I ••• dOn ~ /310g( 1 ~ r) 

as r -> 1-. Let u = log I FI , so u is a pi uri sub harmonic function on on and, hence, is 
n-subharmonic. (See [RUO, §3.2.1] for these concepts.) Hence, with u+ = max( u, 0), 
we have 

where 

l = (pe i'''', ... ,pei<i>n), 

z= (xp""Xj_I,X,Xj+I,,,,,Xn), 

The integration is over [-71', 7Tr, and pa, Z) is the Poisson kernel given by 

pa, z) = pal' ZI)P(~2' Z2) ... P(~n' zn) 

(where l = a p ... '~n) and z = (ZI" .. ,zn»' where 
1 p2 - r2 1 p + r P(pei<i>, reiO) = - ~ _ --. 

271' p2 - 2prcos(O - </» + r2 27T p - r 

Here, we choose p so that 1/(1 - p) = 2(1 - x). To complete the description of our 
notation, x = t/;(x) = «(I + x)/(l - x)f, so X = (tx - 1)/(tx + 1) and, hence, 
1/(1 - x) = (tx + 1)/2, with corresponding notation for the subscripted x's and 
X's. Also, let Fj(x) = F(x p '" ,Xj-I' x, xj + I,,,. ,xn) where Xi is fixed for i =1= j. 
We choose x so large that 1 > P > Xi for i =1= j. As x -> 00, p -> 1- so that 
(p + xj)/(p - xj ) is bounded for i =1= j, i E {l, 2,,,.,n}. Hence 

u( x) ~ /3 ( p + ~ ) log _1 -p-x I-p 
for a suitable constant /3. It follows that 

u(x) ~~log_l __ 
I-x I-x 

for y chosen correctly, and thus 

IFj(x)l~exp( 1 ~xlog 1 ~X) asx----.l-. 

N ow we pass back to W to get 

Ifj(x)1 = IFj(i)1 ~ exp ( 1 ~ x log 1 ~ x ) ~ exp( aJx log x) = xu/X 

for correctly chosen a > 0 as x -> 00. This gives the result claimed in Lemma 2.3. 
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LEMMA 2.4 (AFFINE FORM). Let n be an integer ~ 2 and let L(t" ... ,tn) be a Coo 
function defined on (0, ooy. Suppose that for each) = 1,2, ... ,n there exist functions a) 
and bj ( of n - I variables t~ = (t" . .. , tj _" t j --t " ••• , t n )) such that 

L(t" ... ,tn) = aA~) + bAtJ· ti 

for all (t" ... ,tn) E (0, oo)n. 
Then there exist constants {C E IE <: {I, 2, ... , n } } such that 

L(t" ... 'tn)=~CECg/j) on (O,oor. 

PROOF. By induction on n ~ 2. Note first that the functions aj and bj are Co since 
bi = aLlat) and aj = L - bj • tj . 

On differentiating L with respect to t; we get (for any) =1= i) 

( A) = aL = aa) t~) ab) tJ . 
(1) bl t; a a + a t j • 

t; t; t; 

Differentiating this with respect to tj gives 

ab;( t~) abA t~) 
(2) -a - = 0 + a . 1. tj tl 

Since the right side is clearly independent of tj , we see that b;( t;} satisfies the 
hypotheses of Lemma 2.4 for each i. (That is, b;(t;) is an affine function of each of 
its variables taken separately.) Using this fact and equation (1), we see that 
aaj(t~)/at; is independent of t; for each i =1=). 

When n = 2, this shows outright that L has the correct form 

L(t" t z ) = a,(t z ) + b,(tz)t, = (0: + {3t 2 ) + (8 + EtZ)t, 
= 0: + {3t 2 + 8t, + ft,t 2 • 

When n > 2, the induction hypothesis applied to a" . .. ,a n' b" ... , bn and an easy 
calculation show that L has the desired form. 

Actually we will make use of the following exponential version of this fact. 

LEMMA 2.4 (EXPONENTIAL FORM). Let n ~ 2 and let Q(x" ... ,xn) be a Coo function 
defined on (I, 00 Y and taking values> O. Suppose that for each) = I, 2, ... , n there 
exist functions A / xj ) and B/ Xl) such that 

Q(x" ... ,Xn) = A/.xJxpx)} 

forall(x" ... ,Xn) E (1, ooY. 
Then there exist constants {C E I E <: {I, 2, ... ,n} } such that 

Q(x], ... ,xn) = exp(~CE( II IOg(xJ)) 
E JEE 

on (1, ooY· 
PROOF. Change variables by setting tj = log(x) (l ~) ~ n) and consider the 

function on (0, ooY defined by L(t], ... ,tn) = log Q(x], ... ,xn). It is immediate that 
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L satisfies the hypotheses of the Affine Form of Lemma 2.4, with aj = log A) and 
b) = B). The conclusion of this result for L gives the desired form for Q = exp( L). 

PROOF OF LEMMA 2.2 (SCL). Let Q be the quotient of two products of towers 
which satisifes T(r, Q) = O(log(l - rt l ). Note that it suffices to find monomials 
M I , M2 such that 

Q(xl,·.·,xn ) = MI(Xp ... ,xn)/M2(XI,···,Xn) 
for all real x I' ... , X n > 1. (Then apply the uniqueness of holomorphic functions and 
induction on the number of variables.) Thus we will consider Q( x I' ... , X n) restricted 
to real values> I of the variables x I' ... , X n' 

Using the estimate in Lemma 2.3 we see that if we fix Xi for i 1= } and treat Q as a 
function of Xj only then 

Q(XI,···,Xn ) = o(xf;VX7)· 
But now the B X Lemma (Corollary 1.15), applied to these functions of Xj' implies 

that there exist A/x) and B/x) so that 

Q(x l ,·· .,Xn ) = AixJx!P;). 
Since this is true for each} = 1,2, ... , n and all x I' ... , X n > 1, the Exponential Form 
of Lemma 2.4 yields constants {C E lEe {l, 2, ... , n} } so that 

Q(xl,· .. ,xn ) = exp ( ~CECgEIOg(X))). 
We need to show that C E = 0 unless E is a singleton set. If this is not true, choose 
E C {l, 2, ... , n} of largest cardinality such that C E 1= O. Now set Xj = x > 1 if 
} E E and set x) = 2 if} fl E, for I ~} ~ n. Let q(x) be the resulting function. It is 
clear that q( x) is a constant times the quotient of a pair of atoms in e I( S). But we 
then have a contradiction of the BX Lemma (Corollary 1.15), since q(x) (or its 
reciprocal if CE < 0) satisfies an inequality of the form A\og(x)P ~ q(x) ~ B\og(x)P for 
some A, B > 1 and p = card(E) > 1. Hence CE must = 0 unless E is a singleton, so 
that Q has the form 

Q(xl,···,xn) = exp ( .~ C)IOg(X)) = xr'·· ·x~·" 
)-1 

as desired. (This is == to a quotient of monomials since some of the cj's may be 
negative, while exponents in a monomial must be ;;", 0.) 

In the remainder of this section we prove two lemmas about products of towers 
which will be crucial in carrying out our inductive analysis of identities satisfied by 
general terms in the Levitz classes e(S) (see §3). 

LEMMA 2.5 (FIRST POT LEMMA). Let T\, ... , Tm be products of towers in e(S) and 
let '7Tj be the function defined on ~n by T; for each} = I, 2, ... , n. Suppose PI' ... ,Pm are 
nontrivial polynomials in x\, ... ,xn and log(x\), ... ,log(xn ). If the identity p\'7T\ + Pl'7T2 
+ ... + pm'7Tm == 0 holds on ~n, then there exists a pair of distinct indices i, } such that 
'7T;/'7T) is == to a quotient of monomials on ~n. 
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PROOF. We note that the coefficients in the polynomials Pj are allowed to be 
arbitrary complex numbers. 

The proof is by induction on m. We rewrite the identity as 

PI(7TI/7Tm) + ... +Pm-I(7Tm- I/7Tm) = -Pm' 
If for somej (1 ~j ~ m - I) we have T(r, 7T/7Tm) = O(log(l - rrl), then we apply 
Lemma 2.2 (SCL) to get the desired result. Otherwise we may write 7Tj/7Tm = egJ for 
I ~j ~ m - I, and the H-O Lemma (Lemma 2.1) applies. This yields constants 
cl, ... ,Cm - 1 (not all 0) so that 

CIPI(7TI/7Tm) + ... +cm-IPm-I(7Tm-I/7Tm) = O. 
This yields an identity 

which has ~ m - I terms. The induction hypothesis yields the desired result. (Note 
that the hypotheses of Lemma 2.6 are impossible if m = I. Hence the basis step 
m = 2 must always be a case treated by application of Lemma 2.2 (SCL).) 

LEMMA 2.6 (SECOND POT LEMMA). Let TI, . .. , Tm be products of towers (including 
possibly I) and let 7Tj be the function defined on ~Il by '0 for each j = I, 2, ... ,n. 
Suppose Pi' P2"" ,Pm are nontrivial polynomials in 10g(x l }, ... ,10g(x ll )· If'i..pj7Tj == 0, 
then for some i =1= j, 7Td7Tj is identically constant. 

PROOF. Using the first POT Lemma and Corollary 1.17 (possibly a number of 
times) there must exist monomials M I, ... ,Mm and a product of towers t such that 
0== M/ holds for each j = 1,2, ... ,no Then 'i..pjMj == O. Since 'i..pjMj is a poly-
nomial in xl"",xn and 10g(xl), ... ,log(xn ) and since PI,,,,,Pm are nontrivial, it 
follows by an elementary argument that there must exist i =1= j such that M,/ Mj is 
identically constant. This implies 

7T,/7Tj == MJ/M/ == M,/Mj == constant, 

completing the proof. 

3. A Normal Form Theorem for I:(S) and completeness theorems for some systems 
of identities. In this section we prove a Normal Form Theorem for terms, in many 
variables, from the Levitz class I:(S). From this will follow a positive solution to 
Tarski's High School Algebra Conjecture for terms in I:(S), as well as in some other 
special cases which we treat briskly. 

DEFINITION 3.1. We define for tEI:(S), the concept t is an atom by induction on 
the number of symbols in the formal term t: 

t is an atom if it is of the form u;' ... u:;;· (m ;;. I), where: 
(i) each uj is a constant B > I from S or a power of a variable xf where a E S; 

(ii) each tj is an atom or I; 
(iii) if uj is constant then tj is not I; 
(iv) if ui ' uj are both constant and i =1= j, then t i , tj are not identical terms; 
(v) if ui ' uj are powers of the same variable x k and i =1= j, then ti' tj are not 

identical terms; 
(vi) for each i < j, the term u;, is alphabetically earlier than uy 
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Note. The alphabetical order mentioned in (vi) comes from an assumed linear 
ordering on the symbols used in constructing terms in 1::(S), including the constants 
from S. This gives a linear ordering on 1::(S) which we use, here and below, to 
resolve ambiguity in the order of terms in a product or a sum. Any linear ordering 
on e (S) would do as well as this one. 

It should be noted than an atom in 1::(S), according to Definition 3.1, which 
contains only the variable x, (and is hence a term in tICS»~ need not be an atom in 
the sense of Definition 1.3. This is because we used a different linear ordering (the 
eventual dominance ordering) to resolve ambiguities in the order of factors in that 
earlier definition. In any case, these are technical notions and no confusion should 
arise from this double use of one word. Moreover, if tEe ,( S) and t is an atom in 
the sense of Definition 3.1, then there exists sEe ,( S) such that t == sand s is an 
atom in the sense of Definition 1.3. Indeed, s is obtained from t by a series of 
rearrangements of factors in products that appear within t. 

Note also that each atom in e (S) is a product of towers. 
DEFINITION 3.2. A normal form term in e (S) is a term of the form c, t, + ... + C k t k' 

where each tj is an atom or I, each cf is a constant in S and for each i < j, ti is 
alphabetically (strictly) earlier than tf • 

Our next result asserts that each term t in e (S) is == to a normal form term and 
that such a term can be obtained from t by "elementary algebraic manipulations". 
We express this in terms of provability from the elementary High School Axioms, 
together with the arithmetic of numbers in S. 

By the High School Axioms we mean the following: 

x+{y+z}={x+y}+z, xr+~=x'·x·. 
x+y=y+x, 
x(yz} = (xy)x, 

xy = yx, 
x(y+z)=xy+xz, 

I· x = x, 

x\'~ = (x 'r. 
(xrr=x~'Y~' 

x' = x, 
1\= I. 

By the arithmetic of numbers in S we mean the set of all possible numerical 
axioms such as c, + C2 = c3 , where c3 is a constant representing the sum of the 
numbers (in S) represented by the constants c" c2 • Not only axioms involving 
addition, but also multiplication and exponentiation need to be included. 

If t, s E 1::(S), then we write I-st = s to mean there is a formal deduction of the 
identity t = s from the High School Axioms and the axioms for arithmetic in S, 
described above. 

Evidently I-s t = s implies t == s, since the axioms are true identities and the rules 
of inference preserve truth. Tarski's Conjecture is that the converse implication is 
also true. 

LEMMA 3.3. For any term tin 1::(S) there is a normal form term s in 1::(S) so that 
I-st = s. 

PROOF. By a straightforward induction on the number of symbols in t. The High 
School Axioms allow for the usual algebraic manipulations and this is all that is 
required to put t into normal form. 
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THEOREM 3.4 (NORMAL FORM THEOREM FOR I:(S)).lft, S are normal form terms in 
e (S) and t == s, then t, s are identical terms. 

PROOF. We prove a stronger statement: Suppose PI"" ,Pm (m ? I) are nontrivial 
polynomials in log(xl), ... ,log(xn ), with arbitrary coefficients, and tl, ... ,tm are 
distinct terms in I:(S), each either loran atom. Then Pltl + ... +Pn,tm 2: O. We 
prove this by induction on the total number of symbols in the sequence t I" •• ,t m' 

It is clear that this must be true when m = I, so suppose m > 1. By the Second 
POT Lemma (Lemma 2.6) there exist i =1= j and a constant c so that t, == ctJ • We first 
note that c must equal I: the results of replacing each variable x" by x in ti and tJ are 
== to atoms in r: I(S) (in the sense of Definition 1.3) or to I, as discussed above. 
Hence Theorem 1.7 implies c = I. Clearly we may suppose t" tJ are atoms. 

Suppose ti is u~' ... uk' and tj is v,' ... vJ', satisfying the restrictions in Definition 
3.1. We have ti == tj so that on taking logarithms we get 

log(u l )' rl + ... +log(uk)' rk == log(v l )· Sl + ... +log(v/)' s/. 

This is almost in a form to which the induction hypothesis can be applied. Certainly 
the sequence of terms rl, ... ,rk, sp ... ,s/ has strictly fewer symbols than does 
tl" 00 ,tm • Let t;,oo. ,t~, be a list of the distinct terms among rl,. 00 ,rk , SI" 00 ,s/. For 
each I ~ i ~ h let Pi be the sum of terms loge u) for which 'j equals t; and let qi be 
the sum of terms loge v) for which sJ equals t;. Then by rearranging terms in the 
identity above, we get 

PIt; + ... +Pht~ == qlt; + ... +qht~. 
The induction hypothesis yields that for each I ~ i ~ h, the functions Pi and q, must 
be identically equal. 

We now may use the restrictions on ti and tJ which are given in Definition 3.1, 
since we know ti and tJ are atoms. We will show that tj and tJ are identical term~. 
Each base U a which appears in ti (1 ~ IX ~ k) is either a constant B > I from S or it 
is a power xp of one of the variables, with exponent a E S. Moreover, each 
particular exponent can occur at most once with a constant base and at most once 
with a base involving each particular variable x/3' Also the exponent I may not occur 
with a constant base. This means that each Pa (1 ~ IX ~ h) will be, in the form we 
defined it, a sum of at most n + I terms, including at most once the log of a 
constant and at most once for each variable x/3 an expression log(x$). It follows that 
from t;, ... ,t;' and from PI"" ,Ph we can recover the exact form of ti. 

The same remarks apply to tj and the functions qp . .. , qh' Thus it follows that ti 
and tj must be identical. But this contradicts the original hypotheses, so the theorem 
is proved. 

COROLLARY 3.5 (TARSKI'S CONJECTURE FOR THE LEVITZ CLASS f(S)). Let S \: {r 
E R I r ? 1} be closed under addition, multiplication and (2-variable) exponentiation. 
If t, S are any two terms in r:(S) and if t == s, then 1-5 t = s. That is, the identity t = 5 

is provable from the High School Axioms together with axioms giving the addition, 
multiplication and exponentiation facts for S. 
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PROOF. Given t and s, by Lemma 3.3 there are normal form terms t], s] so that 
I-st = t] and I-ss = s]. If t == s then also t] == sl' from which it follows that t], s] are 
identical, by the Normal Form Theorem. Hence I-st = s. 

REMARK. Strictly speaking, the proof given does not cover the case S = 0 in 
Corollary 3.5, since we have been making the blanket assumption throughout that 
S d N = {l, 2,3, ... }. However Tarski's Conjecture for f( 0) is true. Indeed, if 
t == sand t, s are Levitz class terms which contain no constants, then t = s is 
provable using only those axioms which mention no constants. (I.e., the axioms for 1 
are not needed.) To prove this one simply retraces our whole argument, but omitting 
all constants. 

In the remainder of this section we use the Normal Form Theorem to prove 
completeness results, similar to Corollary 3.5, in two other situations. In the first of 
these, we consider terms which contain only exponentiation, giving a new proof of a 
result first proved in the Ph.D. thesis of A. Tarski's student Charles Martin [MAR], 
but unfortunately never published. In the second application we consider terms 
which contain only exponentiation and multiplication. 

DEFINITION 3.6. Let S be a set of real numbers:;:;. 1, closed under (2-variable) 
exponentiation, abo S(S) is the smallest class of terms that contains each variable x], 
x 2 , •.. and each constant c E S and which contains Sf for each s, t E S(S). 

Note that S(S) contains many terms, such as (xxy which are not in any Levitz 
class. However, we can define a mapping # from S(S) into f(S) in a natural way, 
which allows us to make use of our results about f(S). (For example the term above 
is mapped to x x , x .) 

For t E S(S) we define til E f(S) by induction on the number of symbols in t. If 
t is a variable or a constant, then til is the same as t. Otherwise there is a variable or 
constant Uo and terms u], u2 , ••• ,un in S(S) (n:;:;. 1) so that t is the iterated 
exponential 

( ( U)"2 )" .. ... uo' . . . . 

If Uo is 1, then we define til to be 1 also. Otherwise we construct uf, . .. , u~ and define 
til to be the unique term in f (S) which is == to the term u ~f- u1 u~ and which is an 
atom in e(S). We omit the detailed proof that such an atom exists. However, it is 
useful to note that each uJ (1 ~ j ~ n) is a constant or an atom. The term til is 
constructed by taking its base to be Uo raised to a power which is the product of the 
constant uJ terms. The exponent of til is loran atom which is formed from the 
product of the uJ terms which are atoms. Construction of this exponent involves 
only consolidation of like terms and reordering of factors in the product. 

COROLLARY 3.7. If t, s are terms in S(S) and t == s, then there is a formal proof of 
the identity t = s from the exponential axioms IX = 1 and (xY)' = (xz)Y together with 
all axioms giving the facts of exponentiation in S. (That is, all numerical axioms 
c? = c3 which represent true facts about S.) 

PROOF (SKETCH). For each t E S(S) the term til E e(S) defined above is an atom 
and t == til. If t, s E S(S) and t == s, then til and sll are identical by the Normal 
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Form Theorem for l:(S). From this it follows that t = s can be proved using the 
rearrangements allowed by the permitted axioms. This is because the rearrangements 
used in forming tjl from t only involve the consolidation or reordering of the iterated 
exponents in t. This is precisely what is allowed for using the exponential axiom 
(xv)' = (xz)Y. We omit the details. 

The result proved by Charles Martin in his thesis [MAR] is not exactly contained 
in Corollary 3.7-it corresponds to taking S to be empty and then using only the 
axiom (xY)' = (xz)Y-but it can be proved by exactly the same method. The 
argument in Martin's thesis uses a proof-theoretic analysis. (See also [TAW] for 
some discussion of the many interesting results in this thesis.) 

Next we briefly consider terms which are constructed using only exponentiation 
and multiplication. 

DEFINITION 3.8. Let S be a set of real numbers;;' 1, closed under (2-variable) 
exponentiation x Y and under multiplication. 63~(S) is the smallest class of terms 
that contains each variable x" x 2 , ••• and each constant c E S and which contains Sf 

and s . t for each s, t E 63~(S). 

COROLLARY 3.9. If t, s are terms in 63~(S) and t == s, then there is a formal proof 
of the identity t = s from the axioms 

xy = yx, 
x(yz) = (xy)z, 

I . x = x, 

x Z • y' = (xy)', 

(x Y )' = xv', 
V = 1, 

together with all axioms giving the facts of exponentiation and of multiplication in S. 
(If S = 0 then only the 4 axioms which contain no constants are needed.) 

PROOF (SKETCH). The basic idea is the same as in the proof of Corollary 3.7. For 
each I E 63~(S), one defines a term IjI which is a constant times an atom in e(S). 
Moreover, in this setting IjI is also a term in 63~(S) and the equality t = tjl is 
provable using only the axioms listed in the statement of Corollary 3.9. In part the 
construction of tjl (as a term in e (S) not containing any addition symbols) follows 
by repeated use of the identities (u . v)W = UW . vw, (u V)W = U v w to simplify the base 
of each exponential. The other part is essentially like Lemma 3.3: one needs to show 
that any term in l:(S) which contains no + is provably equal to a constant times an 
atom, with the proof using only the axioms listed earlier (which are precisely the HS 
axioms not containing any +). 

Now suppose t, s E 63~.(S) and t == s. Then tjl == s#, so that t# and s# are 
identical, by the Normal Form Theorem. Hence t = s is provable in the desired way. 

Nole. The observation that underlies the previous proof shows that l:(S) is 
"essentially" closed under exponentiation Sf, where I is any term in l:(S) and s is 
any term which contains no +. 

4. DecidabiJity of ",,; on l: ,(N). Levitz [LEV] gave a mathematical analysis of the 
eventual dominance relation""; on l: ,(N), showing that the order type of ",,; on this 
set is EO' However, he did not give an algorithm for deciding the relation t ",,; s for 
t, s E l:,(N). We give such an algorithm here. 
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PROPOSITION 4.1. (A) There is an algorithm which decides whether or not t (a term 
in t I(N)) is an atom (in the sense of Definition 1.3) or 1. 

(B) There is an algorithm which decides t ~ s when t and s are atoms in e I(N). 

PROOF. These algorithms are defined simultaneously. They operate by recursion 
on the number of symbols in their inputs. 

(A) Give t, we can effectively recognize if it is in the form uf' ... u~n where 
ul, ... ,u" are constants or powers of x and tl, ... ,t" are terms. If so, we can apply 
algorithm (A) recusively to decide whether or not t l, ... ,ttl are atoms or 1. We can 
apply algorithm (B) recursively to determine the ~ ordering of t I" •• , t ,,' Then we 
can apply Theorem 1.7 to decide whether or not u~' ~ ... ~ uf'. Finally the rest of 
the conditions in the definition of atom are easy to check effectively (see Definition 
1.3). 

(B) Given atoms t,s,we may effectively find tl, ... ,t", ul, ... ,u", sl, ... ,sm' 
V I" •• , vm such that t is uf' ... u~, and s is V';I ... v;;'. Then we can apply algorithm 
(B) recursively to decide the ~ ordering among t" ... ,tn' Sl"" ,sm' This plus 
Theorem 1.7 give a decision as to whether or not t ~ s holds. 

The next result asserts there is an algorithm which yields, for each term t in el(S), 
its normal form representation. (The same is true for many-variable terms in e(S), 
but we will not use that result here.) 

PROPOSITION 4.2. There is an algorithm which yields,for each tEe I(N), a sequence 
t" ... ,ttl which are atoms or 1, such that ttl ~ ... ~ t, and t == tl + ... +tn • 

PROOF. This algorithm uses a combination of algebraic manipulations (repeatedly 
writing terms as sums of products of towers) together with use of the algorithms of 
Proposition 4.1, used to insure that each product of towers has its factors written in 
the correct ~ order. 

REMARK. This representation of t as a sum of atoms and l's is (by Theorem 1.7) 
the same as Levitz' Additive Normal Form for t. The added information here is that 
we can identify the "additive primes" [LEV] (which are shown by Theorem 1.7 to be 
the same as the "atoms" of Definition 1.3) in a simple effective way. 

This, together with Theorem 3.3 of [LEV], give immediately the desired algorithm 
for ~ on t ,(N). 

THEOREM 4.3. There is an algorithm which decides ~ when t, s are arbitrary terms in 
e,eN). 

PROOF. Using the algorithm of Proposition 4.2, write t == t I + ... + t nand s == S I 
+ ... +sm where t l, ... ,tn' Sl"" ,sm are atoms or l's and tn ~ ... ~ f" sm ~ ... ~ 
Sl' Find the smallest i,,;;; rnin(m, n) for which f; := s;. If no such i exists, then t ~ s 
holds iff n ,,;;; m. If such an i exists, then t ~ s holds if t; ~ s; (by Theorem 3.3 of 
[LEV]). 

Note. The same argument yields an algorithm which decides ~ on el(S), relative 
to an oracle which computes addition, multiplication and exponentiation on Sand 
which decides";;; on S. (Here S is any effectively given countable subset of R + which 
is closed under +, . and 2-variable exponentiation a b .) 
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5. Exponential terms with constant bases, over the complex numbers. Here we 
consider expressions that are built up from variables and complex constants using 
addition, multiplication and the I-variable exponential function eX (where e is the 
usual base of the natural logarithm). We prove a version of Tarski's High School 
Algebra Conjecture for these expressions. (This result was proved independently by 
L. van den Dries [VDD] and, for terms containing just one variable, by A. Wilkie 
[WIL I]. Their methods are quite different from ours.) We also settle positively a 
conjecture, due to S. Schanuel, which asserts that if I is a function on cn which is 
defined by an expression of this type and if I is nowhere equal to 0, then I = e g for a 
function g on C n which is also defined by an expression of the kind considered here. 

DEFINITION 5.1. ~ is the smallest class of terms which contains the variables x" 
x 2 , ..• and a constant for each complex number, and which contains the terms s + t, 
s' t and exp(t) for each s,t E ~. 

Here we interpret exp(t) to stand for et. We note that if t E ~ and the variables of 
t are among x I" •• ,xn, then t defines a holomorphic function on all of cn. As before, 
if s E ~ also has its variables among x" ... ,xn ' we write t == s to mean that t and s 
define the same function on en. (Various equivalent formulations of this definition 
are possible in special cases because of the uniqueness of holomorphic functions. For 
example, if t and s contain only real constants. we may be interested only in the 
functions they define on Rn. But t == s will hold as long as t and s define the same 
function on Rn, or even on sn where S <: e is any set with a limit point in C.) 

In this section we will use Nevanlinna theory for functions defined on en 
(n = 1,2, ... ) in a way similar to its use in §2 on the polydisc D II (and the 
conformally equivalent domain gn). Here we may either use a characteristic based 
on polydiscs (as was done above) or based on an exhaustion of en by balls. On e" 
the LLD has been proved for both types of characteristic- for the characteristic 
based on balls this was done by Vitter [VIT]. (See also [GAH].) 

In either case the properties corresponding to (C2.0)-(C2.6) are true and, hence, 
the en version of the H -0 Lemma (Lemma 2.1) is also true. (A few small changes of 
interpretation are needed, of course. For example, in (C2.S) and in the" big-O" and 
"little-o" notations, one replaces r --> 1 by r -> 00. Also in the LLD (C2.6) the extra 
term is loge r) instead of log(l - r t I. Here the exceptional set E is "thin" in the 
sense that it has finite Lebesgue measure (E <: (0, 00)").) 

In this en case one has the additional useful fact that a holomorphic function I on 
en has small characteristic T(r, f) = O(log(r» if and only if I is a polynomial. 
Hence, if I is a polynomial and g is any nonconstant holomorphic function on en, 
then T(r, f) = o(T(r, eg » (which is necessary as part of the hypotheses of the H-O 
Lemma as we apply it). See [KUJ, Proposition 4.4ff]. For holomorphic functions this 
can be proved by estimating the Poisson integral for log III much as in the proof of 
Lemma 2.3 to show that I is of polynomial growth as a function of XI (when x;, i 7'= j, 
are held fixed), for each j = 1,2, ... , n. By the Liouville theorem in one variable, 
then, I is a polynomial separately in each Xj' That I is globally a polynomial now 
follows from [PAL]. (There must be many other proofs of our assertion in the 
literature.) 
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THEOREM 5.2 (TARSKI'S CONJECTURE FOR ~). If t, s are any two terms in ~ and 
t == s, then the identity t = s is provable from the axioms 

x+(y+z)=(x+y)+z, 
x + y = y + x, 

x(yz) = (xy)z, 
xy = yx, 

x + 0 = x, 1 . x = x, 
x( y + z) = xy + xz, 0 . x = 0, 

exp( x + y) = exp( x) . exp( y ), 

together with all axioms giving the facts of addition, multiplication and exponentiation 
for constants from C. 

PROOF. Because we have included here a constant for -1, the operation of 
subtraction is available and we need only consider the case where s is O. That is, if 
t E ~ then we must show that t = 0 is formally derivable whenever t == O. 

Moreover, it is easy to show that for any term t E ~ there are terms sp ... ,Sk E ~ 
and polynomials PI' ... ,Pk in n variables, with coefficients in C (also realized as 
terms in ~) so that the identity 

t = PI· exp( s I) + ... + P k . exp( s k ) 

is provable from the permitted axioms. We will prove the theorem by induction on 
the total number of symbols in the sequence s I' ... ,s k' showing that if PI' ... ,p k are 
polynomials, Sl, ... ,Sk E ~ and Plexp(sl) + ... + Pk exp(sk) == 0, then PI· exp(sl) 
+ ... +Pk . exp(sk) = 0 is formally derivable. (Note we allow Sj to be 0.) 

First suppose k = 1: if PI· exp(sl) == 0 then PI == O. It is well known thatPI = 0 
is provable from the admitted axioms, 5ince PI is a polynomial. Hence also 
PI exp( S j) = 0 is provable. 

From now on assume k > 1. Assume PI' ... ,p k are polynomials, S I' ... ,S k E ~ and 
PI· exp(sl) + ... + Pk . exp(sk) == O. For 1 ,,;;;; j ,,;;;; k let 7Tj be the function on cn 
defined by exp(s). (Choose n so that all variables in each PJ and sJ are included 
among XI' ... ,xn.) Note that we may assume each 7Tj is nowhere equal to 0 on en. 

After dividing by 7Tk we have 

PI(7TI/7Tk ) + ... +Pk-I(7Tk- I / 7Tk) == -Pk· 

Suppose first that we can apply the H -0 Lemma. In this setting, this means 
T( r, 7T/7Tk ) =1= O(log( r» for each 1 ,,;;;; i ,,;;;; k - 1. If so, then there exist constants 
cl, ... ,Ck - I (not all 0) so that 

CIPI(7TI/7Tk) + ... +Ck-IPk-I(7Tk-I/7Tk) == 0, 

which gives us an identity with k - 1 exponentials after multiplying through by 7Tk • 

By the induction hypothesis, the formal identity 

CIPI exp(sj) + ... +Ck-IPk-1 exp(sk_l) = 0 

is derivable in the allowed system. Now we can use this identity to solve for one of 
the expressions Pj· exp(sj) (1 ,,;;;;j";;;; k - 1) and eliminate it from the original 
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expression p,exp(s,) + ... +PkexP(Sk)' The resulting identity (setting this expres-
sion = 0) has at most k - I exponentials, so it is derivable. From this one deduces 
the desired identity 

p,exp(s,) + ... +PkexP(Sk) = O. 

On the other hand, it may happen that for some i (l ~ i ~ k - I), T(r, 1T/1Tk ) = 
O(log r). Since 1Ti , 1Tk are nowhere 0, it follows that 1T{ == C1Tk for some constant c. (By 
(C2.3) the same kind of "big-a" estimate holds for 1Tk /1T{, and hence both 1T/1Tk and 
1Tk/1Ti are polynomials.) That is, exp(sJ == c . exp(sk) so that for some constant 
dEC, c = ed and Si - Sk == d. Using the induction hypothesis, we therefore get a 
formal derivation of s{ - Sk - d = 0 and, hence, also of exp(sJ = c . exp(sd. This 
allows us to reduce the original identity to one involving only exp( s) for I ~ j ~ 
k - I, which will be derivable by the induction hypothesis. Again this yields a 
derivation of the identity p,exp(s,) + ... + PkexP(sk) = 0 and completes the proof. 

Theorem 5.2 has an interesting corollary for trigonometric functions, which we 
present next. Consider terms in a language with constants for all the complex 
numbers, variables x" x 2 , . .. and function symbols for addition and multiplication 
and for sin and cos. Let ~* be the set of all these terms. 

COROLLARY 5.3. If t, s are any two terms in ~* and t == s, then the identity t = s is 
provable from the axioms 

x + (y + z) = (x + y) + z, 
x + Y = Y + x, 

x(yz) = (xy)z, 
xy = yx, 

x + 0 = x, I . x = x, 
x (y + z) = xy + xz, 0 . x = 0, 

sin(x + y) = sin(x )cos(y) + cos(x )sin(y), 

together with all axioms giving the facts of addition, multiplication, sin and cos for 
constants from C. 

PROOF. We use the fact that in the context of the complex plane, eX is interdefina-
ble with sin and cos. Note that since the allowed axioms include the identities 
sine 1T /2) = I and cos( 1T /2) = 0, we can prove cos( x) = sine x + 1T /2). This in turn 
allows us to derive the other addition identity, 

cos( x + y) = cos( x )cos( y) - sin( x )sin( y ). 

In ~* let EXP(x) be an abbreviation for the term cos(-i . x) + i . sin(-i . x). It is 
easy to verify that from the allowed identities in ~* one can prove the exponential 
identity 

EXP(x + y) = Exp(x) . Exp(y) 

as well as all the numerical facts involving EXP. 
Given any term t in ~*, we define a term t~ in ~ by replacing (inductively) each 

term of the form sine s) by 
-.5i· (exp(i' s) - exp(-i' s)), 

and cos(s) by 
.5 . (exp( i . s) + exp( -i . s )). 
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If t is any term in ~ we define t* in ~* by replacing (inductively) each term of the 
form exp(s) by EXP(s). Note that if t E ~* then the identity t = (t#)* is provable 
from the axioms allowed in Corollary 5.3. 

Now suppose t, s E ~* and t == s. Then t# == s#, so the identity t# = s# is provable 
from the axioms allowed in Theorem 5.2. Hence (t#)* = (s#)* is provable in the 
system of Corollary 5.3. It follows that t = s is also provable in that system, 
completing the proof. 

REMARK. Suppose t, s E ~* and t, s only contain real constants. We do not know 
if there is a proof of the identity t = s in the system of Corollary 5.3 in which only 
real constants appear. 

Next we settle positively a conjecture which was communicated to one of us by S. 
Schanuel. 

THEOREM 5.4. Let t E 2: and suppose the function represented by t is nowhere equal 
to O. Then log(t) is in ~, in the sense that t == e S for some s E ~. 

PROOF. Let 7T be the function (on en say) defined by t. There is some hoI om orphic 
function G on en so that 7T == eGo We may suppose t is a term of the form 
p]exp(s]) + ... +Pkexp(sk)' and we argue by induction on the number of symbols 
in s]"",Sk as in the proof of Theorem 5.2. Clearly we are done if k = 1. Assume 
k> 1 and for 1 ~j ~ k let 7Tj be the function on en defined by exp(sj)' Then we 
have p]7T] + ... +Pk7Tk == e G so that p](7T]e- G ) + ... +Pk(7Tke- G ) == 1. We may 
assume the functions p]7T]e- G , ..• ,Pk7Tke-G are linearly independent (otherwise we 
could replace t by a simpler term to which the induction hypothesis would apply). 
Hence the H-O Lemma cannot apply. It follows as argued in the proof of Theorem 
5.2 that there must exist 1 ~ i < j ~ k so that 7T;/7Tj is identically constant. Again this 
permits us to reduce the complexity of t and to apply the induction hypothesis. This 
completes the proof. 

REMARK. In this section we have only considered the language in which all 
constants for complex numbers are included. This does not immediately tell us 
which constants may be needed in the formal proof of a given (true) identity t == S. 

This information is more available in the form of results such as those in §3, where a 
specific set of constants S is considered. Indeed, it is not too difficult to carry out 
such a more detailed analysis here, although we have chosen not to do so. Also it 
would be possible to prove results such as Theorems 5.2 and 5.3 when, in addition, 
the exponential function is taken to have some other base than the number e. 
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