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BRAUER'S HEIGHT CONJECTURE 
FOR p-SOLV ABLE GROUPS 

BY 

DAVID GLUCK AND THOMAS R. WOLF 

ABSTRACT. We complete the proof of the height conjecture for p-solvable groups, 
using the classification of finite simple groups. 

Introduction. The height conjecture is the statement that a p-block of a finite 
group has an abelian defect group if and only if all ordinary irreducible characters in 
the block have height zero. 

While a proof of this conjecture for general finite groups seems remote, consider-
able progress has been made toward proving it for p-solvable groups. Fong [5] 
proved that all characters in a block with abelian defect group have height zero in a 
p-solvable group, and he proved the converse direction for the principal block [5] 
and for solvable groups in the case that p is the largest prime divisor of the group 
order [6]. 

Recently [24, 8], the converse direction has been established for all solvable 
groups. In this paper we prove the converse direction for all p-solvable groups, 
assuming the classification of finite simple groups. 

In its general outline this paper resembles [8], where we proved the height 
conjecture for solvable groups. The reader is assumed to have some familiarity with 
[8]. 

Now we state our main results, the analogs of the main results of [8J. 

THEOREM A. Suppose that N <J G, that GIN is p-solvable, that cp E Irr(N), and 
that pt(x(l)/cp(l)) for all X E Irr(Glcp)· Then the p-Sylow subgroups of GIN are 
abelian. 

THEOREM B. Let B be a p-block of a p-solvable group with defect group D. If every 
ordinary irreducible character in B has height zero, then D is abelian. 

THEOREM C. Suppose that N <J G, that GIN is p-solvable, and that cp E Irr(N). 
Suppose that e is an integer such that pe+I does not divide x(l)/cp(l) for all 
X E Irr( G I cp). Then the derived length of a p-Sylow subgroup of GIN is at most 
2e + 1. 

THEOREM D. Let Band D be as in Theorem B. If every ordinary irreducible 
character in B has height at most e, then the derived length of D is at most 2e + 1. 
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Theorems B, C and D follow from Theorem A as in [8], so the rest of this paper is 
devoted to the proof of Theorem A. 

The next proposition, essentially proved by Fong [6], describes the minimal 
counterexample to Theorem A. Note that Nand q; in the statement of Theorem A 
correspond to Z and "11. in the statement of Proposition 0, and that N in the statement 
of Proposition 0 does not correspond to any subgroup in the statement of Theorem 
A. 

PROPOSITION O. Let G be a minimal counterexample to Theorem A. Then G has 
normal subgroups Z ~ N ~ K, and Z has a faithful linear character "11., such that the 
following conditions are satisfied: 

(l) Z = Op'( G) is cyclic and central in G. 
(2) N / Z is a self-centralizing p-chief factor of G. 
(3)plIK: NlandlG: KI=p· 
(4)G= OP'(G). 
(5) If V = Irr(N /Z), the irreducible GF( p )[G/N]-module dual to N /Z, then every 

element of V is centralized by some p-Sylow subgroup of G / N. 
(6)plx(l)forallx E Irr(GI"1I.). 

PROOF. This follows as in Steps 1-4 of the proof of [8, Theorem 4.4]. The 
assumption in that theorem, that p = 3, is irrelevant in Steps 1-4. as is the 
assumption that G /Z is solvable rather than merely p-solvable. 

The notation of Proposition 0 is used in the following summary of the contents of 
this paper. 

After some preliminary lemmas on simple groups in § 1, we consider in §2 the case 
that V is an imprimitive GF(p)[G/N]-module. We use a variety of facts about 
permutation groups and character degrees of groups of Lie type to show that G must 
be solvable. 

In §3 we consider the case that V is a primitive GF( p)[ G / N ]-module and 
F(G/N) = F*(G/N), where F and F* denote the Fitting and generalized Fitting 
subgroups. We use a variant of the estimation technique in [8, §2] to show that G 
must be solvable. 

In §4 we examine the remaining case that Vis primitive and F(G/N) -=1= F*(G/N). 
We use standard facts about orders, automorphisms, and multipliers of groups of 
Lie type and a result on permutation groups from §2 to show that Irr( G 1"11.) contains 
a character of degree divisible by p. This contradicts condition (6) in Proposition 0 
and so completes the proof of Theorem A. 

1. This section contains some general lemmas which are useful in working with 
nonsolvable p-solvable groups. 

LEMMA 1.1. Let p be a prime number and let n be a positive integer. Suppose that 
neither of the following situations occurs: 

(i) n = 6 and p = 2. 
(ii) n = 2 and p is a M ersenne prime. 
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Then there is a prime number r such that rip" - 1 and r t pm - 1 for 0 < m < n, 
Such a prime number r is called a primitive divisor of pn - 1. 

PROOF. See [8, Lemma 3.3]. 

LEMMA 1.2. Let S be a simple adjoint group of Lie type. Let d = I Z( G) I , where G is 
the universal group of the same type as S. Then: 

(i)dIISI· 
(ii) If p is a prime number and p tiS I , then p > d. 
(iii) There exists a prime number r > 3 such that r II S I , r t d, and r is greater than 

the order I of the group of field automorphisms of S. 

PROOF. To prove (i) and (ii) we may assume that G = An(q) or G =2An(q) (see [9, 
p. 491]). Then d = (n + 1, q ± 1), and we may assume that n ~ 3. Since qJ - 1 
divides I G I whenever j is' even and j .;;; n + 1, it follows that (q4 - 1)( q2 - 1) 
divides IGI and n + l.;;;p - 1. Then d 2 11GI, dIIG/Z(G)I, and p > n + 1 ~ d. 
This proves (i) and (ii). 

To prove (iii), write q = qb for a prime number qo and a positive integer I. If G is 
not An( q) or 2An( q), there is an integer m ~ 2 such that (qm + 1) II G I . If G = 2An( q), 
there is an integer m ~ 3 such that m ~ nand (qm + 1) II G I. In either case, let r be 
a primitive divisor of q2m - 1 = qJml - 1, allowing r = 7 if q2m = 26. Then r II G I, 
2ml.;;; r - 1, and r ~ 5. Then r II S I by (i), and r > I, the order of the group of field 
automorphisms of S. Also r;;;' 5 > d if G ~2An(q) and r> 2m ;;;. n + 1 ;;;. d if 
G ~2An(q). 

Thus, we may assume that G ~ An(q), so that qn+1 - 1 divides I GI. If I(n + 1);;;' 
3, let r be a primitive divisor of qn+1 - 1 = qgn+l) - 1. Then I(n + 1)';;; r - 1, 
r;;;' 5, r > I, and r > n + 1 ;;;. d. If len + 1) .;;; 3, then d.;;; 3 and /.;;; 3, so we can let 
r be any prime greater than 3 which divides I S I . 

LEMMA 1.3. Let S be a nonabelian simple group which admits a coprime automor-
phism of prime order p. Then S is an adjoint group of Lie type, S admits a field 
automorphism of order p, and Out(S) has a cyclic and central p-Sylow subgroup. 

PROOF. By [10, p. 169] the sporadic and alternating groups have no coprime 
automorphisms. By [12] the simple group 2 Fi2)' has no coprime automorphism. 
Thus S is an adjoint group of Lie type. If S is a Suzuki or Ree group then Aut(S) is 
generated by the inner and field automorphisms of S (see [23, 18, 19]). Thus, we may 
assume that S is not a Suzuki or Ree group. In particular, p > 3. 

By [20, p. 608], we have D <J F <J Out(S), where D is the image in Out(S) of the 
group of diagonal automorphisms of S, and F is the image in Out(S) of the group 
generated by the diagonal and field automorphisms of S. Moreover I D 1= d, where d 
is as in Lemma 1.2, and Out(S)/ F is isomorphic to the group of graph automor-
phisms of S, a {2, 3}-group. 

Since p > 3 and p > d by Lemma 1.2(ii), it follows that S admits a field 
automorphism of order p. Since graph and field automorphisms commute [10, p. 
169] and since D <J F and p > d, the rest of Lemma 1.3 follows. 
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COROLLARY 1.4. Let S be a non abelian simple group with Schur multiplier M. Then 
there is a prime number r such that r Ii S 1 , r f 1 M I, and r f 1 Out(S) I· 

PROOF. This is clear if S is sporadic, alternating, or 2F4(2)" since then both M and 
Out(S) are {2, 3}-groups. 

Otherwise, S is an adjoint group of Lie type. By [11, p. 280], any prime divisor of 
1 M 1 is 2, 3, or a divisor of d. Thus the result follows from Lemma l.2 and the 
description of Out(S) in the proof of Lemma 1.3. 

LEMMA l.5. Let G be a finite group. Let F( G) and P( G) denote the Fitting and 
generalized Fitting subgroups of G. If L/ W is a chief factor of G such that L = L' and 
W = Z(L) then L ~ F*(G). Conversely, if F*(G) =1= F(G), then F*(G) contains a 
perfect subgroup L such that L/Z(L) is a chief factor of G. 

PROOF. See [3, p. 128]. 

2. In this section we show that the GF( p)[ G /N]-module Vof Proposition 0 must 
be primitive. We first record several lemmas which will be needed in the proof of 
Theorem 2.5, the main result of this section. 

LEMMA 2.1. Let G be a nonsolvable group which acts faithfully on a finite vector 
space V. Suppose G acts transitively on V - {O}. Then the (unique) nonsolvable 
composition factor of G is not a Suzuki group. 

PROOF. See the discussion preceding [13, Proposition 5.1]. 

LEMMA 2.2. Let G be a transitive permutation group on a set Q of n points, and let 
P E SylpCG) for some prime p dividing 1 GI· If P has f fixed points on Q, then 
f~ (n - 1)/2. 

PROOF. This follows from [14, Corollary 2]. 

LEMMA 2.3. Let G be a primitive permutation group on Q, with degree nand socle N. 
Then one of the following occurs: 

(i) N is elementary abelian of order pd and regular; n = pd where p is prime. 
(ii) N = TI X ... X T"" where T I , . •• , T", are isomorphic to a fixed simple group T. 

Moreover, either 
(a) T is the socle of a primitive group Go of degree no and G ~ Go WrSm (with the 

product action), where n = nO', or 
(b) m = kl and n =1 Ti(k-I)/. The permutation group induced by G on {TI ,··., Tm} 

has {TI , .•• , Tk } as a block of imprimitivity. The group induced on the set of blocks is 
transitive. 

PROOF. See Theorem 4.1 and Remark 2 following Theorem 4.1 in [4]. In (ii)(a) the 
statement that Go Wr S", acts with the product action means that Go Wr Sm acts on 
Q = QO', where 1 Qo 1= no' The base group of the wreath product acts componentwise 
on QO', while S", acts by permuting coordinates. See [4, p. 5] for a formal definition 
of "product action". 

The following impressive result does not depend on the classification of simple 
groups. 
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LEMMA 2.4. Let G be a uniprimitive permutation group of degree n. Then 

1 G 1< exp( 4(,; log2 n ). 

PROOF. This is [2, Corollary 3.3]. 
Another important ingredient in the proof of Theorem 2.5 will be the lower 

bounds found by Landazuri and Seitz for the smallest degree of a nontrivial 
projective representation of a simple group of Lie type. Their results are tabulated in 
[17, p. 419]. We will not reproduce their table here, except to note a misprint; the 
bound for PSO(2n + I, q)', q > 5, should read q2(n-l) - I, as in [17, Lemma 3.3]. 

DEFINITION. In this paper J denotes the affine semilinear group over GF(8). Thus 
J is a solvable group of order 168, which acts 2-transitively on 8 points. 

THEOREM 2.5. Let G be a transitive permutation group on a finite set Q. Suppose 
IG: Op,(G)I= p and G = OP'(G) for an odd prime p. Suppose each subset of Q is 
stabilized by an element of order p in G. Then p = 3, 1 Q 1 = 8, and G ;:;; J. 

PROOF. Let G be a counterexample to the theorem. The proof will be carried out 
in a series of steps. 

Step I. G is primitive on Q. 
PROOF. We write Q as a disjoint union of blocks so that G acts as a primitive 

group on the set of blocks. We may assume that each block contains more than one 
point. 

By induction on 1 Q 1 , the conclusion of the theorem is valid for the action of G on 
the set of blocks. Thus p = 3, we may write Q = B I U ... U Bg, and G acts as J on 
the set of blocks. Choose A ,.;; Q to consist of 2 points from B I' one point from B2 , 

and one point from B3 . Any element of order 3 in G which stabilizes A must stabilize 
B I' B2 and B3• This contradicts the fact that elements of order 3 in J have only two 
fixed points in the action of Jon 8 points. 

Step 2. Let 1 Q 1= n. Then: 
(i) 2n / 3 <I Syl/G) I. 
(ii)24n <ISyl/G)lifp > 3. 
(iii) If G is not 2-transitive on Q, then n ,.;; 10 8• 

PROOF. By Lemma 2.2, an element of order pin G fixes less than nj2 points of Q. 
Thus, an element of order pin G has at most 2nj3 cycles on Q if p = 3 and at most 
.6n cycles on Q if p > 3. It follows that the number of ordered pairs « g), A), such 
that (g)E Sylp(G), A,.;; Q, and g fixes A, is at most 22n/3Isylp(G)1 ifp = 3 and at 
most 2 6n 1 Syl/ G) 1 if p > 3. Since the number of such ordered pairs must exceed the 
number of subsets of Q, parts (i) and (ii) follow. 

If G is not 2-transitive, then part (i) and Lemma 2.4 imply (iii), 
Step 3. G does not have an elementary abelian regular normal subgroup. 
PROOF. Assume first that G is not solvable. Let n = qrn for a prime number q. 

Since 1 GL(m, q) 1< qm2, Step 2 yields 2qm /3 < qm2+rn, or 

(Iog2j3)qm < {m 2 + m)logq. 
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Since G is nonsolvable, m :? 2, and it is easy to see that (*) holds only if qn1 is 32 , 33 , 

34 ,5 2,72 or 2m for some m <s; 7. In none of these cases is I GL(m, q) I divisible by the 
cube of the order of a simple group or by the order of a simple group which admits a 
coprime automorphism. Thus G = OP'(G) can't have a nonsolvable chief factor. 

Hence G is solvable and [8, Lemma 3.1] implies that p = 3, n = 8 and G ;;:; J. 
Step 4. G has a simple socle. 
We adopt the notation of Lemma 2.3. Assume G does not have a simple socle. By 

Step 3, G falls under case (ii)(a) of Lemma 2.3 for m > I, or under case (ii)(b) of 
Lemma 2.3. 

Suppose first that G falls under case (ii)(a) with m > 1. Let Qo be the set permuted 
by Go' so that Q may be identified with the cartesian product Qo'. Let a and f3 be 
distinct points in Qo' For 6 <s; {1,2, . .. ,m}, define wE Q by the condition that 
Wi = a for i E 6 and Wi = f3 for i f1. 6. Define 1/ E Q by the condition that 1/i = a 
for all i <S; m. Choose x E G such that x has order p and x stabilizes the subset 
{w, 1/} of Q. Then x must stabilize 6 in its action on { 1,2, ... , m}. 

Since G acts transitively on {TI, ... ,Tm}' the action of G on {TI, ... ,Tn,} satisfies 
the hypotheses of Theorem 2.5. By induction on n, it follows that m = 8 and p = 3. 
Thus T is a Suzuki group. The classification of the maximal subgroups of the Suzuki 
groups [23, Theorem 9] yields that no:? 82 + 1 = 65. Thus n> 10 8, contradicting 
Step 2(iii). 

Next suppose (ii)(b) of Lemma 2.3 holds. It is possible that T admits a coprime 
automorphism of order p. In this case I TI:?I Sz(8) 1= 29,120 and I TI2 > 10 8• By Step 
2, n =1 TI(k-I)1 < 10 8, so k = 2, 1= 1, and Soc(G) = TI X T2 . Then G <S; 

OP'(Aut(TI X T2)) <S; Aut TI X Aut T2. Since OP'(G) = G, Lemma 1.3 implies that 
I G 1= pi TI2 and I Sylp(G) 1<1 T12. Since I TI:? 29,120, this contradicts Step 2(i). 

Thus we assume that T does not admit a coprime automorphism of order p. If 
/ > 1, our assumption that OP'(G) = G implies that an element of order p in G 
permutes the / blocks TI X ... X Tk, . .. , Tk(l-I)+ I X ... X Tkl non trivially. Hence 
/ :? p. If / = 1, an element of order p in G permutes {TI , ••• , Td non trivially, since 
OP'(G) = G and T does not admit a coprime automorphism of order p. Hence 
k :? p. In either case (k - 1)/:? P - 1. 

If p:? 7, then n =1 TI<k-I)/:? 60 6 > 10 8. If p = 5, then I TI* 60 and so n = 
I Tlu -1)1 :?I TI4 > 10 8• If p = 3, then I TI:?I Sz(8) 1= 29,120 and n = I TI(k-1)1 :?I TI2 
> 10 8. Hence, n > 10 8 and we are done by Step 2(iii). 

Step 5. Conclusion. 
By Lemmas 2.3 and 1.2, I G 1= pi TI and T admits a field automorphism of order 

p. 
First suppose T = Sz(q) for an odd power q of 2. Let a E Q. Then n =1 G: Ga 1= 

IT: Ta I. By [23, Theorem 9], n =1 T: Tn I:? q2 + 1, so Step 2(i) yields a contradic-
tion. Hence, for the rest of this step we suppose T * Sz( q) and, in particular, p > 3. 

Let L( T) be the lower bound for the smallest degree of a nontrivial projective 
representation of T given in [17, p. 419]. Thus in the notation of [17], L(T) <S; leT, p) 
and L( T) is the number which actually appears in the table in [17, p. 419]. Let 
T = G( q) be an adjoint group of type G over the field of q elements. Since p > 3, 
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q ~ 32 and q ~ 243 if T has type 2G2. If G is of exceptional Lie type then 
L(T) ~ 104 and I TI~ L(T)lO, Thus 24L (T) >1 TI, which contradicts Step 2(ii), 

Hence, T is a classical group, If T is of type Am' Bm, Cm' Dm, 2Am or 2Dm for 
m ~ 2, then it is immediate from [17, p. 419] that n > L(T) ~ (qm - 1)/2> 500. 
As q ~ 32, this implies that log(2n) > m log q > 3m. By the order formulas, 

ITI ~IBm(q)1 ~ q4m 2 = (qmtm ~ (3ntm ~ 3n 2Iog(3n), 

By Step 2, I TI> 24n. Thus 3n 2Iog(3n) > 24n , contradicting n > 500. 
Thus T = PSL(2, q). If q is odd then q ~ 243 and 24L(T) >1 TI. If q is even then 

24L (T) = 24 (q-l) >1 TI for q> 32. Thus T = SLz(32). Since G is primitive on ~, 
T <J G is transitive on ~. If T were not doubly transitive on ~, then n > 2( q - 1) > 
60. Since 24 (60) >1 TI, T must be doubly transitive on ~. By [4, Theorem 5.3], 
n = 33. 

Now let x E G = Aut(SL2(32» have order p = 5. Since 5 t I TI and T is transitive 
on ~, it follows from [16, Lemma 13.8] that the fixed points of x in ~ form a single 
orbit under CT(x) ~ S3' Since the number of fixed points of x is congruent to 
3 mod 5, x has 3 fixed points in ~. Then no set of size 4 in ~ is stabilized by an 
element of order 5 in G. This contradiction completes the proof of Theorem 2.5. 

COROLLARY 2.6. Suppose I G: Op,(G) 1= p and G = OP'(G) for an odd prime p. 
Suppose G acts faithfully and imprimitively on a finite vector space V of characteristic p 
so that each v E V is centralized by a p-Sylow subgroup of G. Then G is solvable. 

PROOF. Let V = VI EB ... EB v" be an imprirnitivity decomposition for the action 
of G. Let G I be the stabilizer in G of VI and let C = Coree< G I ). Let ~ = {I, 2, ... ,n}. 
Let Ll ~ ~. By choosing a vector whose nonzero components correspond to Ll, we see 
that (GIC,~) satisfies the hypotheses of Theorem 2.5. As in [8, Lemma 3.2] C acts 
transitively on VI - {O}. By Lemma 2.1, C is solvable. Thus G is solvable. 

3. Let G and N be as in Proposition O. Suppose that F*( G / N) = F( GIN). 
Theorem 3.1 below shows that G must be solvable. The groups G and K below 
correspond to GIN and KIN in Proposition O. 

THEOREM 3.1. Let I G: Op,(G) 1= p and G = OP'(G) for an odd prime p. Suppose 
that V is a faithful irreducible primitive GF( p )[ G]-module. Suppose p II ce< x) I for all 
x E V. If F*( G) = F( G), then G is solvable. 

PROOF. Let K = G'. The hypotheses imply that K is the unique maximal normal 
subgroup of G. The proof is carried out in a series of steps. 

Step 1. There is a unique maximal normal abelian subgroup Z of G. Furthermore, 
Z is cyclic and Z = Z( K). 

Proof. As in Step 2 of [8, Theorem 2.3]. 
Step 2. Let EIZ be a chief factor of G, let B = CG(E) and let C = Ce<E/Z). 

Then: 
(i) EIZ is an elementary abelian q-group for a prime q and E ~ K. 
(ii) BE = C ~ K and B n E = Z. 
(iii) I EIZ 1= q2n for an integer n. 
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(iv) K/C is isomorphic to a subgroup of the symplectic group Sp(2n, q). 
(v) If P':;; Cc(Z), then G/C is isomorphic to a subgroup of Sp(2n, q). 
PROOF. If Z = K, the conclusion of the theorem is satisfied, so we assume Z < K. 

Since K is the unique maximal normal subgroup of G, E .:;; K. Since E / Z is a chief 
factor of G and Z':;; Z(K), E is nilpotent or E/Z is a direct sum of isomorphic 
nonabelian simple groups. In either case E .:;; F*( G) by Lemma 1.5. The hypotheses 
and Step 1 yield that E is nilpotent but nonabelian. The rest of the proof follows 
that of Step 4 in [8, Theorem 2.3]. 

Step 3. There exist E" ... ,Em':;; G such that: 
(i) E;/Z is a chief factor of G for each i. 
(ii) [Ei' E) = I when i =1= j. 
(iii) M/Z = E,/Z X ... X Em/Z, where M is defined to be E,E2 •.. Em' 
(iv) CaCM) = Z and Cc/z(M/Z) = M/Z. 
PROOF. As in Step 6 of [24, Theorem 3.3]. We remark that M = F(G). 
Step 4. Let W=I= 0 be an irreducible Z-submodule of V and let e =IM: ZI'/2. 

Then dim V = te(dim W) for an integer t. 
PROOF. As in Step 6 of [8, Theorem 2.3]. 
Step 5. Let Wbe as in Step 4 and let qi be the prime divisor of E;/Z. Then: 
(i) I ZIIO WI-I). 
(ii) qi I (I WI -1) for each i. 
PROOF. As in Step 14 of [24, Theorem 3.3]. 
Step 6. IE /Z I = 4 if and only if C = K. In this situation, p = 3. 
PROOF. As in Step 7 of [24, Theorem 3.3]. 
Step 7. Assume that I E/ZI=I= 4. Let P E Syl/G). Then: 
(i) If s is a prime divisor of I F( G/C) I , then s I q2n - 1. 
(ii) If 1 =1= S E Syl,(F(G/C» and if Cs(P) = 1, then dimCE/z(P) = 2n/p. 
(iii) If G/C is solvable, then 1 =1= Cc/c(F(G/C» .:;; F(G/C) .:;; K/C. 
(iv) If F(G/C) is cyclic and G/C is solvable, then F(G/C) = K/C and 

dimCE/z(P) = 2n/p. 
PROOF. As in Step 11 of [24, Theorem 3.3]. 
Step 8. Let P E Sylp(G). Then: 
(i) I Sylp( G) II C v(P) 1;;.1 VI· 
(ii) I Sylp(G) 1>1 VI'/2. 
PROOF. As in Step 7 of [8, Theorem 2.3]. Note that we may replace the;;. sign in 

(ii) by a > sign, since I VI'/2 is not a p' -integer. 
Step 9. Let q = 2, p = 3, n =1= 1. Then: 
(i) n ;;. 6. 
(ii) If n .:;; 7 and K/C is nonsolvable, then I K/Ci.:;; 228. 
PROOF. We first assume that K/C is solvable. Suppose that n = 5. Since p = 3 

and I Sp( 10,2) 1= 36 . 52 . 7 . 11 . 17 . 31 . 225 , it follows from Steps 2(iv) and 7(i),(iv) 
that I F( G/C) 1111 . 31 and 3110. Thus, n =1= 5 and similarly, n =1= 2. If n = 4, then 
IF(G/C)115 2 . 17 by Steps 2(iv) and 7(i). Since Cc/dF(G/C».:;; K/C, a 3-Sylow 
subgroup of G must act non trivially on the 5-Sylow subgroup of F( G /C). Then Step 
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7(iii) yields a contradiction, Thus n -=/= 4. If n = 3, then Step 7 yields that F( G /C) = 
K/C is cyclic of order 7 and G/C is a Frobenius group of order 21. It is easy to see 
that G /C has exactly two nonisomorphic faithful irreducible representations over 
GF(2), both of degree 3. Thus, £/Z is not an irreducible G/C-module and not a 
chief factor of G, a contradiction. 

Thus, we may assume that K/C is nonsolvable and 2 ~ n ~ 7. There exists an 
integer d, and a chief factor R/T of G / C such that R/T is isomorphic to the direct 
product of d copies of a nonabelian simple group. Since I K/CI divides I Sp(l4, 2) I 
and 3+IK/CI, it follows that IK/CI divides 249 .53 .72 .11.13.17.43.127. 
Hence, d ~ 2 and since 03'(G/C) = G/C we have d = 1. Hence R/T is isomorphic 
to a Suzuki group which admits an automorphism of order 3. By the order formulas 
for the Suzuki groups and the bound on I K/CI above, it follows that R/T ~ Sz(8) 
and K/R and T/C are both solvable. Since I Out(Sz(8»1= 3, we may replace Rand 
T by K and Cd R/T), respectively, so that K/T ~ Sz(8) and T / C is solvable. 

Since 13 + I Sp(2n, 2) I for n ~ 5, it follows that n ;;;. 6. By the preceding paragraph 
T/C divides 243 .5 2 .7.11.17.31.43.127. By Step 7(i), I F(T/C) I divides 
52 . 7 if n = 6 and I F(T /C) I divides 43 . 127 if n = 7. A cyclic Sylow subgroup of 
F(T/C) is central in (G/C)' = K/C and in T/C. Since CT/cF(T/C) = F(T/C), it 
follows that IT /CI divides 23 . 52 . 7 if n = 6 and IT /CI divides 43 . 127 if n = 7. 
In either case I T /CI~ 2'3 and so I K/CI=I Sz(8) II T /CI~ 22R. 

Step 10. Let q = 2, P -=/= 3 and n -=/= 1. Then: 
(i) n ;;;. 4. 
(ii) If n = 4, then K/C is solvable. 
(iii) If n = 5 and K/C is nonsolvable, thenp = 5 and K/C ~ SLi32). 
PROOF. First suppose that n = 3. Since I K/CI divides I Sp(6, 2) 1= 29 . 34 . 5 . 7, 

the order formulas [9, p. 491) and Lemma 1.2 show that K/C involves no simple 
group which admits a coprime automorphism. Since G = OP'(G), it follows that 
K/C has no nonabelian simple chief factor. As G = OP'(G) and I K/CI is not 
divisible by the fifth power of the order of a nonabelian simple group, every chief 
factor of K/C must be solvable, so K/C is solvable, As p II Aut( £/Z) I and p -=/= 3, p 
must be 5, 7 or 31. By Step 7(i),(iii), 03(G/C) is elementary abelian of order 34 and 
p = 5. Hence, an element of order pin G has no fixed points on 0iG/C). By Step 
7(ii), 516, a contradiction. Thus n -=/= 3. Similarly n -=/= 2. 

If n = 4, the arguments of the preceding paragraph show that K/C is solvable. If 
n = 5, the arguments of the preceding paragraph show that K/C is solvable or that a 
composition series for KjC has a unique nonsolvable factor, which is isomorphic to 
SLi32). 

Thus, we may assume that n = 5, p = 5, and K/C has a unique nonsolvable 
composition factor, isomorphic to SL2(32). If F(G/C) = 1, then F*(G/C) ~ 
SL2(32). Since CG/dF*(GjC» ~ F*(G/C), by [3, Theorem 13.12), it follows that 
GjC ~ Aut(SLz(32» and K/C ~ SL2(32). 

We may assume that F(G/C) -=/= 1. Under this assumption we will show that K/C 
acts faithfully on an extraspecial group of order 2" . 
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Since E/Z is elementary abelian and Z ~ Z(E), each commutator of E has order 
2 and IE'I= 2. An application of Fitting's lemma to the coprime action of F(G/C) 
on 0iE)/E' yields that E/E' = (Eo/E') X (Z/E') for some Eo <J G. Since E/Z 
is chief and E is nonabelian, E' = Z( Eo) = 11>( Eo). Since IE' 1= 2, Eo is extraspecial 
of order 211 and K/C acts faithfully on Eo. 

By [15, p. 357], K/C is isomorphic to a subgroup of one of the two orthogonal 
groups 0+ (10, 2) or 0- (10, 2). By [15, p. 248], neither 10+ (10, 2) I nor 10- (10, 2) I 
is divisible by I SL2(32) I. Thus K/C has no non solvable composition factor, 
completing the proof of this step. 

Step II. If q" is 5, 7, 11,32 or 33, then K/C is solvable. Also q" =I=- 3. 
PROOF. Suppose that q" is 5, 7, II, 32 or 33 and K/C is nonsolvable. Our 

assumption that OP'(G) = G implies that K/C involves a simple group which admits 
a coprime automorphism of order p =I=- q, or that I K/C I is divisible by the pth power 
of the order of a nonabelian simple group. Since K/C is subgroup of Sp(2n, q), the 
order formulas [9, p. 491] yield a contradiction. 

If q" = 3, then I Aut(E/Z) = 48. Since p divides I Aut(E/Z) I ' this contradicts 
the hypothesis that p =I=- 2 and p t I K I . 

Step 12. Conclusion. 
We may choose an integer k ;;. ° such that I EjZ 1= 4 if and only if i ~ k. We let 

Co = K and define Ci to be the centralizer in Ci- I of EjZ, for I ~ i ~ m. By Step 
2(iv) applied to EjZ, Ci-I/Ci is isomorphic to a subgroup of Sp(2ni' qi) for each i. 
By Steps 6 and 3, Ck = K and Cm = M. Since I Sp(2n, q) 1< q21l2+1l, we have 
I Syl/G) I~I KI and 

m 

(I) log(ISylp(G)I)~logIZI+2klog2+ ~ (2n; + 3n,)logqi' 
i=k+1 

By Steps 4 and 8, we have 

(2) log(ISylp(G)I) > t2k - l ( i=¥+1 q!,') 10g1WI· 

By Step 5, qi ~I ZI<I WI for all i and thus 

(3) 2klog2 + i=~+ 1 (2n; + 3nJ log qi > ( -I + 2k - 1 i=¥+ 1 q!,') log I Wi 

and 
m m 

(4) 1+2k+ ~ (2n;+3n i»2k - 1 II q!". 
,=k+1 i=k+1 

We let 1= };k'+1 ni, so that (4) yields 1 + 2k + 2/2 + 31> 2k+1-1 and hence 
k + I ~ 8. If I = 0, then K = Cm = M and G is solvable. We may assume that I;;. 1. 

Suppose first that nk+ 1 = I. By Step 11, qk+ I ;;. 5. Then (4) yields 

6 + 2k + 2(1 - 1)2 + 3(1 - I) > 2k- 1 . 5 . 3/- 1• 

Hence I ~ 2. If 1=2, then qk+2 ;;. 5 by Step 11, and (4) gives the contradiction 
11 + 2k > 2k- 152 . Thus 1= 1 and qk+ I = 5, 7 or 11 by (4). Since CK = K and 
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CHI = M, it follows from Step 11 that G is solvable. We may assume that ni ;;' 2 
for all i > k. 

Suppose n HI = 2, so that q HI;;' 3 by Step 10. Now (4) becomes 

15 + 2k + 2(1 - 2)2 + 3(1 - 2) > 2k - 1 . 32 . 2'-2 

and /.,;; 5. But then Step 10 yields that qi ;;. 3 for i > k + 1 and (4) implies that 

15 + 2k + 2(i - 2)2 + 3(1- 2) > 2k - 1 . 3' 

and I.,;; 3. By the last paragraph I = 2. Then qH I is 3 or 5 by inequality (4). If 
qHI = 5, then (3) and (4) yield that k = 0 and 514 >1 WI23 / 2 , whence I WI< 11, 
contradicting Step 5. Thus qH I = 3. Since Ck = K and CH I = M, Step 11 implies 
that K/C and G are solvable. We may assume that n i ;;. 3 for all i > k. 

Suppose that nHI = 3, so that qHI ;;. 3 by Step 10. Inequality (4) yields that 

28 + 2k + 2(1 - 3)2 + 3(1 - 3) > 2k- 1 .33 .2'-3 

and that I < 6. By the last paragraph I = 3. Then 28 + 2k > 2k - Iq2+ I by (4). Hence 
qH I = 3 and k .,;; 1. Since Ck = K and CH I = M, Step 11 implies that K/C and G 
are solvable. Hence n i ;;. 4 for all i > k. 

Suppose n HI = 4. Then 

45 + 2k + 2(1 - 4)2 + 3(1 - 4) > 2k-Iqt+12'-4 

by (4) and / < 8. By the last paragraph I = 4. Then q = 2 or 3 and k = 0 if q = 3. If 
q = 3, then inequality (3) becomes 344 >1 WI79/ 2 , contradicting Step 5. Hence q = 2, 
and K/ M and G are solvable. Hence n i ;;. 5 for all i > k. 

Now m = k + 1, since k < k + /.,;; 8. If nH1 = 8, then k = 0 and ql = 2 by (4). 
Inequality (3) becomes 2152 >1 WII27, contradicting Step 5. Thus 5 .,;; n H I .,;; 7. 

Suppose nHI = 6. By (4), k.,;; 1. If k = 1, then qHI = 2 and (3) implies that 
292 >1 W163 , a contradiction. Thus k = 0 and (3) becomes 290 >1 W131. Since I WI is a 
power of p, it follows that I WI= p and pis 3, 5 or 7. Since I Z 1<1 WI= p, we have 
P";; CG(Z). By Step 2, IK/MI divides I Sp(l2,2)I and thus IK/ZI1248 . 38 .5 3 .72 . 
11 . 13 . 17 . 31. If p is 5 or 7, then P must fix and centralize an r-Sylow subgroup of 
K/Z, whenever r is 5, 7,13 or 17. Thus 

Inequality (2) now has 270 >1 WI 32 and so I WI< 5, a contradiction. Thus p = 3 = 
I WI· By Step 9, I SyI3(G) 1.,;;1 K/ZI.,;; 240 and inequality (2) yields 240 > 332 , a 
contradiction. Hence n HI =1= 6. Similarly n HI =1= 7. 

Thus n HI = 5 and qH I = 2. By Steps 9 and 10, we may assume that p = 5 and 
K/ M ;:;; SLi32). Since I K/ M 1< 215 , a modification of the argument used to derive 
inequality (3) shows that 

2k(log2) + 25 log 2 > (-1 + 16· 2k )log I WI. 
This contradicts the fact that I WI;;. P = 5 and completes the proof of the theorem. 
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4. In this section w~ consider the case that V is a primitive GF(p)[G/N]-module 
and F*(G/N) =1= F(G/N). The group G in the statements of Propositions 4.1 and 
4.2 corresponds to G / Ope N) in the setting of Proposition O. 

PROPOSITION 4.1. Let G = Op' (G) and I G: Op'( G) 1= p for an odd prime p, Suppose 
that L/ W is a non abelian simple chief factor of G. Suppose that p. E Irr( W) is 
invariant in G, Then some character in Irr( G I p.) has degree divisible by p, 

PROOF. By applying a character triple isomorphism [16, Theorem 11.28] we may 
suppose that p. is linear and faithful, so that W ~ Z( G). We must produce 
X E Irr( LIp.) such that p j II G(X) I . We will do this in a series of steps. 

Step 1. We may assume that L = L'. 
PROOF. Since (L/W)' = L/W, we have L = L'W and L'/L' n W ~ L/W Sup-

pose there were a character X' E Irr( L' I Jl en w) such that p j I I G( X') I . Then L = 
L'W~ IG(X'), and since L/L' ~ W/L' n W is cyclic, there exists XI E Irr(L) 
which extends X'. Since XI Iw extends X'(l)p.cnw, we may choose a linear character" 
of L/L' ~ W/L' n W so that XI" E Irr(LIp.)· Set X = XI"· Then X extends X', 
X E Irr(L I p.), and IG(X) ~ IG(X')· Thus p j I IG(X) I· 

Step 2. L/ W is an adjoint group of Lie type. 
PROOF. This follows from G = OP'(G) and Lemma 1.3. 
Step 3. There is an automorphism a of L/W and a prime number r such that 

I a 1= p,r j I WI ,r II L I ' and r j I C L/ w( a ) I . 
PROOF. By Step 2, L/W is an adjoint group over GF(qP) where q is a prime 

power; of course, q is not a power of p. Let G( qP) be the simply connected group of 
the same type, so that G( qP) is a central extension of L/W Then there is a simply 
connected and simple (in the sense of algebraic groups) algebraic group G and an 
endomorphism a of G such that Ga , the fixed point group, is G( q) (see [22, pp. 
82-83]). Let T = aP. Then GT is finite [21, 10.6] and GT = G(qP) by [21, 11.16, 
11.13]. Moreover, GT admits a and the restriction of a to GT has order p. Let 
dT = d(qP) =1 Z(GT) I. By Lemma 1.2, dT II GT/Z(GT) I, so p j I GT I· Consequently, 
CG,/Z(G,)(a) ~ Ga/Ga n Z(GT) and a induces an automorphism of order p on 
GT/Z(GT) ~ L/W 

By the order formulas [2, 11.16], IG(qP)1 has the form (qP)NIIj;;'l(qPm j - E) 
where each E; is a root of 1 of order 1,2 or 3. Choose notation so that m l ;:;. m 2 ;:;' •..• 

If G is untwisted let r be a primitive divisor of qpm, - 1. If G is of type 2B2, 2Dn, 
3D4, 2G2, 2F4, 2£6' let r be a primitive divisor of q4p - 1, q2np - 1, ql2p - 1, 
q6p - 1, ql2p - 1, ql8p - 1, respectively. If G is of type 2An' let r be a primitive 
divisor of q2 p(n+ I) - 1 if n is even and q2np - 1 if n is odd. Since p ;:;. 3, the 
exceptional cases 26 - 1 and p2 - 1 in Lemma 1.1 do not arise. Also r > 3. 

By the order formulas, rllG(qP)1 and rjd(qP). Hence rilL/WI. Let M be the 
Schur multiplier of G( qP). By [11, p. 280], any prime greater than 3 which divides 
I M I must divide d( qP). Since r j d( qP) and L = L' it follows that r j I WI . 

Finally, we show that r j I CL / W ( a) I. Note that I CL / W ( a) III G( q) I and I G( q) I has 
the form qNII p I( qmJ - E). If G is untwisted, the definition of r makes it clear that 
rjIG(q)l. If G has type 3D4, then any prime divisor of lG(q)1 divides ql2 - 1, so 
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r j I G( q) I. The verification for the other twisted types is equally trivial and is 
omitted. 

Step 4. Let r be as in Step 3 and let a E Aut(L/W) we have order p. Then 
rjICL/W(a)l· 

Proof. Let a be as in Step 3. By Lemma 1.3 and Sylow's theorem, ( a) and ( a) are 
conjugate in Aut(L/W). Thus rj I CL/W(a) I. 

Step 5. Any two elements of order p in G fix the same irreducible characters of L. 
PROOF. Let gl' g2 E G have order p. We may assume that glg2 1 E OP(G). By 

Lemma 1.3, glgzl induces an inner automorphism of L/W. Hence we may choose 
x E L so that glgzlx centralizes L/W. Since W~ Z(G), glgzlx also centralizes W. 
Therefore [glgzlx, L, L] = [L, glgzlx, L] = 1. The three subgroup lemma yields 
1 = [L, L, glgzlx] = [L, glgzlx] so glgzlx centralizes L. Hence glgzl induces an 
inner automorphism of L, and the result follows. 

Step 6. Let g E G be a fixed element of order p. Let x E L be a fixed element of 
order r. Suppose that (x g ) and (x) are conjugate in L. Then the conclusion of 
Proposition 4.1 holds. 

PROOF. Since p j I L I , g must normalize an L-congugate (y) of (x). By Step 4, g 
does not centralize (y). By Step 3, (y, W) = (y) X W. Let v be a faithful linear 
character of (y). Let 0 = (p, X V)L, let c =1 CL(y) 1/1 (y)X WI, and let e = v(y). 
By the definition of induced characters, O(y) = CL yES {Y, where S is a p'-subgroup 
of Gal(Q(e)/Q). Also 

where f3 E Gal(Q(e)/Q) has order p. Since the primitive rth roots of I are linearly 
independent over Q, it follows that og(y) =1= O(y), so og =1= O. 

Let X be an irreducible constituent of 0 such that Xg =1= X. Then X E Irr(L I p,). By 
Step 5, X is fixed by no element of order pin G, so p t I Ic(X) I. 

Step 7. Let g and x be as in Step 6. Suppose that (x g) and (x) are not conjugate 
in L. Then the conclusion of Proposition 4.1 holds. 

PROOF. As in Step 6, (x, W)= (x)X W. Let 0 = (l(x)X p,)L. Then O(x) 
=INL (x): (x, W)I=I= 0, while O(x g) = O. Hence 0 =1= og. The conclusion of Proposi-
tion 4.1 follows as in Step 6. 

PROPOSITION 4.2. Let G = OP'(G) and I G: Op,(G) 1= p for an odd prime p. Suppose 
that L/W is a nonabelian nonsimple chief factor of G. Suppose that p, E Irr(W) is 
invariant in G. Then some character in Irr( G I p,) has degree divisible by p. 

PROOF. As in the proof of Proposition 4.1, we may assume that p, is linear and 
faithful and that L = L'. We have L/W = II 7= I SjW, where the SjW are isomor-
phic simple groups. The Sj are transitively permuted by the action of G. 

Step 1. L is the central product of the Sj. 
PROOF. For i =1= j, x E Sj' Y E Sj' the map y ---> [x, y] defines a homomorphism 

from Sj to W whose kernel contains W. Since ~/W is simple, this homomorphism 
must be trivial. Thus [Sj' Sj] = 1. Since n Sj = W, the result follows. 

Step 2. Each Sj is perfect. 



150 DAVID GLUCK AND T. R. WOLF 

PROOF Since L is perfect, L is the product of the Sf. Since G permutes the S: 
transitively, S: n Wis the same group Wo for all i. Then L/Wo is the direct product 
of the Sf/Woo Thus I LI=I WO I II I SjWI ,so Wo = Wand so S: = Si for all i. 

To make the remaining steps of the proof clearer we introduce an "abstract" 
group S, isomorphic to each Si' Thus S is perfect and Z(S) :;::; W. 

Step 3. Let /-to be a faithful linear character of Z(S). Let A be the centralizer in 
Aut(S) of Z(S). Then A has more than one orbit on Irr(S I /-to)' 

PROOF. Suppose not. Then every character in Irr(S I /-to) has the same degree d. Let 
m =1 Irr(S I /-to) I. By [16, p. 84], IS: Z(S) 1= md 2 • 

By the argument in Step 5 of Proposition 4.1, any element of A which induces an 
inner automorphism of SiZeS) lies in Inn(S), so that A/Inn(S) is isomorphic to a 
subgroup of Out(S/Z(S». Therefore, m divides I Out(S/Z(S» I. 

Let r be as in Corollary 1.4, applied to S / Z( S). Since r II S / Z( S) I and r I 
I Out(S/Z(S» I, it follows that rl m and rid. Let R E Sylr(S), Since rll Z(S) I, 
R X Z(S) is a subgroup of S. Let () = (lR X /-to)s. Then rj()(l), which contradicts 
the fact that every irreducible constituent of () lies in Irr(S I /-to). 

Step 4. Let U be the permutation group on {S" ... , Sn} induced by the action of 
G. Then the conclusion of Proposition 4.2 holds if p > 3 or if U ~ J. 

PROOF. Since OP'(G) = G we have p II UI. By Theorem 2.5 we can choose 
Il ~ {SI"" ,Sn} so that no element of order p in G fixes Il. Fix isomorphisms J;: 
S ---> Si so that the restrictions /;: Z(S) ---> Ware the same function for all i, Then 
/-to = J;~I(/-t) is a well-defined linear character of Z(S). By Step 3, we may choose X, 
l/; E Irr( S I /-to) to lie in different A -orbits. Define 1/ E Irr( L I /-t) by requiring that 
1/ Is = (1/(l)/x(l»J;(X) for Si Eiland 1/ Is = (1/(l)/l/;(l»J;(l/;) for Si tt. Il. 

Suppose g E G fixes 1/. Then there exist indices i,j such that Si Ell, SJ tt. Il and 
Sl = SJ' Let c(g): Si ---> Sj be the isomorphism given by conjugating by g. Then 
/;C(g)Jj~I: S ---> S,/;C(g)Jj~1 E A, and/;c(g)Jj~1 takes X to l/;, a contradiction. 

Step 5. Conclusion. 
Let S, A and U be as above. We may assume by Step 4 that U:;::; J, p = 3, n = 8 

and SiZeS) :;::; Sz(q) for some odd power q of 2. If q > 8 then Sz(q) has a trivial 
Schur multiplier, so L is the direct product of 8 copies of Sz( q) and /-t = I. We can 
write {SI""'Ss} as the disjoint union of 3 sets Ill' 1l2' 113 so that no element of 
order 3 in G stabilizes all 3 sets. Now choose irreducible characters XI' X2' X3 of 
S :;::; Sz( q) whose degrees are all different. Define X E Irr( L I /-t) to be the direct 
product whose jth component is Xi if Sj E Il i. Then X is not fixed by an element of 
order 3 in G. 

Thus we may assume that SiZeS) :;::; Sz(8). By the argument in the preceding 
paragraph, we may assume that Z(S) =1= 1. Since S is perfect, Z(S) is cyclic, and the 
multiplier of Sz(8) is Z2 X Z2 by [1, Theorem 2], we have I Z(S) 1= 2. Since 
I Out(Sz(8» 1= 3 and Aut(Sz(8» has a trivial multiplier [1, Theorem 2], it follows that 
every automorphism of S is inner. Let Ill' 1l 2 , 113 be as in the preceding paragraph. 
Since IS/Z(S)I= 29,120 is not the sum of two squares, we can choose distinct 
characters XI' X2' X3 E Irr(S I /-t). Fix isomorphisms /;: S ---> Si for I ~ i ~ 8 and 
define X E Irr(L I /-t) by the condition that X Is} = (X(l)/Xi(l».!j(Xi) for Sf E Il i· 
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Since A = Inn(S), it follows that X is fixed by no element of order 3 In G. This 
completes the proof of Proposition 4.2. 

PROOF OF THEOREM A. Let G be a minimal counterexample to Theorem A. Then 
Gis nonsolvable by [8, Theorem A] and satisfies conditions (1)-(6) of Proposition 
O. Let V be as in Proposition O. 

We may apply Corollary 2.6 and Theorem 3.1 to the action of G/N on V to 
deduce that V is a primitive GF(p)[G/N]-module and F*(G/N) #' F(G/N). By 
Lemma 1.5, there is a perfect subgroup L of G/N such that L/Z(L) is a nonsolva-
ble chief factor of G / N. Any prime divisor of 1 Z( L) 1 divides 1 M( S) 1 , the order of 
the Schur multiplier of a nonabelian simple composition factor of L. By Lemma 1.2 
and the table in [11, p. 280], we conclude that p exceeds every prime divisor of 
IZ(L)I. Since Vis a primitive GF(p)[G/N]-module, Z(L) is cyclic, and thus every 
element of order pin G centralizes Z(L). 

Let Land W be the inverse images in G/O/N) of Land Z(L). We identify the 
central cyclic subgroup Z of G with its image in G/O/N). Thus W is a normal 
abelian subgroup of G/O/N), and W/Z "'" Z(L). 

Any element of order p in G /0/ N) centralizes both Z and W / Z "'" Z( L). As 
pi WI and G = OP'(G), it follows that W ~ Z(G/O/N». Thus, any linear character 
JL of W which extends A. is invariant in G /0/ N). We may apply Proposition 4.1 or 
4.2 to G/O/N), L, Wand JL to obtain X E lrr(G/Op(N) I J:L) such that pi X(l). 
Since X may be viewed as a character in Irr(G I A.), this contradicts (6) in Proposition 
o and completes the proof of Theorem A. 
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