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FREE PRODUCTS OF INVERSE SEMI GROUPS 
BY 

PETER R. JONES I 

ABSTRACT. A structure theorem is provided for the free product S inv T of inverse 
semigroups Sand T. Each element of S inv T is uniquely expressible in the form 
f(A)a, where A is a certain finite set of "left reduced" words and either a = I or 
a = a l ... am is a "reduced" word with aa~,1 EA. (The word al ... am in S sgp Tis 
called reduced if no letter is idempotent, and left reduced if exactly am is idempo-
tent; the notation erA) stands for Il{aa- L a E A}.) Under a product remarkably 
similar to Scheiblich's product for free inverse semigroups, the corresponding pairs 
(A, a) form an inverse semigroup isomorphic with S inv T. 

This description enables various properties of S inv T to be determined. For 
example (S inv T)\( S U T) is always completely semisimple and each of its sub-
groups is isomorphic with a finite subgroup of S or T. If neither S nor T has a zero 
then S inv T is fundamental, but in general fundamentality itself is not preserved. 

1. Introduction. From purely universal algebraic considerations (see, for example, 
[1, §72]) it follows that since inverse semigroups form a variety, the free product (or 
"coproduct") of any family of inverse semigroups exists and, moreover, is generated 
by isomorphic copies of the members of that family. However, the first attempt to 
actually describe the free product S inv T of two inverse semigroups was made in 
1973 by Preston [11] as a certain quotient of a free semigroup product. This followed 
the first concrete and useful description of free inverse semigroups, given by 
Scheiblich [12]. Preston's description of S inv T gave no insight into its structure, 
however, and he suggested the possibility of a concrete structure theorem along the 
lines of Scheiblich's. Various special cases have since been covered: when both Sand 
T are groups, S inv T was described by Knox [8] and McAlister [9]; when both Sand 
Tare E-unitary, a description of S inv T using graphs was obtained by the author [7]. 

In this paper a structure theorem for the free product of any two inverse 
semigroups (which extends easily to arbitrary families) Sand T is provided. This 
enables a canonical form for its elements to be provided, Green's relations to be 
determined and various structural and preservational properties to be discussed. In 
view of the complexity of some of the intermediate results it is not surprising that 
the inverse semigroup constructed is somewhat complicated to describe. (Its applica-
tions, though, should be proof of its practicality.) The construction is in several 
stages, which are summarized in the remainder of this section. 
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In §3 a (finite) process is given by which any element x of S inv T may be 
expressed in the form e(A)a, where A belongs to a certain family G)) of "canonical 
sets" (each consisting of a finite number of words in S sgp T), 

e(A) = D{aa- I: a E A}, 

and a is an "associate" of A. More precisely, a finite nonempty subset A of S sgp Tis 
canonical if (i) each word a l ... am in A is left reduced (that is, am is its unique 
idempotent letter), (ii) A is prefix closed (if a l ... am E A then a l ... a;ail E A, 
1 ";;;;'i";;;;'m), and (iii) A has unique last letters (if a l "'am-Iam EA and a l 
... am_Ibm E A then am = bn,); a is an associate of A if either a = 1, the empty 
word, or a = a l ... am is reduced (none of its letters is idempotent) and aa~/ EA. If 
x is idempotent then a = 1. 

In §4 representations of Sand T in S,~, the symmetric inverse semigroup on the set 
G)), are defined and extended to a representation p of S inv Tin S'lJ' This representa-
tion is then used to define a partial order";;;;' on G)) in such a way that (Sinv T)p 
consists of partial order isomorphisms of the poset (G)), ";;;;'). The sequence of maps 

A -> e(A) -> PE(A) -+ ilPE(A) = G))A -+ A 

(where ilPF(A) denotes the domain of the partial transformation PE(A) and 0})A is the 
principal ideal of (il.':l generated by A) is shown to be an isomorphism, so that L~i is a 
semilattice, G)) ~ E(Sinv T) and P is an idempotent separating representation of 
S inv T in the Munn semi group To" (which consists of all isomorphisms between 
principal ideals of G2j). In fact P is essentially the Munn representation. 

In §5 a product is defined on the set F of all pairs (A, a), where A E G)) and a is 
an associate of A. Using a representation T of S inv T in SF it is similarly shown that 
F is an inverse semigroup, F ~ S inv T and T is faithful. (Essentially T is just the 
Preston-Vagner representation.) This shows that the "canonical form" given in §3 is 
unique. 

In the final two sections Green's relations are found on F and various structural 
(§5) and preservational (§6) properties are discussed. 

2. Preliminaries. If Sand T are inverse semigroups then S sgp T and S inv Twill 
denote their free product in the categories of semigroups and of inverse semigroups, 
respectively, defined by the usual universal properties. The elements of S sgp Tare 
words a = a l ... am over S U T no two of whose adjacent letters belong to the same 
factor S or T. In a natural way these words may be thought of as elements of 
S inv T, and since Sand T may be considered as generating S inv T, every element of 
S inv T may be expressed in this way, though not uniquely. 

To avoid repetition the expression "a E S sgp T" will assume a has the form 
a l ... am (the a/s alternately from Sand T), where m = l(a), the length of a. 

Such a word a will be termed (i) reduced if no a i is idempotent, (ii) right 
idempotent if am is idempotent and (iii) left reduced if am' but no other letter, is 
idempotent. The empty word, denoted 1, will be assumed to be reduced, of length 0, 
but not right idempotent. 
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The right idempotent word a will be called above the right idempotent word b if 
l( b) = l( a) and, for each i, a i ;;;. bi in the natural partial order on the appropriate 
factor. 

An internal idempotent of a right idempotent word a is any idempotent letter a r 
with r < m; in that event we denote by fir the right idempotent word obtained from a 
after deleting dr. Thus fi l = a 2 ... am' fi m- I = a l·· ·(am-2ama;"I-2) (when m > 2), 
and fir = a l ... (ar-Ia r+ l ) ... am otherwise. 

For each a E S sgp T let 

pre( a) = {ala l l , a la 2a zl , ... ,a l ... a m- la;"l- I' a l ... ama;"I} , 

the set of prefixes of a. A subset A of S sgp T will be called prefix closed if 
pre(a) C A for all a EA. 

Let (f, (or (f, (S, T) when the possibility of confusion arises) denote the collection of 
all finite, nonempty, prefix closed sets of right idempotent words. We shall call these 
precanonical sets. If A E (f, denote by As and AT the sets of words in A whose first 
letter belongs to SorT, respectively. The weight of A is defined by w( A) = LaEA l( a). 

With any right idempotent word a may be associated the idempotent e( a) = aa - I 

in S inv T; if A E (f, put e( A) = II a EA e( a). Note that if a and b are right idempotent 
and a is above a prefix of b, then e( a) ;;;. e( b), for 

commuting idempotents in S inv T, 

=b(a ···a ···a-I)(b ···b ···b-I)b-I 
12m 2 2 n 2 I' 

By induction this yields 

b l ···bm-l(am)(bm···bn···b;nb~~1 ···bi l =bb- I, sinceam;;;'bmb~l. 

In particular, for any right idempotent word a, 
e( a) = e(pre( a ) ) . 

Finally, if A E (f, the word a in (S sgp T)I is an associate of A if either a = I or am 
is nonidempotent and aa;,,1 EA. 

The terminology and notation will, in general, be that of Howie [3]. In particular 
we refer the reader to Chapter 5 for the definitions and elementary properties of the 
natural partial order on an inverse sernigroup, the symmetric inverse semigroup g x 
on a set X and the Munn sernigroup T£ on a semilattice E. 

We deviate from the notation in [3] by denoting by Llcp and \7cp the domain and 
range, respectively, of a member cp of g x. In addition, the sernilattice of idempotents 
of an inverse semigroup U will be denoted E(U). 

3. A reduction algorithm. In this section a procedure is described which reduces 
any element of Sinv T to a "canonical form", the uniqueness of which will be 
proved in §§4, 5. Some further definitions are first required. 
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Let A be a precanonical set (that is, A E (f): then A is called left reduced if it 
consists of left reduced words; As [AT] has unique last letters if for any a = a I ... am 
and b = b l ... bm in As [AT]' a i = bi for all i < m implies am = bm; A itself has 
unique last letters if both As and AT do. Observe that if a l ... am and b l ... bl/ are 
any two words in A s which agree on their first k - I letters, then by prefix closure 
both a l ... ak_l(aka/: l ) and b l ... bk-I(bkb/: I) belong to As; thus As has unique 
last letters if and only if any two words which agree on their first k - I letters have 
6H-related kth letters. Observe, also, that in a set A with unique last letters both As 
and AT have at most one word of length one. (By prefix closure either As or AT has 
such a word, which is an idempotent.) 

A precanonical set A is called canonical if it is both left reduced and has unique 
last letters; l~j will denote the family of all canonical sets. Observe that any associate 
of a canonical set is necessarily reduced. Note also that for any left reduced word a, 
pre( a) is a canonical set. 

The remainder of the section is devoted to showing that each element of S inv Tis 
expressible in the form e(A)a, where A E qj and a is an associate of A. To begin, let 
x = x I ... X II E S sgp T and note that 

-I _ ( -I) _ (( -I)) xx - e XI ... XliX" - e pre XI ... XliX" ' 

where pre(xl ... X"X,~I) E ':0. Let x' be the word obtained from X by "deleting 
terminal idempotents": that is, x' = I if each letter of X is idempotent, or x' = XI 

... x, if Xi is the last nonidempotent letter. An induction establishes that X = 
e(pre(xl .,. X"X,~I»X' and x' is clearly an associate of pre(xl ... XIIX,~I). Thus to 
obtain the required expression it is sufficient to show that for any precanonical set A 
and associate a of A there is a canonical set Y and associate y of Y such that 
e(A)a = e(Y)y. 

Let A E ci'. Reduction of A to a set in "lJ is treated first. This consists of a 
repetition of two basic steps. 

I. Idempotent deletion. If A is left reduced, put L( A) = A; if not, let i be the least 
positive integer for which the ith letter of some word a in A is an internal 
idempotent: let L(A) be the set obtained from A by replacing each such word a by 
ai · 

2. Last letter reduction. If A has unique last letters put R( A) = A; if not, there is a 
least positive integer k for which, for some X and y of length k in As, or in AT' 
xJ = Yj for all j < k but X k =1= Yk' Then let R(A) be the set obtained from A by 
replacing each a of length m ;;;. k by a l ... (ekad ... am' where e k = ek(a) = 
II {f: a I ... a k _ I f E As [AT]}' (Thus only words of length k or more are modified.) 

LEMMA 3.1. Let A E it. Then (i) L(A) E it, e(L(A» = e(A) and, if L(A) =1= A, 
w(L(A» < w(A); and (ii) R(A) E it, e(R(A» = e(A) and, if R(A) =1= A, w(R(A» 
< w(A). 

PROOF. (i) Assume L(A) =1= A and let i be as in the definition. Clearly L(A) 
consists of right idempotent words, so it remains to show it is prefix closed. Let 
b E L(A). If b E A and bi is not an internal idempotent then b is unchanged by the 
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formation of L( A), so pre( b) <;::: L( A), since the same is true of each of its prefixes. 
Otherwise b = ai for some a E A with internal idempotent ai . Let c be a prefix of b: 
if I( c) < i-I then c E A and is unchanged by the formation of L( A), so c E L( A); 
on the other hand if l( c) ;;;. i-I, then c is obtained from some prefix of a, of length 
i + I or more, and so belongs to L( A). Thus pre( b) <;::: L( A). 

To show e(L(A» = L(A) it is sufficient to show e(a, ... a;)e(a;) = e(a) for each 
a in A for which a i is an internal idempotent (since in that case a l ... a i belongs to 
both A and L(A». For i = I this is evident. Otherwise, by commuting idempotents 
in Sinv T, 

e( a l ... a;}e( a;} = (a l ... a'_laia;~ I ... all) 

. (a l ... (ai-la i+ l ) "'a m ••• (a'~~la;~I) ···a l ' ) 

= (a "'a )(a:- I ···a-I)(a "'a ) I ,-I I-I I I I-I 

= e( a). 

Finally, for each such a, I(a;) < lea), so w(L(A» < w(A). 
(ii) Assume R(A) =!= A and let k be as in the definition. It is clear that R(A) E (t. 

Let b = b , ... bk E As, say, and let Xh = {a E A: b , ... bk- I = a l ... ak-,}. Then 

e( Xh ) = II e( a ) 
"EXh 

II b b -Ib-I b- I = ... a .. ·a "'a ... I k-I k m k k-I I 

=b .. ·b . II (a "'a ',·a-')·b- I ···b- ' I k-I k m k k-I I 
aEXh 

= b ... b . II a a-I. II (a '" a ... a-I). b- ' ... b- I 
I k-I k k k m k k-I I 

aEXh aEXb 

= b , .. ·bk-Iek · II (ak .. ·am .. ·akl)·bk'-I" ·bi ' 
aEXh 

= b ... b II ((e a ) ... a ... (e a)-I). b- I ... b- I 
I k-I k k m kkk-I I 

aEXh 

where Yh is the subset of R(A) obtained from Xb • 

Since A is the union of such sets Xb where l( b) = k, together with the set of words 
of length less than k (which are unchanged), e(R(A» = e(A). 

Finally, since words of A are replaced by words in R(A) of equal length, to show 
w(R(A» < w(A) it is sufficient to show 1 R(A) I<IA I. Now by assumption there 
exist a = a l ... ak and b = a, ... ak-Ibk in As (without loss of generality), with 
ak =!= bk, and a is replaced by a l ... ak-I(ekak), b by a, ... ak-I(ekbk), where 
ek = n {f: a l ... ak- I f E As}· But ak and bk are idempotent, so ak, bk ;;;. ek and 
therefore ekak = ek = ekbk. Thus R(A) contains at least one less word than A. 0 
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COROLLARY 3.2. For any precanonical set A the sequence A, L(A), RL(A), 
LRL( A), ... terminates in a canonical set cl( A) and e( cl( A» = e( A). 

PROOF. Since at each nontrivial step in the sequence the weight is reduced, the 
sequence must terminate, and cl( A) clearly is left reduced and has unique right ends. 
o 

Again let A E a and suppose a is an associate of A. If a = 1 put L( a) = R( a) = 1. 
Otherwise am is nonidempotent and aa~,' EA. Each reduction step applied to A now 
corresponds to a reduction of a. 

I. Idempotent deletion. If A = L(A) put L(a) = a; otherwise let i be as in the 
definition of L(A). If ai is idempotent, i < m, and 

(a) i = 1, put L(a) = a 2 ••• am; 
(b) i> 1 and, if i = m - 1, am- 2 am is nonidempotent, put L(a) = a l 

... (ai-la i+ l ) ... am; 
(c) i = m - 1 and am- 2 am is idempotent, put L(a) = a l ... am- 3 (= 1 if i = 2); 
Otherwise (that is, when ai is not idempotent, or when m ,,;;; i) put L( a) = a. 
2. Last letter reduction. If R(A) = A put R(a) = a; if not, let k be as in the 

definition of R( A). If m < k put R( a) = a. If m ;;;;. k let R( a) be the word obtained 
from a l ... (eka k ) ... a", by deleting terminal idempotents. (Here e" = 
e,,(a l ... aka!;I).) 

LEMMA 3.2. Let A E a and let a be an associate of A. Then (i) L(a) is an associate 
of L(A) and e(A)a = e(L(A»L(a), and (ii) R(a) is an associate of R(A) and 
e(A)a = e(R(A»R(a). 

PROOF. If a = 1 this is obvious from Lemma 3.1. Now assume a =1= I. 
(i) If L(a) = a this is again obvious for then aa~,' E L(A). Otherwise a, IS 

idempotent and i < m. In cases (a) and (b) L(a) is an associate of L(A), since this 
set contains (aa~,l)i. In case (c) either L(a) = 1 or i > 2 and L(a) = a] ... am- 3 is 
an associate of L(A). (Note that a l ... a",a~,' E A, so a; is nonidempotent for 
j < i = m - I.) Thus a l ... a"'-3a~,'-3 E L(A) and a",-3 is nonidempotent. Using 
arguments similar to that of the last paragraph of the proof of Lemma 3.1(i), it is 
routine to verify that e(L(A»L(a) = e(L(A»a (= e(A)a) in each case. 

(ii) If R(a) = a this is once more obvious. If m ;;;;. k then since a l ... (eka k ) 
... a",a~,' (or a l ... (ekak)(ekakrl, if m = k) belongs to R(A), it is easily verified 
that R(a) is an associate of R(A). Now observe that (for m ;;;;. k) 

e( a I . .. (e k a k) ... a", a ~n a 

= e(a l ... (eka k ) ... a",a~,')al ... (eka k ) ... am 

(by commuting the idempotents e k and a!;~ I ... allal ... a k - I) 

= e(a ... (e a ) ... a a-I)R(a) I kk mm ~ 

by an examination of the various cases. Thus e( A)a = e( R( A »a = e( R( A »R( a). 
o 
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Now if A E it and a is an associate of A the terminating set d(A) of the sequence 
L(A), RL(A), ... has as associate the corresponding word in the sequence 
L( a), RL( a), . .. thus obtained. The preceding results are now summarized in 

THEOREM 3.3. Let Sand T be inverse semigroups and let it and GlJ be the families of 
precanonical and canonical sets, respectively, in S sgp T. Then from each member A of 
(f may be obtained a member d( A) of G):J such that e( A) = e( d( A )); for each associate a 
of A there is an associate x (necessarily reduced) of d( A) such that e( A)a = e( d( A ))x. 
Hence every element of S inv T is expressible in the form e( X)x for some X E GlJ and 
associate x of X. Each idempotent is expressible in the form e( X) for some X E GlJ. 0 

Since the reduction process relies only on the fact that Sand T generate S inv T, 
the following corollary is evident. 

COROLLARY 3.4. Let W be any inverse semigroup generated by Sand T. Then each 
element of W is expressible in the form e( X)x for some canonical set X and associate x 
of X. 0 

In §5 it will be shown that in S inv T the expression e( X)x is unique, and that this 
in fact characterizes the free product amongst inverse semigroups generated by S 
and T (or isomorphic copies thereof). This will be done by defining a product on the 
set F = F( S, T) of all ordered pairs (X, x), where X E GlJ and x is an associate of X, 
in such a way that F becomes an inverse semigroup isomorphic with S inv T. The 
first stage, however, is to define a partial order on GlJ so that it becomes a semilattice 
isomorphic with E(Sinv T), demonstrating the uniqueness of the expression e(X) 
for idempotents of S inv T. 

4. An idempotent separating representation of S inv T. In this section a representa-
tion p of S inv T in g6lj' the symmetric inverse semigroup on the set GlJ, is defined. 
This representation is then used to define a partial order on GlJ in such a way that the 
image of S inv Tin g6lj consists of partial order isomorphisms, and then to show that, 
under this partial order, 6'0 is in fact a semilattice isomorphic with E(S inv T). In fact 
p turns out to be a representation of S inv T in the Munn semigroup T6',j of 
isomorphisms between principal ideals of GlJ. 

First, if A E it and s E S let 
s·A = {s·a: a EA}, 

where s· a is the right idempotent word obtained from a by premultiplying by s: thus 
s· a = sa (in S sgp T) except if a E E(S), when s . a = sas-'. 

Now if A E GlJ, s E Sand ss-' E A define s-' * A by 

{
A if s is idempotent, 

s-' * A = 
{ill: a E A, a, = s} U s-'· {a E A: a, =1= s} otherwise. 

For example if a = a, ... am is a left reduced word, with m > I and a, E S, 

ai' * pre(a, ... am) = {al'a,} U pre(il,). 

It may be easily verified that s-, * A = L(s-' ·A) = d(s-' ·A) E GlJ. 
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So far the action S-I * A has only been defined when SS-I EA. We extend the 
definition as follows. For each e E E(S) let ~e = {A E~: e;;;' g for some g E Ad. 
Note that the idempotent g is unique, since A has unique last letters. Now for any 
s E S and A E ~cjssol let S-I * A = (gsr l * A, where SS-I ;;;. g E As. 

PROPOSITION 4.1. For each s in S define Ps by Aps = S-I * A for all A E '~S\.ol. Then 
the map s ---> Ps is a representation of S in g,'lJ' 

PROOF. To show Ps E g,'lJ it is sufficient to show that for each A in !:::.Ps = "\sol' 

ApsPso' = A, for then Psol = p;l. If g is the idempotent in As such that g,,;;;; SS-I then 
by definition Aps = ApgS ; note also that S-Igs = (gsrlg(gs) E (gst l * A, and S-Igs 
,,;;;; S-IS . Thus Aps E !:::.Psol and (Aps)Pso, = (Apgs)p(gs)o'. Without loss of generality, 
then, it may be assumed that SS-I E A (and S-IS E Aps )' 

If s E E(S) then (Aps)Pso, = Apso' = A. Otherwise 

s-I*A= {GI:aEA,al=s} US-I. {aEA:al=l=s} 

and 

s * (S-I * A) = s· {G I : a E A, a l = s} U {a E A: a l =1= s} = A. 

Before showing that P is a morphism, note that if e, f E E(S) then L~le n '~I! = '\! 
(since A E (;.lJe n GIl! if and only if e ;;;. g and f;;;. h for some g, h E As: then g = h 
since A has unique last letters). 

Note also that from the argument above it follows that if f";;;; SS-I then '~I!P\ = 

~0sol!s' 
Now if s, u E S, 

Let A E !:::.Psu ' so (su)(SU)-1 ;;;. g for some g E As· Then Aps = Apgs and Apsu = Apgsu ; 
also 

uu- I ;;;. (S-IS)( uu- I) ;;;. s-Igs E (Ap,) s' 

so (Ap,)pu = (APs)Pso'gsu' But gsu = (gS)(S-lgsU ), so without loss of generality it 
may be assumed that SS-I = (gS)(gstl = g and uu- I = S-Igs = S-IS. 

If s E E(S) then Aps = A and (Aps)Ps = Apu = Apsu (since u = S-ISU = su); the 
case u E E(S) is treated similarly. If su E E(S) then u = S-I and this case has 
already been covered. Otherwise 

(APS)Pu=u- l . {G1:aES,al=s} Uu-I . (S-I. {aEA:al=l=s,s-lal=l=u}) 

U {G 1: a EA,a l =l=s,s-Ial = u}. 

also S-Ial = u if and only if a l = su (since s01 a l'1tu) so 
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and 

{ 3 I : a E A, s I =;= s, s -Ia I = u} = {3 I : a E A, a I = su} . 

(Note that if a l = s then a l =;= su, and if a l = su, a l =;= s.) Hence (Ap,)Pu = Ap,u' 
Therefore the map s -> Ps is a morphism of S into g('lj' D 
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A similar representation t -> PI of T in g,'0 may be defined. From the universal 
properties of S inv T it follows that these two representations have a common 
extension to a representation P of S inv Tin g6l)' 

EXAMPLE 4.2. If a = a l ... am is a left reduced word, then a may also be 
considered as an element of S inv T. As noted above, 

pre(a)p", = {alla l} U pre(a 2 '" am). 

Similarly 

A simple induction yields 

I < i",;; m. 

Note that a;a;1 E pre(a)Pa,a,_I, I < i ",;; m. D 
This representation is used to define a relation on Glj as follows. First, if a is a left 

reduced word and BE Glj, let pre(a);;;' B if BE Glj -I and BPn "'a E Glj -I, 
ala1 UI (- I alai 

I < i ",;; m; equivalently, from the definition of P, pre( a) ;;;. B if and only if there 
existidempotentsgl,.·.,gm whereg,,,,;; a;a;l, I",;; i"';; m, gl E Band g; E Bpa, ... a, I' 

I < i ",;; m. Note that 

Now for any A, BE 61.) put A ;;;. B if pre(a);;;' B for all a EA. (Of course B",;; A 
will mean the same as A ;;;. B.) 

Before showing",;; is a partial order on 610 it will be shown that",;; is "compatible" 
with the representation p. 

LEMMA 4.3. Let e E £(S) and A, B E Glje' with A ;;;. B. Then ApI;;;' BpJor all s0Le. 
Thus for any x in Sinv T for which A, B E t:.Px ' A ;;;. B implies Apx ;;;' Bpx ' 

PROOF. Let h E Bs, g E As, with h ",;; g ",;; e. Clearly if s0Le, then gs0Jlg and 
hs = h(gs)0Lh, so without loss of generality SS-I = g. 

Let x E Aps ' There are four cases to consider: 
(i) If x = 3 1 for some a = sa 2 ••• am E A then, since pre(a) ;;;. B, (Bp') Pa 2 'a,_1 

= Bp E "'.0 -I, I < i ",;; m; 
~a2···al--l alaj 

(ii) If x = S-IS thens- 1s;;;' s-Ihs E Bps; 
(iii) If x = (s-lal )a 2 ••. am for some a E As, with a l =;= s (and lea) > 1), then 

a 1 a II = g ;;;. h, so 
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and 

1 < i ~ m; 

l~i~n. 

In each case, therefore, pre(x) ;;;. B. 
This completes the proof of th(; first statement. The second follows by induction. 

o 
PROPOSITION 4.4. The relation ~ is a partial order on ()ly. Hence P is a representation 

of S inv T by partial order isomorphisms of "'9. 

PROOF. Clearly ~ is reflexive. To prove transitivity it is sufficient to consider the 
case where a is a left reduced word, B, C E "!J and pre(a);;;' B, B;;;. C. Then 
h ~ g ~ alai-I for some h E C. g E B. Therefore C E 61,) -I. For 1 < i ~ m, a l a 1 

BPa, . 'a, I E '~la,a;' and by the lemma 

so Cp E L;Y _I. al" 'a,_1 u,u, 

Thus pre( a) ;;;. C. 
To show antisymmetry, suppose A :;;. Band B ;;;. A, in ()le). Let a E As, say. There 

exist idempotents hi ~ gi ~ aia;l, 1 ~ i ~ m, where hi E A, gl E B, hi E Apu" , 'U,_I 

and gi E BPa,'''a,_,' 1 < i ~ m. Since A has unique last letters, hi = gl = ala,l. 
Similarly hi = gi = aiai- I, 1 < i ~ m. Now am = ama~i E BPa" , 'am-I so from the 
definition of a~,I_1 * BPal "'a m_2' am-lam E BPU, "'um_2' An induction yields a,'" am 
E BPa, ., 'Uj-J' 1 < i ~ m, so a 2 ••• am E BPa, and a E B. Hence A <: B and, simi-
larly, B <: A. 

The final remark is an immediate consequence of the preceding lemma, for any p, 
is an order isomorphism of Apx upon '\lPx . 0 

Now for each A E (;g, it is clear that pre(a) ;;;. A for all a E A (since aia;1 E 
APa", 'ai-I' 1 < i ~ m); moreover if BE "!J and pre(a);;;' B for all a E A then 
A ;;;. B, by definition. Thus 

LEMMA 4.5. For each A E 6',), A is the greatest lower bound of {pre(a): a E A}. This 
will be written A = A {pre(a): a E A}. 0 

With each A E 011 there is associated the idempotent e( A) defined in §2. The map 
A -+ e(A) is now related with the representation p, whence with the partial order on 
"11. 

LEMMA 4.6. Let s E S and A E "!Jss-I. Then 

Thus for any x E Sinv T and A E Apx ' e(Apx) = [le(A)x. 
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PROOF. In the first case it may be assumed, without loss of generality, that 
SS-I EA. (For if g E As, g ,,;;; ss-I, then g;;;. e(A).) Then Aps = S-I * A = cl(s-I . A), 
as observed earlier, and 

e(Ap,) = e(cl(s-I ·A») = e(s-I ·A) (by Theorem 3.3) 

= s-le{A)s. 

The second statement is then obvious. 0 

PROPOSITION 4.7. The map A ---> e(A), ofGJJ into E(Sinv T), is order preserving. 

PROOF. It is clearly sufficient to show e(a) (= e(pre(a») ;;;. e(B) whenever pre(a) 
;;;. Bin GJJ. In that case BPa, ." "am-I E GJJama~,I, so 

whence 

{a ···a )a (a-I ···a-I);;;.a ···a e(Bp )a- I ···a- I 
1m-I m m-I I I m-l u,"'um-I m-i I 

= e( Bp p -I -I) 
al"' 'um-i U m --,"' 'ul 

= e{B), sincepa;1 = P~il, 1,,;;; i,,;;; m - l. 0 

Finally the image of E( S inv T) in 1"l1 is established, making use of the following 
notation: for each A E GJJ, denote by GJJA the principal ideal of (GJJ, ";;;) which it 
generates. (Thus if e E E(S) U E(T), GJJ{e} = GJJe, as already defined.) 

PROPOSITION 4.8. Let A E GJJ. Then llpE(A) = GJJA, so that PE(A) = 'A' then identity 
order automorphism of GJJ A. 

PROOF. First it will be shown that llPE(a) = GJJpre(a) for every left reduced word a. If 
I( a) = 1 then a E S U T and this is just the original definition. Assume the 
statement is true for all words of length less than m, and suppose I( a) = m > 1. By 
hypothesis, llpE(!i,) = GJJpre(!i I ). 

Then 

From Example 4.2, 

so by Lemma 4.5, 

Thus 

so 
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Now for any A E ('lj, seA) = TI{ sea): a E A}, so 

PF(A) = TI{Pf(a): a E A} 
and 

ilpF(A) = n {ilPE(a): a E A} = n {'\re(a): a E A} 
= lilJA' sinceA = /\ {pre(a): a E A}, by Lemma 4.5. D 

The main result of this section can now be proved. 

THEOREM 4.9. Let Sand T be inverse semigroups and let ,~ be the family of 
canonical sets in S sgp T, partially ordered by the relation';;; defined above. Under the 
operation A 1\ B = cl(A U B), (~,.;;;) is a semilattice isomorphic with E(Sinv T). 
The representation P is an idempotent separating morphism of S inv T onto a full 
inverse subsemigroup of the Munn semigroup 7:",. Each idempotent S inv T is uniquely 
expressible in the form seA) for some A E °11. 

PROOF. Since each idempotent of S inv T is expressible in the form s( A), A E '~j, 

the composition of plE(Sinv T) with the obvious order isomorphism £A ---> (~jA ---> A 
is an order preserving map of E( S inv T) upon l'fl. But clearly this composition has 
as inverse the map A ---> seA), which is also order preserving, by Proposition 4.7. 
Thus each of these maps is an order isomorphism. 

Hence (~, .;;;) is a semilattice, P is idempotent separating and represents S by 
isomorphisms between principal ideals of ~ (that is, p: S inv T ---> 7:", the image 
being clearly full), and the expression s( A) is unique. 

Finally, for any A, B in qJ, 

s(A)s(B) = s(A U B) = s(cl(A U B)), 

so cl(A U B) is the greatest lower bound of A and B in «.~, ';;;). D 
As an immediate consequence it may be observed that any sequence of Land R 

steps, when applied to a member A of G', will yield cl(A). (For the sequence must 
terminate, and terminate in a member B, say, of~, with s(B) = seA), for the same 
reasons as for the sequence in §2.) 

To complete this section (and to lead to the next) a convenient alternative form 
for the relation .;;; on 6'0 will be given using the following concept. A right 
idempotent word b = b l ... b" is called apseudomember of A E 6'-0 if blb,1 E A and 
b;b/- I E APb, .. b,_,' 1 < i';;; m. By Example 4.2, any member of A is a pseudomem-
ber. In fact a pseudomember of A belongs to A if and only if it is left reduced. (For, 
if b is left reduced, b" E APb, .. b,,_, and by the definition of the action, b"_lb,, E 

APb, ... b" ,; a simple induction yields b EA.) 

PROPOSITION 4.10. Let A E ~ and let a be a left reduced word. Then pre( a) :;;" A if 
and only if a is above a pseudomember of A. 

PROOF. Suppose pre(a) :;;" A. Then there exist idempotents gl E A and 

1 < i';;; m, 
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such that gi ~ a,ai-I, I ~ i ~ m. It is clear that (gla l ) '" (gmam) is then a pseudo-
member of A belowa. 

Conversely, suppose b = hi ... bm is a pseudomember of A below a. Then 
alai-I;;;. blbi l E A and for I < i ~ m, 

since bJ = bA-IaJ , I ~j ~ m. 0 
On the other hand, associates of A (E 61) may be characterized in terms of p: 

a = a l ... am is an associate of A if and only if a is reduced, alai l E A and 
a,a,-I E Apu,u, " I < i ~ m. (Necessity follows as in Example 4.2; on the other 
hand if ama~i E APa"'am " then since am and am-I belong to different factors, 
a"'_lama~i E Apu , .. 'a m 2' A straightforward induction yields a l ... ama;,,1 EA.) 
Note that if a is an associate of A then a-I is an associate of Apu (for a~,l ... ailal E 
Apa )· 

In a similar vein, if A E 69, a pseudoassociate of A is any word a = I or 
a = a l ... am with alai l E A and aiajl E APa""a, " 1 < i ~ m. Thus a pseudoas-
sociate of A is an associate if and only if it is reduced. 

5. A faithful representation of S inv T. As in §3, let F (or F( S, T) if there is any 
possibility of confusion) = {(A, a): A E G'Y and a is an associate of A}. In this 
section a product is defined on F. A faithful representation 'T of S inv T in 1 F is 
found and used to show that, under the given product, F is an t"nverse semigroup 
isomorphic with S inv T, so that the expression E( A)a given in §3 for elements of 
S inv T is unique. 

In order to define the product and the representation some preliminaries are 
needed. First, the representation P may be extended to (S inv T Y by letting P I be the 
identity automorphism on G'y. 

Now let a E S sgp T, B E 6'.0 and suppose a is above a pseudoassociate of B, that 
is (cf. Proposition 4.lO), there exist idempotents gl E Band gi E BPa ,. 'u, " I < i ~ 
m, such that gi ~ aiajl, 1 ~ i ~ m. Define a B (or just a when the context is clear) by 

the reduced word obtained from (the pseudoassociate) (g I a I) ... ( gm am) by deleting 
idempotents. Formally, aB is the last member of the sequence h(°l, b(I), ... , where 
b(O) = (gla l ) ... (gm a",), and if b(,-I) is not reduced, b'!) is the word obtained from 
b(I-I) by deleting the first idempotent letter (so b(i) = I if bU - I) consists of a single 
idempotent). If a = 1 put a B = l. 

A situation frequently encountered in the sequel will be that of two nonempty 
reduced words a = a l ... am and h = b l ... bn , say, and a member C of 6'.0 such that 
pre( aa;"l) ;;;. C and pre( bb,;-I) ;;;. CPa' Then it is easily verified that ab (in S sgp T) is 
above a pseudoassociate of C. 

Define a product on F by the rule 

(A, a)(B, b) = (C, c), where C = (APa /\ B)p:1 andc = (ab)c 
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To show this IS well defined observe first that (if a =fo I) Apa 1\ B ,,;;; APa ,,;;; 
pre(a-Ia l ), so 

(since a- la I6ita- 1 in Sinv T), and thus C is well defined. Further, CPa = APa 1\ B, so 
CPa";;; B,,;;; pre(bb,~I) and C";;; A ,,;;; pre(aa~i), so the situation described abov~rises 
and c is defined. (The cases when a = I or b = I are simpler.) To show (ab)c is 
indeed an associate of C the following lemma suffices. 

LEMMA 5.1. Let A E GJJ and suppose a = a I ... am is a pseudoassociate of A. Then a 
is an associate of A and e( A)a = e( A )a. Thus if a is above a pseudoassociate of A, a A 

is an associate of A and e(A) = e(A)aA • Also APa = APU4 ' 

PROOF. If a is already reduced then a = a and, from the closing remarks of the 
previous section, a is an associate of A. Suppose a is not reduced, and a k is the first 
idempotent letter of a. If m = I then a = I, an associate of A, e(A)a = e(A) (since 
a = ala,1 E A) and APa = A. Otherwise let b be the word obtained from a by 
deLeting ak . It is sufficient (proceeding inductively) to show that b is again a 
pseudoassociate of A, that e(A)a = e(A)b and APa = APh' 

Suppose I < k < m: then b = a l '" (ak-la k+l ) ... am = b l ... bm- 2, where bj 
= aj for j < k - I, bk - I = ak-lak+1 and bj = a;+2 for j > k - I (if m > k + I). 
For j < k - I, bjbj- I obviously has the requisite property. Next, consider bk-Ibk~ I 
= ak-lak+lak~lak~I' Now, by assumption, 

But this set also contains a k ~ I a k _ I' so 

Forj>k-I, 

Therefore b is again a pseudoassociate of A. Observe also that a l ... ak-Iak is a 
pseudomember of A (since ak is idempotent) and left reduced (since a l, . .. ,ak- I are 
nonidempotent), whence a l ... ak-Iak EA. Therefore 

and 

e(A)a l ... ak- I = e(A)a l ... ak-Ia k , so e(A)b = e(A)a. 

But then, using Lemma 4.6, 
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so APa = APh' by the uniqueness of the representation. 
The cases k = 1 and k = m are straightforward. 0 

PROPOSITION 5.2. For each s E S let Ts be the partial transformation of F defined by 

(A, a)T, = (A,( as L), for all (A, a) E FwithAPa E 69\,." 

Then s .... T, is a representation of S in the symmetric inverse semigroup 1 F on F. 

REMARK. Before proving this proposition a more explicit description of T, will be 
given. If (A, a) E t\T, let g E Apa, g,.;;; SS-I. It is clear that (as)A =a(gs), where 
gsG~g. (Thus (A, a)Ts = (A, a)Tgs') Since a is reduced it follows that at most the last 
letter of a( gs) may be idempotent. Thus 

{
al ... am _ 1 

(asL= I 

a(gs) 

if am = (gs r 1 and m > 1, 

if a = am = (gs r 1 , 

in (S sgp T) 1 , otherwise. 

Throughout the sequel, (as)A will be abbreviated to as. 
PROOF OF THE PROPOSITION. By virtue of the remarks preceding the definition of 

the product on F, a( gs) is a pseudoassociate of A and so, by the lemma, (A, a )T, E F. 
Also APliS = Apas E G1Jss ·'Ps = G1Js·'s' that is, (A, a)Ts E t\Ts·"· From the description 
given above it is easily verified that (as)s -I = a, so T,Ts·, is the identity on t\T,. 
Hence Ts ·' = Ts- 1 and Ts E 1F" 

Let s, u E S. Then 

t\TsTu = {( A, a) E F: APa E t\ps and Ap-;;:;: (= APuJ E t\pJ 

= {(A, a) E F: APas E "VPs n t\pu} 

= {(A, a) E F: APa E ("VPs n t\pJp~1 = t\PsJ 

It is once again routine to verify that in each case (as)u = a(su). (Note that, as in 
the proof of Proposition 4.1, it is sufficient to assume that SS-I = (sU)(sutl E Apa 
and uu- I = S-IS E APas ') Thus TsTu = Tsu and the map s -> Ts is a morphism. 0 

A similar representation t -> Tt of Tin 1 F may be defined and a common extension 
to a representation T of S inv Tin 1 F therefore exists. The image of S inv T in 1 F will 
now be found. 

PROPOSITION 5.3. For any a E S inv T, 

In particular if A E G1J, t\T,(A) = {(B, b) E F: Bpb E G1JA }. If a is an associate of A, 
then for all such (B, b), 

(B, b) T,( A)a = (B, ba ). 
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PROOF. If I( a) = 1 (a being considered as an element of S sgp T) the first 
statement is obvious. Assume it is true for all words of length less than m > I, and 
let a = a l ... am' Puty = a 2 ••• am' Then 

~Ta = ~Ta,T, = {( B, b) E F: BPh E ~Pa, and BPha, E ~Pr} (by hypothesis) 

= {(B, b) E F: BPha, E VPa, n ~Pl} 

= {( B, b) E F: BPh ( = BPha, p~,I) E (VPa, n ~Pr )p~,t} 

= {(B, b) E F: BPh E ~PajPr = ~pJ, 

and the proof of the first statement is completed by induction. The second statement 
is immediate from Proposition 4.8. 

If a is an associate of A then e(A)aa- 1 = e(A), so ~Te(Ala = ~Te(AI' For (B, b) E F, 
with BPh E l\, 

(B, b )Tf(Ala = (B, b hi' since Te(AI is the identity on its domain, 

where gl E B, gi E BPaj.a,_j' I < i ,,;; m. and gi";; aia;I, 1 ,,;; i ,,;; m. Since b is 
reduced, and using the fact that in the formation of b(gtaJ ... (gman.) idempotent 
letters, if any, are deleted "from the front", it is clear that 

Denote by I/; the map of F into Sinv T which takes (A, a) to e(A)a. The main 
result of this section can now be proved. 

THEOREM 5.4. Let Sand T be inverse semigrnups and let F be the set of ordered 
pairs (A, a), where A is a canonical set in S sgp T and a is an associate of A. Under the 
product defined above, F is an inverse semigroup isomorphic, under 1/;, with S inv T. 
Each element of S inv T is uniquely expressible in the form e( A )a, for some canonical 
set A and associate a of A. 

PROOF. By Theorem 3.3, I/; is surjective. To show I/; is a bijection, suppose 
(A, a),(B, b) E F and e(A)a = e(B)b. Then 

e(A) = (e(A)a)(e(A)arl = (e(B)b)(e(B)bt = e(B), 

so A = B by Theorem 4.9. Thus both a and b are associates of A. Now by the 
previous proposition (APa, a-I) E ~Te(AI' 

Thus the product a-tb in (S sgp T)I reduces to the empty word. Clearly, then, a = 1 
if and only if b = 1; on the other hand if a = at'" am then b = b l ... bm and a;lbi 

is idempotent for 1 ,,;; i,,;; m. But since a l and b t both belong to S, or to T, alGllb l, 
whence a l = bl' By induction ai = bi , 1 ,,;; i,,;; m, that is, a = b. 
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Hence I/; is a bijection and the expression E( A)a is unique. Finally, let (A, a), 
(B, b) E F. Then 

((A, a)(B, b))1/; = ((APa /\ B)p:l, ab)1/; = e((APa /\ B)p:l) ab 

= e((APa /\ B)p:1 )ab, by Lemma 5.1 

= ae(APa /\ B)a-Iab, by Lemma 4.6 

= aE(ApJE(B)a-Iab, by Theorem 4.9 

= aa-Ie(A)ae(B)a-Iab, by Lemma 4.6 again 

= (e(A)a)(e(B)b) = (A, a)I/;(B, b)l/;. 

Therefore I/; is an isomorphism, whence (R, .) is an inverse semigroup isomorphic 
with S inv T. D 

Under the isomorphism I/; -I, each s in S clearly corresponds to ({ ss -I }, s), if s is 
nonidempotent, or to ({SS-I}, 1) otherwise (and similarly for T). Thus (S U TN- I 

= {(A, a) E F: IA 1= l}. 
At this point it is appropriate to give an alternative form for the first component 

in the product formula for F in terms of the reduction operator. 

PROPOSITION 5.5. If (A. a), (B, b) E F then 

(A, a)(B, b) = (cl(A U a ·B), ab). 

PROOF. By arguments used previously 

E((APa /\ B)p:l) = e(A)ae(B)a-1 = E(A)e(a ·B) 

= E(A U a· B) = e(cl(A U a' B)), 

the uniqueness of the e form yielding the result. D 
In Corollary 3.4 it was shown that in any inverse semi group W generated by S 

and T, each element is expressible in the form E(A)a for some (A, a) E F. On the 
other hand if this expression is unique for each element of W then the natural 
morphism of S inv T upon W (extending the injections S ---> W, T ---> W) is clearly a 
bijection, yielding the following 

PROPOSITION 5.6. Suppose W is an inverse semigroup generated by Sand T. If each 
element of W is uniquely expressible in the form e(A)a, where A E G2J and a is an 
associate of A, then W;;; S inv T. D 

COROLLARY 5.7. Let U and V be inverse subsemigroups of Sand T respectively. 
Then the inverse subsemigroup W of S inv T generated by U and V is isomorphic with 
Uinv V. 

PROOF. By Corollary 3.4 every element of W is expressible in the form e(A)a, 
where A E G2J(U, V) and a is an associate of A (and a reduced word in (Usgp V)I). 
But clearly G2J(U, V) <;;;: G2J(S, T) and a is also reduced in (S sgp T)I. Thus (A, a) E F 
and the expression is unique. Hence W ;;; U inv V. D 

This corollary was first obtained by T. E. Hall [2, Theorem 3.10) as a consequence 
of the amalgamation property for inverse semigroups. 
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6. Structural properties of S inv T. The isomorphism of S inv T with F will now be 
used to examine its structure. First some elementary properties are listed. (In (iv), p. 
is the greatest idempotent separating congruence (see [3, Theorem V.3.2]).) 

THEOREM 6.1. Let (A, a),(B, b) E F. Then 
(i) (A, ar l = (APa, a-I); 
(ii) (A, a) is idempotent if and only if a = I; (A, I) ;;;. (B, I) if and only if A ;;;. B; 

(iii)(A, a )01(B, b) iff A = B; 
(A, a)f:(B, b) iff APa = Bph; 

(A, 1 )GD( B, 1) iff APa = B for some associate a of A, and 
(A, a):JC(A, 1) iff APa = A; 

(iv) (A, a)p.(A, 1) iff CPa = CforallC";;;'A; 

(v) (A, a) ;;;. (B, b) iff A ;;;. Band a B = b. 

PROOF. (i) That (Apa , a-I) E Fhas already been observed. Now 

so (Apa , a-I) = (A, a)-I; 
(ii) and (iii) are clear; 
(iv) By definition (A, a)p.(A, 1) if and only if (A, arl(C, I)(A, a) = (C, I) for all 

C ,,;;;, A. But for C ,,;;;, A, 

(A, arl(C, I)(A, a) = (APa, a-I)(C, I)(A, a) = ((A 1\ C)Pa, ?)(A, a) 

= (CPa, ?)(A, a) = ((C I\A)Pa, I) = (CPa' 1), 
yielding the required result; 

(v) If (A, a) ;;;. (B, b) then (A, I);;;' (B, I), so A ;;;. B. Also (B, b) = (B, I)(A, a) 
= (B, aB), so a B = b. The converse is similar. 0 

Green's relation ~ has been omitted because, as will be shown in Theorem 6.4, 
outside Sand T, S inv T is completely semisimple, so GD = ~. Two technical lemmas 
are first required for the proof of that theorem. 

LEMMA 6.2. Let A E "1), IA 1* 1. There are only finitely many elements s of S for 
which SS-I E A and Aps ,,;;;, A. Thus for no sin S is Aps < A. 

PROOF. Suppose Aps ";;;' A, with SS-I E A, s * SS-I. Now since IA 1* I, either AT is 
nonempty or As contains a word of length 2. 

In the former case, suppose fEAT' Then f;;;' g for some g E (APs)T' whence 
(from the definition of Aps as S-I * A), sg E As. But A is finite, so only finitely many 
such s are possible. 

In the latter case, suppose a la 2 E As. Then since A ;;;. Aps' a 2azl ;;;. h for some 
h E (APsPa,)T = (APsPs-'sa,)T" If S-Isal E £(S) then h E (APs)T and the result 
follows as above; if S-Isal fl £(S) then (s-Isal)h E Aps' whence (sal)h EA. But 
SS-I E As and S-IS E (Aps)s so SS-I ;;;. S-IS. Thus s = S(S-IS) = S(SS-I) = (sal)a11. 
But there are only finitely many choices for sal and for ai' and thus for s. 
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Suppose Aps < A. Then from (ii) and (iii) of Theorem 6.1, (A, s) generates a 
bicyc1ic semigroup. But Aps" < A for all n ;;;. 1, so from the first part of the proof 
s" = Sk for some k =1= n, in which case (A, S)k = (A, Sk) ::':: (A, sn) = (A, s)", which 
is impossible in a bicyc1ic semigroup. 0 

LEMMA 6.3. Let A E GlJ and suppose a is an associate of A, of length m greater than 
one, such that APa .;;; A (whence APa" .;;; A for all n ;;;. 1). For each n ;;;. 1 let h;n) E APa", 
h(lI) E Ap" . ,1 < i .;;; m, be idempotents such that, for each i, 

I a u!· U1_1 

put a(lI) = (h\n)a l ) ... (h<';:)am) and suppose each a(n) is reduced. 
Then m is odd and for some n ;;;. 1 cancellation "reaches the central term", that is 

(putting M = (m + 1)/2), h<';:~i+lam_i+lh~n+l)ai is idempotent for 1 .;;; i.;;; M - 1 
and 

a(n)a(n+l) = (h;n)a l )'" (h<;;)aMh<;;+I)a M)'" (h<';:+I)a m) , 

so has length at most m. 

PROOF. By assumption (A, a) generates either a subgroup or a bicyc1ic subsemi-
group of F. In either case (A, a)n = (A,a n), so for each n, an (=aa(I) ... a(n-I» is 
an associate of A. Clearly the lengths of these words must therefore be bounded and 
so cancellation must occur. In particular m cannot be even and for some k ;;;. 0, 
ht,:)amh\k+I)a l is idempotent. Suppose cancellation never reaches the central term: 
then there is a largest positive integer I, say, 1 < M - 1, such that for some r;;;' 0, 
h~~i+lam_i+lh~r+l)ai is idempotent for 1 .;;; i.;;; I. Note that this remains true for all 
s ;;;. r by the choice of the idempotents h~J). 

In fact without loss of generality it may be assumed that r = 0, for 

also generates a bicyc1ic semigroup and for each n, 

Then aa(l) = a l ... (am_lh}~lal+l) ... (h~)am)' of length (m - I) + (m - 1- 1) 
= 2m - 21 - 1 > m. Similarly 

aa(l)a(2) = a l '" (a Ih(l) a ) ... (h(l) a h(2) a(2) ) ... (h(2)a ) m- 1+1 1+1 m-I m-I 1+1 1+1 m m 

(since 1+ 1 < M < m - I), of length (m - I) + (m - 21 - 1) + (m - 1 - 1) > 
2m - 21 - 1. By induction, 

I(a n) =/(aa(I)"'a(n-I») =/(aa(IJ··· a(n-2J) +(m-2/-1) 

> 1 (aa(l)··· a(n-2») = I(a n- I ), for all n;;;' 2. 

This contradicts the bound on the lengths of the words an. 
Hence for some n;;;' 1, h<';:~i+lam_i+lh~n+l)ai is idempotent for 1 .;;; i.;;; M - 1. 

o 
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THEOREM 6.4. Any bicyclic subsemigroup of S inv T belongs to S or to T. Hence the 
ideal (Sinv T)\(S U T) is completely semisimple. 

PROOF. Suppose (A, a) generates a bicyclic subsemigroup of F, where IA 1* l. 
Then APa < A, so a * I and by Lemma 6.2, a fl S U T. The theorem will be proved 
by induction on l(a). Suppose for no (A, a) in F, with l(a) < m (> I), is APa < A. 
Let a = a l ... am and use the notation of Lemma 6.3. 

For ~ n> I, (APa", a(n) also generates a bicyclic subsemigroup of F (since 
(Apa",a(n) = (A, arn(A, a)n+I). If a(n) is not reduced then l(a(n) < m, con-
tradicting the induction hypothesis. Thus the hypotheses of Lemma 6.3 are satisfied 
and, as in the proof of that lemma, it may be assumed that for all s ;;. 0, 

and 

But cancellation reaches no further than the central term, for if h~)aMh~+I)aM is 
idempotent, l( a(s)a(s+ I)) < m, which again yields a contradiction, for 

again generates a bicyclic subsemigroup. Hence for each n ;;. I, 

an = aa(l) ... a(n-I) 

= a l ···aM-I(aMh<ilaMh~aM· "h~-I)aM)(h~:;:l)aM+I) ... (h~,'-')an,). 

By induction 

so for each n ;;. I, 

and since an is an associate of A, a l ... aM_la'Mh~';i) EA. But from the finiteness 
of A it then follows that a'M = at- for some n * k. In that case a/Ja M = a Ma/J and 
a'M- k is idempotent. However, this contradicts the fact that a n- k is reduced, 
completing the proof. D 

COROLLARY 6.5. The free product of completely semisimple inverse semigroups is 
again completely semisimple. D 

The following lemma is required in the next proposition. 

LEMMA 6.6. Suppose (A, a) E F, with IA 1* I, /(a) > I and Apa = A. Then m is 
odd and a = a l ... aM-1aMa/J-1 ... all, where M = (m + 1)/2. 
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PROOF. In the notation of Lemma 6.3 (and assuming a E As, say) 

a 2 = a ... a (h(l)a ) ... (h(l)a ) I mIl m m . 
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Now since APa = A, hll), alai I and allal all belong to As, whence hll) = ala l l = 
allal' Similarly h~l) = a,a;-I = aila;, 1 < i';;;; m, and in fact h~n) = a;a;-I for all n 
and i. Thus for each n, a(n) = a(n) = a and the hypotheses of Lemma 6.3 are 
satisfied. So m is odd and am-;+ la; is idempotent for I ,;;;; i ,;;;; M - 1. Moreover, 
since both ala l l and a;,ia m E A, ala l l = a;"la m. Thus am = all. Similarly a 2 a21 and 
a;,i-Iam-I E APaul = APUI"'Um_I' so am- 1 = all and by induction am-;+l = ail, 
I ,;;;; i';;;; M - 1, that is, a = a l ... aM-IaMa!J-1 ... all 0 

PROPOSITION 6.7. Let (A, I) E F, I A 17'" 1. Then there exists B in 61.0 such that 
H(A.I) ~ H( B.I) and (B, s) E H( B.I) if and only if s = I or s belongs to a finite subgroup 
G of He' e E Bs U B T . In that case H(A.I) ~ G. 

PROOF. Clearly it may be assumed that IH(A.I)I> 1. Suppose (A, a)X(A, 1) for 
some a with lea) > 1. By Lemma 6.6, a = a l ... aM-laMa!J-1 ... all, where M = 
(m + 1)/2. Put B = APUI'UM_I; then aMa!J E Band 

that is, (B, aM) E H(B.I)' with aM 7'" 1. 
So it remains to consider the situation where (A, s)X(A, 1) for some s E S, say 

(putting B = A in that case). Suppose H(A.I) also contains (A, t) for some t E T. 
Then (A, st) E H( A.I)' which is impossible since I( st) is even. On the other hand if 
H(A.I) contains (A, a) for some a with lea) > I then, as above, a = a l 
... aM-IaMa!J-I '" ail. By a similar argument a l ti. T. So a l E Sand 
(A,sa)X(A,I). But sa clearly does not have the required form. Hence if 
(A, a)X(A, 1) either a = 1 or a E S, in which case a E He' e = SS-I E As. The map 
which takes (A, a) to a, for a 7'" 1, and (A, 1) to e is clearly an isomorphism of H(A,I) 
upon a finite subgroup G, say, of He' 0 

THEOREM 6.8. Every subgroup of S inv T which is not contained in S or T is 
isomorphic with a finite subgroup of S or T. Conversely, every finite subgroup of S or T 
is isomorphic with a maximal subgroup of S inv T. 

PROOF. Only the second statement remains to be proved. So let e E E(S), say, 
and suppose G is a finite nontrivial subgroup of He' Letfbe an arbitrary idempotent 
of T. 

Put A = {e} U {gf: g E G, g 7'" e} U {f}. It is clear that A E q) and 
(A, h)X(A, 1) for all h E G (using the fact that left translation by h- l is a 
permutation of G). Further, the map h --> (A, h) is a monomorphism. As in the 
proof of the proposition, if (A, a) E H(A,I)' a 7'" 1, then aXe. But a-If E Apa = A, 
so a-I E G. Hence G ~ H(A,I)' 0 

COROLLARY 6.9. The free product of combinatorial inverse semigroups is again 
combinatorial. 0 
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Next it will be shown that if neither S nor T has a zero, S inv T is fundamental. 
Recall that an inverse semigroup is fundamental [3, §5.4] if }.t is the identical relation. 
Unlike the E-unitary case [7, Theorem 5.4] there appear to be no simple necessary 
and sufficient conditions for fundamentality. For instance, in the E-unitary case if S 
and T are fundamental so is S inv T. In the next section an example will be given 
showing that this is not true in general. 

THEOREM 6.10. Let Sand T be inverse semigroups without zero. Then S inv T is 
fundamental. 

PROOF. Suppose (A, a)}.t(A, 1) in F, a =fo l. Using Proposition 6.7 it may be 
assumed, without loss of generality, that a = s E Sand SS-I = S-IS = e, say. Ob-
serve that for any C E 61J, C";;;; A, with g E C, g,,;;;; e, then since C = CPs = CPgs' a 
wordb E CTifandonlyif(gs)b E Cs . 

Suppose AT is empty (so that no word in As begins with s): then for any 
f E E(T), C = A U {f} < A but sf f1. Cs ' contradicting the above. So AT is non-
empty. Let b = b l ... bn be an inextensible member of AT' in the sense that b is not a 
prefix of any other member of AT' Suppose bn is not the minimum idempotent of the 
factor to which it belongs. Then b" > f, say, and since A is right reduced, b' = b l 

... b,,_lf f1. A. Replacing b by b' yields C E (iltl, with C < A (since e(C) < e(A» but 
CPs =fo C, since sb' f1. Cs = As. On the other hand, if b" is the minimum idempotent 
of the factor to which it belongs then since b" is not a zero, there is a nonidempotent 
v:JCbn . Let g be any idempotent of the alternate factor and put c = b l ... b,,_IV/. 
Since b is inextensible, c f1. A. Thus C = A U {c} < A, which is again a contradic-
tion since sc f1. Cs = As. 

Hence}.t is the identical congruence and F, and therefore S inv T, is fundamental. 
o 

COROLLARY 6.1l. The free product of an infinite family of inverse semigroups is 
always fundamental. 

PROOF. This follows from the theorem and the observation that the free product of 
any infinite family of inverse semigroups cannot have a zero (since such an element 
can only involve finitely many factors). 0 

7. Preservation properties of S inv T. It is clear from the nature of the reduction 
process given in §3 that if Sand T have a soluble word problem then so does 
Sinv T. 

In the previous section it was shown that the properties of complete semisimplicity 
and of being combinatorial are preserved by free products. In [8] it was shown 
(without using an explicit structure theorem) that the free product of E-unitary 
inverse semigroups is again E-unitary. (An inverse semigroup is E-unitary if ea = e, 
e E E(S), a E S implies a E E(S), or equivalently, if a:;;' e implies a E E(S).) As 
an example of an application of Theorem 6.1, this will be deduced here. 

PROPOSITION 7.l. Let Sand T be E-unitary inverse semigroups. Then S inv T is 
E-unitary. 
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PROOF. Suppose (A, a) ;;;;. (B, 1) in F. Then by Theorem 6.1(v), aB = 1. If a =1= 1, 
let g E B, gi E BPa, .. 'a,_,' 1 < i ~ m, be such that gi ~ aia;l, 1 < i ~ m. Then 
aB = (gla l ) ... (gmam)' But from the E-unitariness of Sand T, aB is reduced as 
written. Hence a = 1 and so F, and therefore S inv T, is E-unitary. 0 

O'Carroll [9] introduced the weaker notion of strong E-reflexivity: S is strongly 
E-reflexive if exy E E(S), e E E(S), implies eyx E E(S). He showed that strongly 
E-reflexive inverse semigroups are precisely the semilattices of E-unitary inverse 
semi groups. 

PROPOSITION 7.2. Let Sand T be strongly E-reflexive inverse semigroups. Then 
S inv T is strongly E-reflexive. In particular, the free product of semi/attices of groups 
is strongly E-reflexive. 

PROOF. Suppose S [T] is a semilattice Ys [YT ] of E-unitary inverse subsemigroups 
Sa' a E Ys [Tf3' fj E YT ]. Now Y = Ys inv YT is a semi/altice, in fact the free 
semi lattice product of Ys and YT ; thus each of its elements has the unique form a, f3 
or afj, where a E Ys' fj E YT . From the universal properties of S inv T it is apparent 
that S inv T is then the semilattice Y of inverse subsemigroups Fy ' y E Y, where 
Fy = Sy if y E Ys , Fy = Ty if y E YT and Fy is the inverse subsemigroup of S inv T 
generated by Sa and Tf3 if y = afj, a E Ys' f3 E YT . Now, by Corollary 5.7, in this 
last case Fy ~ Sa inv Tp, whence Fy is E-unitary. 

Thus S inv T is a semi lattice of E-unitary inverse semigroups, that is, S inv T is 
strongly E-reflexive. 0 

In [6] the author discussed preservation of the Hopf property ("every onto 
endomorphism is an automorphism") under free products. In general the property is 
not preserved, but under a range of weak conditions it is. 

In [4] the author introduced the strong basis property: an inverse semigroup S has 
this property if for any inverse subsemigroups V <: V of S any two V-bases for V 
have the same cardinality, (a V-basis for V being a set X minimal with the property 
that X U V generates V). It was shown there that free inverse semigroups have this 
property, from which it might be surmised that it is preserved by free products. 
However, as the following example shows, this is not the case. The example makes 
use of the characterization of all inverse semigroups with the strong basis property 
given in [5], to which the reader is referred for details. 

EXAMPLE 7.3. Let G be the symmetric group on three letters and let H be a two 
element group. From Example 5.5 and Lemma 4.2 of [5] both G and H have the 
strong basis property. Let e and f denote the identities of G and H, respectively, and 
let H = {t, h}. Put 

A = {e} U {gf: g E G, g =1= e} U {ghe: g E G, g =1= e} U {he,!}. 

Then A E Gl.0 = Gl.0(G, H) and H(A.I) ~ G, using an argument similar to that for 
Theorem 6.8. Further H(A.I) is non isolated, that is, H(A.I) =1= D(A,I) (since (A, gh) E F 
but Apgh =1= A since l( gh) = 2). But by [4, Theorem 4.8] any nonisolated maximal 
subgroup of an inverse semigroup with the strong basis property must be primary 
(that is, a p-group for some prime p). Clearly G is not primary. 
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FIGURE 1 

Finally an example is given of two fundamental inverse semigroups whose free 
product is not fundamental. 

EXAMPLE 7.4. Let E and E' be the semilattices in Figure 1, and let S = TE , 

T = TE " the Munn semigroups on E and E' respectively; thus Sand Tare 
fundamental. In each case the idempotents (as identified in the figure) will be 
identified with the identical automorphisms of the principal ideals they generate. 

Clearly T = {O', d, d', t, t- I}, where t is the isomorphism of E'd upon E'd': thus 
T is isomorphic with the five element combinatorial Brandt semigroup Bs. 

Denote by s the automorphism of Ee which interchanges I and /" and by a the 
isomorphism of Ee upon Ee' which leaves Eg fixed. Then sa = b, say, is the 
isomorphism of Ee upon Ee' which interchanges I and /'. Note that gs = gb and 
ga = ge = g; and that Is = fb is the isomorphism of EI upon E/,. Hence S = De U 
Dg U Df U Do, where De consists of the four X-classes {e, s}, {a. b}. 
{a-I, b- I }, {e', a-Ib}, Dg is the group {g, gs}, and Df U {O} = {f. Is, /'. s-I/,O} is 
again isomorphic with Bs' 

Now put A = {e, sO', ad, bd, atO, gtO} U {O'}. It is clear that A E c';J and (since 
s = S-I and sa = b, sb = a) Aps = A. It will now be shown that A covers the zero 
{O,O'} of ('9, from which it follows that (A, s )/l(A, 1) and F is not fundamental. 

So let B E L'9, B ~ A. Since 0' is the zero of T it is clear that BT = {O'}. Suppose 
e f!. B: then e > h for some h E B, and so A 1\ {g} ;;;. B. Thus, in S inv T, 

e(B) ~ e(A)e(g) = (sO's-I)(atOrla-I)(btOt-lb-I)O'g 

= (( gs )0'( gs rl)( tOt- I)( (gb )tOr l( gb r l )0', smce ga = g, 

= 00' = e({O,O'}), sinceO't = 0', 

whence B = {O, O'}. (A direct calculation of A 1\ {g} = cl(A U g) is also possible.) 
On the other hand, if e E B then sO' E B for, by Proposition 4.10, sO' is above a 

pseudo member b lb2 , say, of B, in which case b2 = 0' and, since bl ~ s and bl~R e, 
b l = s. Similarly, either ad E B or aO' E B. In the latter case aO'O must be the 
pseudomember of B below the member atO of A, in which case 0'0 = e(O'O) ;;;. e(BPa)' 
so BPa = {O,O'} and B = {O,O'} itself. 

Similarly, either B = {O,O'} or atO, bd and btO belong to B, that is, A <;::; B. But 
since Re = {e, s, a, b} and Rd = {d, t}, in that case A = B, completing the argu-
ment. D 
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