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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF SECOND ORDER

DIFFERENTIAL EQUATIONS WITH INTEGRABLE COEFFICIENTS

BY

MANABU NAITO

Abstract. The differential equation x" + a(t)f(x) = 0, t > 0. is considered under

the condition that lim,_x/' a(s) ds exists and is finite, and necessary and/or

sufficient conditions are given for this equation to have solutions which behave

asymptotically like nontrivial linear functions c, + oí.

1. Introduction. We study the asymptotic behavior of solutions of the second order

differential equation

(1.1) x" + a(t)f(x) = 0,       t>0,

under the following assumptions: (i) a(t) is continuous on [0, oo); (ii) f(x) has a

continuous derivative for x ^ 0 and satisfies xf(x) > 0, f'(x) 3s 0 for x =£ 0. A

typical example of (1.1) is the generalized Emden-Fowler equation

(1.2) x" + a{t)\x\ysgnx = 0,       t>0,

where y is a positive constant. The aim of this paper is to obtain sufficient and/or

necessary conditions for (1.1) to have solutions which behave like nontrivial linear

functions c, + c2t as t -» oo. It is known that if limt^x J' a(s) ds = oo, then all

continuable solutions of (1.1) are oscillatory (Bhatia [1], Wong [15]), so, in this case,

(1.1) never has a solution which behaves like c, + c2t as t — oo. Our particular

interest, therefore, is to consider the case in which a(t) satisfies the condition that

(1.3) lim I a(s) ds   exists and is finite.

If (1.3) is satisfied, one may introduce the function A(t) defined by

(1.4) A(t) = (°Ca{s)ds,       t>0.

Throughout the paper, (1.3) is tacitly assumed, and A(t) always denotes the function

defined by (1.4). Note that the integral of (1.4) may converge conditionally.

Under condition (1.3) various nonoscillation criteria have been given by numerous

authors; see e.g. Willett [13], Wong [16] (the linear case) and Butler [2], Kwong and

Wong [8] (the nonlinear case). In this paper it is shown that for a wide class of

equations, not only the existence of a nonoscillatory solution can be determined, but

also an explicit asymptotic form of the nonoscillatory solution can be obtained.
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Moreover, if A(t) does not change signs, then we can establish necessary and

sufficient conditions for (1.1) to have solutions with specified asymptotic behavior as

t -» oo. In §2 we deal with solutions which behave asymptotically like nonzero

constants and in §3 we deal with solutions which behave asymptotically like ct

(c ¥= 0). The results of §§2 and 3 are almost parallel.

Related results are also contained in Hartman [5, Chapter 11, §9], Hartman and

Wintner [6], Trench [11,12], and Wintner [14]. In the papers of Trench, equations of

higher order are considered.

Before stating and proving the main results we give a theorem which is concerned

with a nonoscillatory solution of (1.1).

Theorem 1.1. Suppose x(t) is a nonoscillatory solution of(l.l)on[T,oo). Then the

integral equation

(1.5)        ■£&=.+*»+rM'VWf*
/(*(<)) >. lf(x(.,))]z

is satisfied for t 3= T, where a is a nonnegative constant. Moreover, if the condition

(1.6) lim   f(x) = ±oo
.x-»± 00

is satisfied, then a = 0.

This theorem has been proved by Kwong and Wong [9] and is very useful in the

following sections.

2. Bounded asymptotically linear solutions. In this section we obtain necessary

and/or sufficient conditions for (1.1) to have solutions which behave asymptotically

like nonzero constants.

Theorem 2.1. Suppose

(2.1) fX\A(s)\ds< oo,

/OC

sA2(s)ds< oo.

Then, for any c ^ 0, (1.1) has a solution x(t) such that

(2.3) x(t) = c + oifCC{\A(s)\+B(s)}ds),

(2.4) x'(t) = 0{\A(t)\+B(t))

as t -* oo, where B(t) = /   A (s) ds.

Proof. Condition (2.2) implies B(t) is nonincreasing and integrable on [0, oo).

We may assume c > 0. Put

m = max{f(x):x E [c/2,3c/2]},   m' = max{\f'(x)\ :xE [c/2,3c/2]}

and choose constants b, T > 0 so that

(2.5) mm' + bm' fX \A(s)\ds*zb,
JT
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(2.6) mfX\A{s)\ds + bfXB(s)ds^^.

Let F be the Fréchet space of all continuously differentiable functions on [T, oo)

with the family of seminorms (|| • ||,: / = 1,2,...} defined by

\\x\\, = 8up{\x(t)\+\x'(t)\:T<t<T+l}.

We have the convergence xk -* x (k -» oo) in the topology of F if and only if

xk(t) -» x(t) (k -» oo) and x'k(t) -» x'(0 (£ -» oo) uniformly on every compact

subinterval of [ T, oo). Let A" denote the set of functions x E F such that \x(t) — c|<

c/2, |x'(i)|< w|y4(i)| +bB(t) for f 3= r. Note that A is a nonempty closed convex

subset of F. Define the operator $ on A by

(2.7) ($x)(r) = c - jXA(s)f(x{s)) ds - J^i j"°°/l(w)/'W"))*'(«) du) ds

for t s= T. We seek a fixed point of $ in A with the aid of the Schauder-Tychonoff

theorem.

(i) $ is well defined on X and maps X into itself. Let x E X. We have for r > s > T

I fA{u)f'(x(u))x'(u) du\ < f\A(u)\m'{m\A(u)\ +bB(u)} du
'•7s -7s

^mm'Í A2(u)du + m'bB(s)j \A(u)\du.

Therefore, letting r -» oo and using (2.5), we see that the integral of A(u)f'(x(u))x'(u)

over [ s, oo) converges and satisfies

\rA(u)f'(x(u))x'(u)du ^bB(s)

for s ^ T. This implies

|(«I>x)'(/)|^M(r)/(^(f))|+|f0C>l(«)/'(x(«))x'(M)i/M

<m|i4(0l+^(0
for ? 3= 7", and in view of (2.6) we have

|(*x)(f)-c|< fX\A(s)f(x(s))\ds
JT

/.OO I      y-00

+ /      /   A(u)f'(x(u))x'(u) du ds
JT   \Js

*Sc/2

for t 3= F. Thus $ is well defined on X and maps A into A.

(ii) $ is continuous on X. Let x, xk (k — 1,2,...) be functions in A such that

xk(t) -> x(i)> *¡t(0 ~* x'(t) as ft -» oo uniformly on every compact subinterval of

[7, oo). Then we have

l(*xj'(0 - (**)'(0l*M(0ll/W(0) -/WO)I

+ /°C|^(M)||/'(x,(t/)K.(M)-/'(x(M))x'(M)|i/M
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for t > T. Observe that f(xk(t)) -> f(x(t)) as k — oo uniformly on compact sub-

intervals of [T, oo) and \A(u)\\f'(xk(u))x'k(u) — f'(x(u))x'(u)\ is bounded above

by the integrable function 2m'\A(u)\{m\A(u)\+bB(u)} on [T, oo), and

\A(u)\\f'(xk(u))x'k(u) — f'(x(u))x'(u)\ tends to 0 as k -» oo. Applying the Le-

besgue dominated convergence theorem, we find that (<bxk)'(t) -» (Qx)'(t) as k — oo

uniformly on every compact subinterval of [7, oo). Moreover, since

K^KO - (**)(/)i« f° I (***)'(*) - (*x)f(s)\ds
jt

and | (<bxk )'(s) — (<bx)'(s) | is bounded above by the integrable function

2{m\A(s)\ +bB(s)} on [T, oo), using the Lebesgue dominated convergence theorem

again, we conclude that (<bxk)(t) -» (<bx)(t) as k -» oo uniformly on every finite

subinterval of [T, oo). Thus <P is continuous on A.

(iii) 3>A ¿s compact. This can be proved with the aid of Ascoli's theorem. Since the

proof is standard, the details are omitted.

From the preceding considerations we are able to apply the Schauder-Tychonoff

fixed point theorem to the operator $ defined on A. Let x E X be a fixed point of $.

It is immediately verified that x = x(t) is a solution of (1.1) for t > T and has

properties (2.3) and (2.4). This completes the proof of Theorem 2.1.

Remark. In Theorem 2.1 the assumption of f'(x) > 0 (x ¥= 0) is unnecessary. In

fact, this sign condition off is nowhere used in the proof.

It is known that if (2.1) and (2.2) are satisfied, then (1.1) has a nonoscillatory

solution (Butler [2]). Theorem 2.1 asserts more strongly that under the same

conditions (1.1) has a nonoscillatory solution with the asymptotic behavior (2.3) and

(2.4). As an example consider the equation

(2.8) x" + (ktxsint)\x\<sgnx = 0,       t > 0,

where k, X and y >0 are constants. Applying Theorem 2.1 to the case f(x) =

| x |vsgn x,

^2\k\tx       (X<0),

we find that if X < -I, then, for any c ¥= 0, (2.8) has a solution x(t) such that

x(t) = c + 0(tx+x), x'(t) = 0(tx) as t -> oo. Note that (2.8) has a nonoscillatory

solution if and only if

\<-l    fory>l    (Butler [2-4]);

X< -l,k arbitrary j _       (Wille« [ 13]),

\ = -l,|Jfc|<LW2j    forY"1     (Wille« [13], Wong [16]);

A<-y    forO<y<l    (Kura [7], Onose [10], Kwong and Wong [8]).

The superlinear case (y > 1) shows that our result is "sharp" in the sense that (2.8)

never has a nonoscillatory solution unless X < -1.

We have the following results as corollaries of Theorem 2.1.

\A(t)\=\fks  sin s ds
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Corollary 2.2. Suppose (2.1) and(2.2) are satisfied. Then, for any c ¥= 0, (1.1) has

a nonoscillatory solution x(t) such that

(2.9) x(t) = c + o(l)    astuce.

Corollary 2.3. Suppose (2.1) and

(2.10) tA(t)-+0       (f->oo)

are satisfied. Then, for any c ^ 0, (1.1) has a nonoscillatory solution x(t) such that

(2.11) x(t) = c + o(l),   x'(t) = o{rx)       as t-> oo.

Corollary 2.2 is a direct consequence of Theorem 2.1. For the proof of Corollary

2.3 we have only to note that (2.1) and (2.10) imply (2.2), and

/OC /*XA2{s)ds<      sA2(s)ds^0       (f - oo).
•'/

Remark. In Corollary 2.2, if (1.1) is linear, then the absolute integrability of A(t)

(i.e. condition (2.1)) can be replaced by the conditional integrability of A(t)

(Hartman and Wintner [6] or Hartman [5, Corollary 9.3, p. 382]).

In what follows it is shown that the converse of Corollaries 2.2 and 2.3 in some

sense can be obtained when A(t) does not change sign.

Theorem 2.4. Suppose A(t) 3= 0 for all large t and f'(x) > 0 for x =£ 0. Then the

following statements are equivalent:

(i)for any c ^ 0, there exists a solution x(t)of(l.l) satisfying (2.9);

(ii) for some c ¥= 0, there exists a solution x(t) o/(l.l) satisfying (2.9);

(iii) the integral conditions (2.1) and (2.2) are satisfied.

Proof, (i) implies (ii) trivially, and (iii) implies (i) by Corollary 2.2. We claim (ii)

implies (iii). Let x(t) be a solution of (1.1) for which (2.9) holds for some c ¥= 0. We

may assume c > 0. There is a number T such that c/2 *£ x(t) < 2c for t > T. By

Theorem 1.1, (1.5) with a nonnegative is satisfied for t 3= T. It is easy to verify that,

under the condition A(t) > 0,

*•(<)
^ »40+ /.*<.)* »o

for t> T, where m' — n~ñn{f'(x): c/2 < x < 2c} > 0. An integration over [T, t]

gives

Jx(T)f(y)        JT\ Js I

for t > T. Since the left-hand side of the above remains bounded as t -» oo, we

conclude that (2.1) and (2.2) are satisfied. The proof of Theorem 2.4 is complete.

Theorem 2.5. Suppose either A(t) > 0 orA(t) «s 0 for all large t. Then the following

statements are equivalent:

(i)for any c ¥= 0, there exists a solution x(t)of(l.l) satisfying (2.11);

(ii) for some c =£ 0, there exists a solution x( t ) of ( 1.1 ) satisfying (2.11);

(iii) the conditions (2.1) a«c7 (2.10) are satisfied.
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Proof. As (i) implies (ii) trivially and (iii) implies (i) by Corollary 2.3, it suffices

to show that (ii) implies (iii). Suppose x(t) is a solution of ( 1.1 ) such that (2.11 ) holds

for some c J= 0. From Theorem 1.1, (1.5) is satisfied for all large t. Since a =

lim,_00jc'(0//(*(0) = °' we have

<'(0 _ „,,w r/'WO)W(0]2A(t)+( ds

ds

/WO) J,        [f(x(s))]2

or, equivalently,

(212)       tA(t)=txV) -1 rf'{x{s))[x'{s)]2

(       } {)      /WO)       I [f(x(s))]2

for all large t. The first term of the right-hand side of (2.12) tends to 0 as t -> oo

since x(t) satisfies (2.11). Using l'Hospital's rule and (2.11), we find that the second

term of the right-hand side of (2.12) tends to 0 as t -* oo :

¡d rnX(s))ÍAs)Y\idxyx =  f(x(t)) 2
\dtJ>      [/WO)]2      )U   >      [/WO)]2

— 0   as t -» oo.

Therefore we have (2.10).

In order to prove that (2.1) holds, we may use the technique in Hartman and

Wintner [6]. According to (1.1), we get

(x(t) - tx'(t))'= ta(t)f(x(t))

= - (tA(t)f(x(t)))' + A(t)f(x(t)) + tA(t)f'(x(t))x'(t).

An integration of the above gives

x(t) - tx'(t) = const - tA(t)f(x(t))
(2.13) ,,

+    A(s)[f(x(s)) + sf'(x(s))x'(s)] ds,

where const = x(T) - Tx'(T) + TA(T)f(x(T)). Since tA(t) -> 0 (r -» oo) and x(t)

satisfies (2.11), we have x(t) — tx'(t) -» c, tA(t)f(x(t)) -> 0, and f(x(t)) +

tx'(t)f'(x(t)) -*f(c) 7e 0 as t -» oo. In view of these facts combined with (2.13) and

the sign condition of A(t) we can easily verify that (2.1) holds. This completes the

proof of Theorem 2.5.

From Theorems 2.4 and 2.5 we see that, even for solutions which have the same

limits as t — oo, there is an essential difference between restricting and not restrict-

ing the asymptotic behavior of the derivatives of the solutions.

Very recently Trench [12] proved that, among other results, if a(t) satisfies

(2.14) lim f sa(s) ds    exists and is finite,   and     /    \A(s) \ ds < oo,
r— oo J 7

then for any c ¥= 0, (1.2) has a solution x(t) satisfying (2.11). But it is not difficult to

show that conditions (2.1) and (2.10) together are equivalent to (2.14). Moreover, it

can be shown that if either A(t) > 0 or A(t) =£ 0 for all large t, then conditions (2.1)
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and (2.10) together are equivalent to the condition that

(2.15) lim   I sa(s) ds   exists and is finite.
r—oc 7

(In other words the absolute integrability of A(t) in (2.14) is superfluous when A(t)

does not change sign.) Consequently, we see that condition (iii) of Theorem 2.5 may

be replaced by (2.15).

3. Unbounded asymptotically linear solutions. The purpose of this section is to

obtain necessary and/or sufficient conditions for (1.1) to have solutions which

behave asymptotically like et (c ^ 0). In the preceding section, no growth condition

on / was required in proving the existence of a solution asymptotic to a nonzero

constant as t -» oo. The situation becomes different now and we shall impose one of

the following growth conditions on /:

(3.1a) f'(x) is nondecreasing for x > 0 and nonincreasing for x < 0;

(3.1b) f'(x) is nonincreasing for x > 0 and nondecreasing for x < 0.

Theorem 3.1. Suppose either (3.1a) or (3.1b) is satisfied. Also suppose

(3.2) -i'\f(ks)\\A(s)\ds-*0    (t - oo)       for every k J= 0,

(3.3) (Xf'(ks)\A(s)\ds< oo   for every k ^ 0,

(3.4) (X\f(kxs)\f'(k2s)A2(s)ds< oo   for everykx,k2 # 0.

Then, for any c =£ 0, (1.1) has a solution x(t) such that

(3.5) x(t) = ct + o(f{\f(cs)\\A(s)\+Bc(s)} ds),

(3.6) x'(t) = c+0{\f(ct)\\A(t)\+Bc(t))

as t -> oo, where

Bc(t) = sup maxi (Xf'(cs)\A(s)\ds, r\f(cs)\f'(cs)A2(s) ds) ,

a«<7 c = 3c/2, c = 3c/2 (if (3.1a) «o/ifa), c = c/2 (//(3.1b) holds).

Proof. We outline the proof. The details are left to the reader. Let c be a given

nonzero number. Without loss of generality we may assume c > 0. By (3.2), (3.3) and

the fact that Bc(t) -» 0 (t -» oo), there is a sufficiently large T such that the following

three conditions are satisfied for t > T:

\[lJ(cs)\A(s)\ds^C-t,

(c + 2) (Xf'(cu)\A(u)\du < 1,
/

(c + 2)fBc(s)ds<^t.
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Let F be the Fréchet space of all continuously differentiable functions on [T, oo)

with the topology as defined in the proof of Theorem 2.1, and let A denote the set

of functions xEF such that \x(t) - ct\< (c/2)r, \x'(t)\< c + f(ct)\A(t)\ +

( c + 2)BC( t) for t 3s T. Clearly, A is a nonempty closed convex subset of F. Then

consider a mapping <I>: A -» F defined by

(*x)(0 = ct + f'A(s)f(x(s)) ds + j'(f°°A(u)f'(x(u))x'(u) du) ds

for t 3= T. As in the proof of Theorem 2.1 it can be shown that (i) <E> is well defined

on A and maps A into A, (ii) $ is continuous on A, and (iii) $A is compact. By the

Schauder-Tychonoff fixed point theorem the operator i> has a fixed point x E X.

This fixed point x = x(t) provides a solution of (1.1) satisfying (3.5) and (3.6).

As an example we again consider (2.8). Applying Theorem 3.1 to the case

f(x) =|x|ysgnx, |,4(f)|=£2|Â:|/x (A < 0), we see that if A < -y, then (2.8) has a

solution x(t) such that x(t) = ct + 0(ts), where 8 = max{A + y + 1,0} if A + y +

1 ¥= 0 and x(t) — ct + 0(log t) if X + y + 1 =0. Theorem 3.1 is also "sharp" in the

sense that (2.8) in the sublinear case (0 < y < 1) never has a nonoscillatory solution

unless A < -y.

As corollaries of Theorem 3.1 we have the following results.

Corollary 3.2. Suppose either (3.1a) or (3.1b) is satisfied. Also suppose (3.2)-(3.4)

are satisfied. Then, for any c ^ 0, (1.1) has a solution x(t) such that

(3.7) x(t) = t[c + o(l)]    ast^oo.

Corollary 3.3. Suppose either (3.1a) or (3.1b) is satisfied. Also suppose

(3.8) f(kt)A(t)^0    (f-oo)       for every k^0,

/oo f'{ks)\A(s)\ds <co   for every k^0.

Then, for any c ^ 0, (1.1) has a solution x(t) such that

(3.10) x{t) = t[c + o(l)],   x'{t) = c + o(l)       ast-* oo.

We can prove the converse of Corollaries 3.2 and 3.3 when A(t) does not change

sign.

Theorem 3.4. Suppose A(t) > 0 for all large t. Moreover, in addition to (3.1a) or

(3.1b), suppose f'(x) > 0 for x ¥= 0, and

(3.11) limsup\ f\f(kxs)\[f'{k2s)Yids< oo   for every kx,k2=£0.
r-oo     t   7

Then in order for (1.1) to have a solution x(t) satisfying (3.7) for some c ¥= 0 it is

necessary that:

(3.12) - f'\f(ks)\A(s)ds ^0    (t -> oo)       for some k^0,

/OC

f'(ks)A(s)ds < oo   for some k^0,
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(3.14) jX\f(kxs)\f'(k2s)A2(s)ds< oo   for some kx, k2 ¥= 0.

Proof. Let x(t) be a solution of (1.1) which satisfies (3.7). We may assume c > 0.

There is a number T such that (c/2); < x(t) < 2cf for t > T. From Theorem 1.1 it

follows that

x'(0 = «/W0)+^(0/W0)

(3-15) +f(x(t))r^^fds
J>      [/W*))]2

for t s= T, where a is a nonnegative constant. On the other hand, an integration by

parts of (1.1) gives

(3.16) x'(t) = const + A(t)f(x(t)) - f'A(s)f'(x(s))x'(s) ds,
JT

where const = x'(T) — A(T)f(x(T)). Combining (3.15) with (3.16), we have

(3.17) ' [/«*))]

= const —  i A{s)f'(x(s))x'(s) ds.
JT

Since x'(t) 3- 0 by (3.15), (3.17) implies

(3.18) /   A(s)f'{x(s))x'(s) ds < oo.

Using the inequality x'(t) > A(t)f(x(t)) (t > T), which is derived from (3.15), we

conclude that

(Xf(x(s))f'(x(s))A2(s) ds < oo,

which, in view of (3.1), implies (3.14). By (3.18) we find that the right-hand side of

(3.17) has a finite limit as t -» oo. Let ß denote the limit:

(3.19)    ß= um L/wo)+/(40)f/,(;(;))/^)]24-
'—l J'        [/W0)F I

Integrating (3.15) over [t, t](t > t > T) and dividing by t, we get

x{t)~x{T) = \f'A(s)f(x(s))ds+^ff{x(s))ds

(3.20)

^fy(x(s))[rf'{x{u))[x'{fdu\ds.
<Jrny,'\Js [f(x(u))}2 j

Since x(t) satisfies (3.7), from (3.19) and (3.20) it follows that

(3.21) lim \ f'A(s)f(x(s))ds = c- ß.
,-.00   t  JT
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It is easy to see that

(3.22)

o^j^ííí/W^A^jjjí'^^AJ^jfVWíM/'W^M'ÍO*)1^

for t > r, where c' = c/2 if (3.1a) holds and c' = 2c if (3.1b) holds. Note that (3.11)

implies there exists a positive constant M independent of t such that

-.i'^ds^M2
t2K f'(c's)

for t > t. Taking the limit as t -» oo in (3.22), we have, from (3.21),

/ /•« \1/2

(3.23) 0^c-ß<M j   /(x(í))/'(x(í))^2(í)í/5       .

Since t is arbitrary, letting t -» oo in (3.23), we see that c = ß. Therefore, we have

from (3.19) and (3.21) that

(3.24)    um {«/wo) +/wo)r/,(;(;))[*yM=c-
Jt f x(s))V

1
(3.25) lim - f1A(s)f{x(s)) ds = 0.

r— «   ' 7

In view of (3.25) we find that (3.12) is satisfied. By (3.15) and (3.24), we obtain

x'(t) 3= c/2 for all large t. Combining this with (3.18), we see that (3.13) is satisfied.

This completes the proof of Theorem 3.4.

When applied to the special case of the generalized Emden-Fowler equation (1.2),

Corollary 3.2 and Theorem 3.4 yield the following result.

Theorem 3.5. 7« (1.2) suppose A(t) > 0 for all large t. Then the following statements

are equivalent:

(i)for any c ¥= 0, there exists a solution x(t) of (1.2) satisfying (3.7);

(ii) for some c ¥= 0, there exists a solution x(t) of (1.2) satisfying (3.7);

(iii) the two integral conditions below are satisfied:

(3.26) fXsy~xA(s)ds< oo,

/CO

s2y~xA2(s)ds< oo.

For the proof we have only to notice that the condition t~xj'syA(s)ds — 0

(t -* oo), which corresponds to (3.2), is implied by (3.26).

Theorem 3.6. Suppose either A(t) 3* 0 or A(t) < 0 for all large t. Also suppose

either (3.1a) or (3.1b) is satisfied. Then in order for (1.1) to have a solution x(t)

satisfying (3.10) for some c =£ 0 it is necessary that:

(3.28) f(kt)A(t)^0    (f-oo)       for some k^O,

(3.29) jXf'(ks)\A{s)\ds< oo   for some k¥=0.
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Proof. First we prove (3.28). If f(x) is bounded as x — oo or -oo, then (3.28) is

trivially satisfied since A(t) -* 0 (t -> oo). Thus we may assume limx^±aof(x) =

± oo. Let x(t) be a solution of (1.1) satisfying (3.10). By Theorem 1.1 we have

(3.30) A(t)f(x(t))=x'(t)-f(x(t))j
<* f'(x(s))[x'(s)]2

ds

[/WO)f
for t > T. Using FHospital's rule, we see that the second term of the right-hand side

of (3.30) tends to c as t -> oo :

/ d  r* f'(x(s))[x'(s)]2 , )l d ,_,   , ul-ir'        ,< ,
i j v   v  nv    \  n  ds     —[f(x(t))] = x'(t) -» c    asr-oo.
\dtJ>     [/WO)]2      )u '

It follows from (3.30) and (3.10) that A(t)f(x(t)) - 0 as f - oo, which implies (3.28)

is satisfied. Integrating (1.1) by parts, we have(3.16). Since x'(0 -» c,A(t)f(x(t)) -> 0

(i -> oo ), we see that

fX\A(s)\f'(x(s))\x'(s)\ds<K,

and from this (3.29) readily follows. The proof is complete.

Combining Corollary 3.3 with Theorem 3.6, we have the following result.

Theorem 3.7. 7« (1.2) suppose either A(t) 3= 0 or A(t) < 0 for all large t. Then the

following statements are equivalent:

(i)for any c =£ 0, there exists a solution x(t) of (1.2) satisfying (3.10);

(ii) for some c ¥=0, there exists a solution x(t) of (1.2) satisfying (3.10);

(iii) the two conditions below are satisfied:

(3.31) tyA(t)^0       (/-oo),

/oo sy~x\A(s)\ds< oo.

It is easily seen that Corollary 3.3 is a generalization of a result of Kwong and

Wong [8, Theorem 2]. Trench [12] showed that, if a(t) satisfies

/t /*°°sya(s) ds   exists and is finite,   and     /   sy~ \A(s) | ds < oo,
7

then (1.2) has a solution x(t) satisfying (3.10). It can be verified that conditions

(3.31) and (3.32) together are equivalent to (3.33), and that if either A(t) > 0 or

A(t) «s 0 for all large t then (3.31) and (3.32) together are equivalent to

(3.34) hm   j sya(s) ds   exists and is finite.
i^oc  7

Thus condition (iii) of Theorem 3.7 may be replaced by (3.34).
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