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PROJECTIVE NORMAL FLATNESS

AND HILBERT FUNCTIONS

BY

U. ORBANZ AND L. ROBBIANO

Abstract. Projective normal flatness of a local ring R along an ideal / is defined to

be the flatness of the morphism on the exceptional divisor induced by blowing up R

with center /. It is shown that most of the important properties of normal flatness

have an analogue for projective normal flatness. In particular, we study the local

HUbert function in connection with projective normal flatness. If R/I is regular and

R projectively normally flat along /, then we obtain the same inequality for the local

HUbert functions under blowing up as in the permissible case.

Introduction. The notion of normal flatness was introduced by Hironaka in his

famous paper [9] in order to control the numerical data of a singularity under

monoidal transformations. The assumption of normal flatness implies, in particular,

that the corresponding monoidal transformation induces a flat morphism on the

exceptional divisor. If the local ring at the singularity is R and if the center of the

monoidal transformation is defined by the ideal I C R, then the morphism on the

exceptional divisor is (locally) given by Pro}(Gf(R)) -» Spec(R/I), where G,(R)

denotes the associated graded ring of R with respect to /. In this paper we study the

flatness of this morphism, and the first observation is that it is equivalent to the

flatness of I"/In+X over R/I for large n (Proposition (1.2)). Therefore, this algebraic

condition is investigated, and it is given the name projective normal flatness (of R

along /). The present paper consists mainly in showing that projective normal

flatness shares all of the important properties of normal flatness, although some-

times additional assumptions are necessary.

One way of characterizing normal flatness is by the so-called Hironaka-

Grothendieck isomorphism. A systematic account of the results on this isomorphism

is now available in [13]. The main difficulty in translating these methods to our

situation consists in the fact that many of the classical proofs use induction on the

degree in G,(R), whereas for projective normal flatness only large degrees are

considered. The main tool to overcome this difficulty is Proposition (1.9).

In [6] the question was raised for a reasonable condition " between" equimultiplic-

ity and normal flatness, and indeed our projective normal flatness is such a

condition, for we have the implications normal flatness => projective normal flatness

=> equimultiplicity [7, Theorem 1]. As an application of the techniques of §1 we can
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34 U. ORBANZ ANDL. ROBBIANO

give some cases for the converse implications (Corollaries (1.13)—(1.15); see also the

Remark following Corollary (2.5)). It turns out that some innocent looking condi-

tions on the exceptional divisor (like depth > 0, reduced, Cohen-Macaulay) have

fairly strong implications for the center of blowing up.

In §2, the various properties of projective normal flatness in connection with

Hilbert functions are proved. For normal flatness, these properties were first given

by Bennett [2] (improved later in [15,8 and 12]). We give a numerical characteriza-

tion of projective normal flatness (Corollary (2.3)), which is used to prove the

transitivity property for projective normal flatness (Corollary (2.5)). We point out

here that it was only with the use of Hilbert functions that we were able to prove this

result, contrary to the transitivity of normal flatness.

One reason for our interest in projective normal flatness was Nesselmann's paper

[11], where he extends Singh's result [15] to centers / such that R/I"+] is Cohen-

Macaulay for large n; if R/I is regular, then this condition is slightly stronger than

projective normal flatness. Theorems (2.7) and (2.8) generalize the results of Singh

[15], Nesselmann [11] and Orbanz [12] to centers / along which R is projectively

normally flat.

Finally we note that in most cases where we prove flatness of I"/In+X, we have to

restrict to the case R/I regular. For our purpose, the appropriate adaption to the

nonregular case is the condition depth I"/I"+' = dim R/I. This explains why many

of the results are stated in terms of regular sequences on I"/I"+K

1. Projective normal flatness and the Hironaka-Grothendieck homomorphism.

Before turning to local rings we give some results on graded rings. For this, let

A — ®n^0An be a graded noetherian ring, generated over AQ by Ax. Furthermore,

we assume that A0 is local with maximal ideal m.

Definition. A is called projectively flat over A0 if Pro}(A) -» Spec(^0) is a flat

morphism.

Clearly, if A is flat over^0, then it is projectively flat overy40. Recall (e.g. [3]) that

for any integer d > 0, the graded algebra A{d) is defined by A{d) = (BnS,0And, and

then Proj(/4) and ?xo\(A(d)) are canonically isomorphic. If M is a graded ^-module

and if P is a homogeneous prime ideal of A, let S be the set of homogeneous

elements of A\P. Then M(P) denotes the submodule of S~XM consisting of the

fractions m/s, m £ M, s £ S, and m and s are homogeneous of the same degree.

The following simple lemma is given for reference, and the proof will be omitted.

Lemma (1.1). Let M be a finitely generated graded A-module. Then the following

conditions are equivalent:

(1) Mn = Qfor large n.

(2) M{P) = 0 for all P £ Proj(^).

Proposition (1.2). The following conditions are equivalent:

(1) A is projectively flat over A 0.

(2) A„ is flat over A0 for n large.

(3) There exists a d such that A{d) is flat over A0.
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Proof. (2) => (3) is trivial, and (3) => (1) since Proj(^) = ?w}(A(d)). So it remains

to prove (1) => (2). For this we embed A into an exact sequence

(A) 0->I-+Ao[X] -^A -0,

where X — Xx,..., Xs are finitely many indeterminates which are mapped to some

system of generators of the A0-modu\eAx. Let k = A0/m and put T = Totxa°(A, k).

Then T — ®nS,0Tn, where Tn — TorxA°(A„, k), and from the exact sequence (A) we

conclude that

T^(inm[X])/(lm[X]).

So we see that not only does T have a natural structure of a graded A -module but,

moreover, it is finitely generated over A. Now take any P £ Proj(^). Then

TorxA°(A(P), k) = 0 by assumption (1). But TorxA°(A(P)y k) - Torf'>(A, k)(P) = TiP),

so by Lemma (1.1) we know that Tn — 0 for large n, and this proves (2).

Corollary (1.3). The condition "An is flat over A0 for n large" is open over

Spec(^0).

Proof. This follows from the equivalence of (1) and (2) above (see [9] for the

corresponding discussion in the case of normal flatness).

Next we recall the definition of a weakly regular sequence in a graded ring, which

was introduced in [5] (see also [6]).

Definition. Let A — ®nS,0An be a graded ring and let x = (xx,...,xr) be a

sequence of homogeneous elements of A. x is said to be weakly regular if there exists

an integer «0 with the property: For every i£{l.r) and every a £ An, axi £

xxA + ■ ■ ■ +xi_xA andn > n0 imply a £ xxA + ■ • ■ +xt_xA (wherex0 = 0).

Given A and x as above, recall that the Koszul complex K.(\, A) = ©^(x, A) is

defined by

K,(x, A) = A    © A{-dj)\,       dj = degXj.

Hence each Kt(x, A) has a natural structure as a graded A -module, and the same is

true for the homology groups //,-(x, A). The homogeneous part of degree n of

Ht(x, A) will be denoted by #,(x, A)n.

Now our assumptions made previously on A are in force again, i.e. A0 is local and

A noetherian, generated over A0by Ax. Furthermore, a sequence x = (xx,...,xr) of

homogeneous elements of A will be fixed.

Lemma (1.4). Consider the following conditions:

(1) x is a weakly regular sequence.

(2)Hx(x,A)n = 0forlargen.

Then (1)=>(2), and if dj = deg Xj = 0 for j = \,...,r, then (1) and (2) are

equivalent.

Proof. The proof of (1) => (2) is literally the same as for regular sequences (see

e.g. [14]). If dj = 0 for; = 1,... ,r, then Hx(x, A„) = Hx(x, A)„. Therefore, Hx(x, A)„

— 0 if and only if x is a regular sequence on An, which proves (2) => (1).
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Corollary (1.5). Ifx is a weakly regular sequence and ifdeg x■ = Oforj = l,...,r,

then any permutation of x is a weakly regular sequence.

Proof. Condition (2) of (1.4) is independent of the order of x.

Remark. Corollary (1.5), as well as Lemma (1.4), cannot be extended to a

sequence x whose elements have positive degrees, as the following easy example

shows. Take A = k[[x]][Z]/(xZ2), graded with respect to Z. Then the sequence

(Z2, xZ) is weakly regular, but xZ is not a weakly regular element.

Proposition (1.6). With A and x as above, assume that deg x} = 0 for j = 1,..., r.

Then the following conditions are equivalent:

(\)xis a weakly regular sequence.

(2)Hx(x,A)n = 0fornlarge.

(3) Hx(x, A(P)) = Ofor all P £ Proj(^).

(4) Hx(x, A(P)) = Ofor all P £ Pro)(A) such that xA C P.

Proof. The equivalence of (1) and (2) was shown in Lemma (1.4), while the

equivalence of (3) and (4) follows from the well-known fact that xHx(x, A(P)) = 0.

Finally, (2) and (3) are equivalent by Lemma (1.1) since Hx(x, A(P)) = Hx(x, A)^P).

(Note that in (3) and (4) it is enough to check for those P which are maximal in

Prqj(^).)

From now on let R be a local ring with maximal ideal m, and let / be a proper

ideal in R. We want to apply the results obtained so far to A = G{(R), the

associated graded ring of R with respect to /. Furthermore, we fix a sequence

x = (xx,.. .,xr) of elements of R, we denote by xR the ideal generated by x, and

finally we put I(x) = I + xR. We will use the notation B17(.R) for the class of

homomorphisms R -> Rx obtained by blowing up R with center /. Sometimes x will

be considered as a sequence in G7(R), by which we mean the sequence of the images

of xx,...,x/m R/I = G,(R)0.

Using this notation we can state the following consequence of Proposition (1.6).

Corollary (1.7). The following conditions are equivalent:

(1) x is weakly regular in Gr(R).

(2) For any homomorphism R -» Rx in Bl7(^), x is a regular sequence on RX/IRX.

Note again that in (2) above it is enough to consider those Rx for which

RX/IRX - [G,(R)\P) with some maximal P £ Pro)(G,(R)).

Definition. R will be called projectively normally flat along / if Gr(R) is

projectively flat over G,(R)0 — R/I.

So by Proposition (1.2), R is projectively normally flat along J if and only if

r/In+] is flat over R/I for large n.

Lemma (1.8). Assume that x is a regular sequence on R/I. Then the following

conditions are equivalent:

(1) R is projectively normally flat along I.

(2) Gr(R) ®/< R/I(x) is projectively flat over R/I(x) and x is a weakly regular

sequence in G,(R).
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Proof. (1) => (2). The first part of (2) is obvious; as for the second part, note that

Hx(x, R/I) = 0 implies Hx(x, In/In+l) = 0 as soon as I"/I"+x is flat over R/I.

Therefore, x is weakly regular in G7(R) by Proposition (1.2).

(2) => (1). Since x is regular on R/I, Hx(x, I"/I"+') = 0 implies

Totxr/i(R/I(x), I"/In+i) = 0 by [13, Lemma 1.4]. So we conclude by the local

criterion of flatness [1, p. 91].

Example. Let R = k[[X, Y]]/(XY, Y2) = k[[x, y]], k any field, and take / = yR,

x = (x). It follows that G,(R) - k[[X]][T]/(XT, T2). Then x is regular on R/I,

but x is a zero-divisor on R — R/I" for n s* 2. On the other hand, x is weakly

regular in Gr(R), since it is not a zero-divisor on I"/In+X — 0 for n > 2. This

example shows that the property that x is weakly regular in G,(R) is different from

the property that x is a regular sequence on R/I"+x for large n. The next result

shows that this difference in the example is due to the fact that * is a zero-divisor in

R.

Proposition (1.9). The following conditions are equivalent:

(l)xis a regular sequence on R/In+X for n large.

(2) x is a regular sequence in R and a weakly regular sequence in Gt(R).

(3) x is a regular sequence in R and I" D xR = I"xR for n large.

Furthermore, if these conditions are satisfied, then

x,£ / + xxR + • • ■ +jc,.  XR + x,+xR + • - • +xrR

for 1 < j' < r.

Proof. (1) => (2). From the exact sequences

(A) 0 -> In/In+' -* R/In+' ^ R/I" -* 0

and the induced sequences for the Koszul homology it is clear that (1) implies the

second part of (2). To prove the first part, let z £ {1,... ,r) and assume

axt £ xxR + ■ ■ ■ +Xj_xR   for some a £ R.

By (1) we conclude a £ xxR + ■ ■ ■ +xi  XR + I" for n large;  hence, a £ xxR

+ ■ ■ ■ +xt_xR by KrulPs intersection theorem.

(2) => (3). Choose integers k and c such that x is regular on I"/I"+' for n > k and

such that

I"+c nxR = r(lcDxR)    forall«^0

(Artin-Rees-Lemma). To prove (3), it is obviously enough to show Ic+k n xR —

Ic+kxR, and since Ic+k n xR C IkxR n Ic+k, actually it suffices to prove

(B) I"xRnr+l Cl"+ixR   forn>k.

By the choice of k and since x is a regular sequence in R, we have

Totxr(R/xR, I"/I"+]) = 0   for/? ^ k

by [13, Lemma 1.4]. Therefore from (A) we deduce the exact sequences

0 ^ Tot?(R/xR, R/In+X) -* 7orxR(R/xR, R/I"),       n>k.
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This can also be written as

0^(/"+1 nxR)/(I"+)xR)^(l" nxR)/(I"xR),       n>k,

and therefore (B) above follows.

(3) => (1). Since x is regular in R, K.(x, R) is a finite free resolution of R/xR, and

therefore

Hx(x, R/I") =* Totxr(R/xR, R/I") =* (I" n xR)/ (I"xR),

proving (1).

To prove the last claim, observe that the conditions (l)-(3) are independent of the

order of x, so we may assume i = r. Now if xr £ / + xxR + ■ ■ ■ +xr_xR, then also

x" £ /" + xxR + ■ ■ ■ +xr_xR for all n, contradicting the assumption that x is a

regular sequence on R/I"+' for n large.

Remark. Let R -» Rx be a homomorphism in B17(.R) and choose t £ / such that

IRX = tRx. Assume that R/In+l is Cohen-Macaulay for large n. In [11, Lemma 3.1],

the existence of elements xx,...,xr (r = dim R/I) is shown with the property that

xx,...,xr is a system of parameters with respect to / and t, xx,...,xr is a regular

sequence in Rx. Proposition (1.9) combined with Corollary (1.7) shows that this

result of Nesselmann's is void in the sense that under the assumptions made above,

any system x of parameters with respect to / gives rise to a regular sequence t,

xx,.. .,xr on Rx.

Following [13, Lemma 1.6], we recall that there are two canonical homomorphisms

of graded rings

g(l,x): G,(R) ®« R/I(x) - Gm/xR(R/xR)

and

G(I,x):{G,(R)®RR/I(x))[Tx,...,Tr\^GHx)(R).

(The second one is the Hironaka-Grothendieck homomorphism mentioned in the

title of this section.)

Theorem (1.10). With the notations introduced above, the following conditions are

equivalent:

(1) (Ker g(I, x))n = 0 for large n, and x is a regular sequence in R.

(2) x is a weakly regular sequence in Gr(R) and a regular sequence in R.

(3) x is a regular sequence on R/I"+l for large n.

Proof. For any n we have (Kerg(/,x))„ = 0 if and only if I" D xR C I"xR +

In+\ From this, one deduces easily that (Kerg(J, x))n — 0 for large n if and only if

I" ^xR = I"xR fox large n (compare [13, Lemma 1.7]). So the theorem follows

from Proposition (1.9).
We note that Theorem (1.10) is parallel to [13, Theorem (1.8)], with the important

difference that for large degrees there is no reasonable equivalent property involving

G(/,x).
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Combining the last result with Lemma (1.8) we obtain

Theorem (1.11). Assume, in addition, that x is a regular sequence on R/I. Then the

following conditions are equivalent:

(1) R is projectively normally flat along I and x is a regular sequence in R.

(2) Gf(R) ®R R/I(x) is projectively flat over R/I(x) and x is a weakly regular

sequence in Gt(R) as well as a regular sequence in R.

(3) G7( R) ®R R/I(x) is projectively flat over R/I(x) and x is a regular sequence on

R/I"+] for large n.

(4) (Ker g(I, x))„ = Ofor large n, R/xR is projectively normally flat along I(x)/xR,

and x is a regular sequence in R.

Before turning to some consequences of Theorem (1.11), we make the following

simple observation.

Lemma (1.12). Let A be a graded ring (of the type considered at the beginning) and

let K C A+ be a homogeneous ideal. Consider the conditions:

(l)K=0.

(2) K„ = Ofor large n.

(3) K is nilpotent.

Then:

(a)(l)=>(2)-(3).

(b) If A+ contains a homogeneous nonzero-divisor, then (1) <=* (2).

(c) If Vro](A) is reduced, then (2) «* (3).

Proof, (a) is obvious. If a £ A + is a homogeneous nonzero-divisor and k £ Ks is

arbitrary, then (2) implies a"k — 0 for n large, and therefore k — 0, which proves

(b). For (c) we note that if K is nilpotent and Pxo)(A) is reduced, then K(P) = 0 for

all P £ Proj(A), and the assertion follows from Lemma (1.1).

Corollary (1.13). Let P C R be a prime ideal for which R/P is regular, and let x

be a regular system of parameters with respect to P. Assume, furthermore, that:

(a) x is a regular sequence in R.

(b) R is projectively normally flat along P.

(c) depth(GP(R) ®R R/m) > 0.

Then P is permissible in R.

Proof. By [13, Theorem 1.9], we have to show that g(P,x) is an isomorphism.

Applying Lemma (1.12)(b) to K = Kei g(P,x), we see that it suffices to prove

Kn = 0 for large n. But this follows from assumption (b) together with Theorem

(1.11).

Corollary (1.14). Let R, P, x be as in (1.13) and assume that:

(a) R/P" is Cohen-Macaulay for large n.

(b) dcpth(GP(R) ®R R/m) > 0.

Then P is permissible in R.
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Proof. By Lemma (1.8), Proposition (1.9) and assumption (a), x is a regular

sequence in R, and R is projectively normally flat along P. Therefore, the assertion

follows from Corollary (1.13).

Corollary (1.15). Let X be a locally noetherian Cohen-Macaulay scheme and let Y

be a regular closed subscheme. Denote by it': X' -» X the blowing up of X along Y, and

by it: E -> Y the restriction of it' to the exceptional divisor. Let y £ Y. If X is

equimultiple along Y at y and if the fibre Ey of m is reduced, then tr is flat at y.

Proof. Let R = <Sx v, let P be the ideal of Yin R, and let x be a regular system of

parameters with respect to P. Then from [10] (see also [6, Theorem 3]) we know that

g(P,x) has a nilpotent kernel. Since Ev — Pto](Gp(R)) is reduced, Lemma (1.12)

tells us that (Kerg(i>, x))„ = 0 for large n, or, by Theorem (1.11), that R is

projectively normally flat along P. This means by definition that m is flat at y. (Note

that x is a regular sequence in R; compare the Remark following Theorem (2.4).)

As an application of the techniques developed so far we prove the following

transitivity property, which will be an essential step for the numerical characteriza-

tion of projective normal flatness to be proved in Theorem (2.2).

Theorem (1.16). Let Ix = I + xxR and y = (x2,... ,xr) (so r > 0). Ifx is regular

on R/I"+' for large n, then y is regular on R/I"+x for large n.

Proof. By Proposition (1.9) it is enough to show that y is weakly regular in G, (R)

(note that x, £ /, for i = 2,..., r by the last claim of Proposition (1.9)). So by

Corollary (1.7) we have to show that for any homomorphism R -* Rx in Elr(R), y is

a regular sequence on RX/IXRX, and we may assume, in addition, that R -* Rx is

local. Now either IXRX — xxRx or IXRX = tRx for some t £ /. These two cases will be

treated separately.

Case 1. IXRX = xxRx. Let/ £ [\,...,r] and assume

(A) zxt■ = axxx + ■■ ■ +ai_xxi_x,       z, ax,.. .,aj_x G R[lxx]].

Now from Proposition (1.9) we know

(B) /" D (*,£ + •• • +xi-lR) = I"(xlR + - ■■ +xi_lR),       n large.

Write

z=y/xnx,   aj = b]/x"x,      j = \,. ..,i - \, y,bx,...,b,_x G I",

where  n  is  chosen  big  enough  to  satisfy  (B).  Then  (A)  implies yxj = bxxx

+ • ■ • +bj_xxl_x, and since x is a regular sequence in R, we obtain

y £ /" n (xxR + ■■■ +x,_xR) = I"(xxR + ■■■ +x,^xR).

so we may write

y = cxxx + ■■■ +ct_xx,_x,       c,,...,c,_, £/".

Therefore

z=y/x"x = {cx/x"x)xx + ■■■ + (c,_x/x"x)x^x.

This proves that x„.. .,xr is a regular sequence in R[Ixxx] and therefore also in its

localization/?,.
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Case 2. IXRX = tRx, t £ /. Then Rx is a localization of R[Ixt'x] = R[It-x][xxt'x].

Let m, denote the maximal ideal of Rx and let S = R[It~x]m]nR[irt]. Then R -» S is

in Blj(R) and Rx is obtained from 5 by blowing up the ideal tS + xxS, which, by

Corollary (1.7), is generated by a regular sequence. Therefore, the homomorphism

S/(tS + xxS)^Rx/(tRx +xxRx) = Rx/tRx = RX/IXRX

is flat. Since x is regular on S/tS, the flatness above implies that y is regular on

Remark. The theorem above remains true if "large n" is replaced by "all «". In

fact, in this case the proof can be obtained much easier by using the techniques of

[13].

2. Numerical properties of projective normal flatness. We keep the notation of §1,

so R will denote a local ring with maximal ideal m, and I will be a proper ideal of R.

Furthermore, x = (xx,... ,xr) is a sequence of elements of R, and from now on we

assume that x is a system of parameters with respect to /, i.e. r = dim R/I and I(x)

is m-primary.

We recall from [8] that a generalized Hilbert function is defined by

//(0)[x, /, R](n) = e(x, I"/I"+x),

where e(x, -) denotes the multiplicity symbol introduced by Wright. We are going to

use the fact that e(x, -) is additive on exact sequences. For the properties of e(x, -),

as well as of the generalized Hilbert functions, the reader is referred to [8]. As usual

we define

n

H0)[x,I,R](n)= 2H('-X)[x,I,R](j)   ifz>0.
7 = 0

For x—0, which means r — 0, the functions HU)[x, I, R] are the well-known

Hilbert functions of the m-primary ideal / and will be denoted by H(i\l, R]. Finally

v/eput Hin[R] = H(,)[m, R].

Our next aim is to give a numerical criterion for R to be projectively normally flat

along /. We start with a technical result which will be needed in the inductive proof

of the criterion.

Lemma (2.1). Assume r > 0 and put Ix — I + x,R, y = (x2,.. .,xr). Let n > 0 be a

fixed integer and assume

depth Ix"/Ix"+X = r- 1    and   #«%, /,, R](n) = H™[x, I, R](n).

Then xx is not a zero-divisor on I"/In+X.

Proof. Consider the exact sequence

0 -* Ix"/In+X -* R/In+X -* R/Ix" -> o.

Since dim R/I" < r, we obtain

(A) e(x, /,-//-+') = e(x, R/I"+x) = e(y, Ix"/Ix"+X),
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the second equality by assumption. Now by definition

(B) e(x, Ix"/In+X) = e(y, Ix"/1"+X + xxIx") - e(y,Ann(x,, Ix"/I"+X))

= e{y, Ix"/Ix"+X) - e(y,Ann(x,, /,"//"+')).

Comparing (A) and (B) yields

(C) e{y,Ann(xx,Ix"/I"+]))=0.

If r = 1, then (C) says that l(Ann(jc,, I"/I"+x)) = 0 and therefore xx is regular on

I"/I"+x. So assume now that r>\. For the rest of the proof we put Nj =

Ann(xj, Ix"/In+X), j = 1,2,... Then 0 = N0 C Nx C ■ • • C Ix"/I"+X, and therefore

there is a smallest integer k > 0 such that Nk = Nk+m for all m > 0. The proof will

be finished if we can show that k = 0. By (C) and the properties of the multiplicity

symbol, we get

(D) dim Nx < r - 1.

Observe that I"+XNX = 0 and xxNx = 0, so Ixn+XNX = 0. Therefore (D) implies that

there exists somej> £ R such that

(E) yNx=0,       y £P    for all P £ Assh(R/Ixn+X) = Assh(/?//,).

(Here we use the notation Assh(R/Ix) = {P' £ Ass(/?//,) | dim fl/i" =

dim R/Ix}.) Next we show, by induction ony, that

(F) y'Nj = 0.

This is clear foij = 1 by (E). For j > 1, let z £ NJt so that by definition x{z = 0 =

x{~x(xxz). Then xxz £ A^_j, which implies yJ~xxxz = 0 by inductive assumption.

But thenj;~'z £ Nx givesy(yJ~xz) = 0 by (E) again, so (F) is proved. The next step

is to show that

(G) y is regular on Ix"/I"+X.

Recall that I"/Ix+X is a Cohen-Macaulay module of dimension r — 1 by assump-

tion. Therefore (G) follows from (E). After these preparations assume now, if

possible, that k > 0 and choose z £ Nk\Nk_x. Thenj^z = 0, so (G) implies

z £ Ixn+X/In+X = (ln+] + xxIx")/I"+x,

and therefore z = xxzx for some z, £ I"/In+l. Finally, z E Nk implies z, £ Nk+, =

Nk, which leads to the contradiction xx ~xz — 0.

To state the criterion announced before, we need some more notation. For

z £ {0,...,r — 1} we put

/j=I + xxR+-\-xtR (so I0-I)    and    y,. = (xi+1,... ,xr).

Theorem (2.2). With the notations introduced above, consider the conditions:

(1) R/In+X is Cohen-Macaulay for large n.

(2) For alUE{0,...,r-\}we have #<%,+ „ /,+ „ R](n) = /f(l)[y„ /,, R](n) for

large n.

(3) depth I"/I"+x = rfor large n.

Then (1) => (2) => (3), and if x is a regular sequence in R, then all three conditions

are equivalent.
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Proof. (1) => (2). We make induction on r. Condition (2)is void in the case r = 0,

so assume r > 0. From Theorem (1.16) we know that R/I"+' is Cohen-Macaulay for

n large, and therefore condition (2) is satisfied for 1 «£ i «s r — 1 by inductive

assumption. Furthermore, for n large, xx is regular on the submodule I"/I"+x of

R/I"+x, which implies

e(x, Ix"/I"+X) = e(yx,Ix"/I"+x + xxlx") = e(y„ /f//,"+1)

= //«%., /„*](/!).

On the other hand, as in the proof of (2.1) we have

e(x, Ix"/I"+X) = e{x, R/I"+x) = H(X)[x, I, R](n),

which proves (2) in the remaining case i = 0.

(2) => (3). We use induction on r again, the case r = 0 being trivial. For r > 0 the

inductive assumption implies depth I"/I"+x = r — 1 for large n, which means that

x2,... ,xr is a regular sequence on I"/I"+x for these n. By Lemma (2.1), x, is regular

on /,"//"+' for n large, and since (Ix"/In+x)/xx(Ix"/In+x) =* I"/I"+x, we conclude

that x is a regular sequence on I"/I"+x for large «. Now consider the exact

sequences

(si) o -* ix"+x/r+x -»/.y/"*1 -»/{■/j,"*1 -»o,

(S2) 0 -» /"+i//"+2 _ /1"+1//"+2 -» J^'//"-^1 -* 0.

Since for large «

depth /,"//,"+' = r - 1    and   depth /,"//"+' = r,

(SI) implies depth Ixn+x/In+] = r for large n. Using this and depth Ix"+X/I"+2 = r

again, (3) follows from (S2).

(3) => (1). This was shown in Proposition (1.9).

Remark. Conditions (1) and (2) in the theorem above are independent, not only

of the order of the sequence x, but also of the choice of the x 's. So the same is true

for condition (2) as long as x is a regular sequence in R.

In the special case that R/I is regular, the condition depth I"/I"+x = r is

equivalent to the flatness of I"/I"+x over R/I. Therefore, we get the following

Corollary (2.3). Assume that R/I is regular and that x is a regular sequence in R.

Then the following conditions are equivalent:

(1) R is projectively normally flat along I.

(2) For all i £ {0,.. .,r - 1} we have //(0)[y,+1, /,+ 1, R](n) = #<%, /,, R](n) for

large n.

The criteria (2.2) and (2.3) allow us to prove a transitivity property analogous to

the transitivity of normal flatness.

Theorem (2.4). Let sE(l,.../j be given and put y = (xx,...,xs), z =

(xs+x,...,xr). Assume that x is a regular sequence in R. Then the following conditions

are equivalent:

(1) R/I"+x is Cohen-Macaulay for large n.
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(2) (a) R/I(y)"+' is Cohen-Macaulay for large n and (b) for all P £ Assh(fl//(y)),

Rp/I" + XR   is Cohen-Macaulay for large n.

Proof. (1) =>(2) follows from Theorem (1.16) by induction. For the converse,

define y, = (xi+x,... ,xs), 0 < i < s. Then by (a) and Theorem (2.2), we have

(A) H^[yi+x,I,+x,R](n) = H^[y,,Ii,R](n),       n large, s < i' < r,

and by (b) we know, for all P £ Assh( R/I(y)), that

(B) tf<°>[y,+ 1, Il+xRp, Rp](n) = &»[%, I,Rp, Rp](n),       n large, 0<Ks.

Now the associativity law for multiplicities (see [8, p. 102)] gives

(C)

Hm[yi+1,Ii+],R}= 2 e(z,R/P)H^[y,+ x,Ii+xRp,Rp],       ,<s,
/>eAssh(/?//(y))

and, similarly,

(D)     #%,/„*]= 2 e(z,i?/JP)//<1>[y„/,.^,JR/,],        z < s.
PeAssh(R/r(y))

Substituting (B) into (C) and (D) shows that actually (A) holds for all i £ {0,... ,r

— 1}, which completes the proof in view of Theorem (2.2).

Remark. If R is projectively normally flat along I, then ht(/) = 1(7), the analytic

spread of I [7, Theorem 1]. Conversely, assume that ht(7) = 1(7). Then dim R =

dim R/I + ht(7) (see [7]) and, furthermore, there are elements zx,...,zs, s — ht(I),

which generate I up to radical. Since dim R = r + s and since xx,...,xr, zx,...,zs

generate an m-primary ideal, we conclude that x,,...,xr are part of a system of

parameters of R. So if R is assumed to be Cohen-Macaulay, then x is necessarily a

regular sequence in R.

Corollary (2.5). Let P C Q be prime ideals of R such that both R/P and R/Q are

regular. Assume that R is Cohen-Macaulay. Then the following conditions are equiva-

lent:

(1) R is projectively normally flat along P.

(2) R is projectively normally flat along Q and RQ is projectively normally flat along

PRQ.

Proof. Let x be a regular system of parameters with respect to P such that part of

it generates Q over P. We will show that both conditions (1) and (2) imply that x is a

regular sequence in R, and then the result will follow from Theorem (2.4). Since R is

assumed to be Cohen-Macaulay, by the Remark above it is enough to show that

ht(P) = \(P). Under assumption (1) this was proved in [7,Theorem 1], So assume

that (2) holds. Then by [7,Theorems 0 and 1] we see that e(R) = e(RQ) and

e(RQ) = e((RQ)PR ), which means that e(R) = e(Rp). But this is equivalent to

ht(P) = l(P) [4, Satz 2; or 7, Theorem 0].

Example. A typical non-Cohen-Macaulay ring is

R = k[[X, Y, Z]]/(XZ, Z2) = k[[x, y, z]].
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Let P - zR and Q = P + yR. Then

GP(R)^k[[X,Y]][T]/(XT,T2)

and hence R is projectively normally flat along P. On the other hand,

GQ(R) - k[[X]][Tx,T2]/ (XT2,T2),

which has torsion in every degree. So R is not projectively normally flat along Q.

This example shows that Corollary (2.5) does not remain true without any additional

assumption on R.

Remark. In [5] the following situation is studied: P is a prime ideal in R such that

R/P is regular. R itself can be written as 5/(/,,...,fm), where (S, 9ft) is a regular

local ring, and where /,,...,/„, satisfy the following condition: If P0 denotes the

inverse image of P in S, then the initial forms of/,,... ,fm with respect to P0 as well

as to 9ft are a weakly regular sequence in the corresponding graded ring. Some effort

is made in [5] to show that under these conditions e(R) — e(Rp) implies a property

of Hilbert functions which is weaker than (2) in Corollary (2.3). Our new method

gives a better result as follows. Let m; Pto)(Gp(R)) -» Spec(i?/P) be the natural

morphism. By [4, Satz 2], e(R) = e(Rp) implies that all fibres of m have the same

dimension. But since R/P is regular and Pro}(Gp(R)) is Cohen-Macaulay [5, Satz

2.1], it must be flat (see e.g. [1, Proposition (3.5), p. 94]). So R is projectively

normally flat along P.

In the final part of the paper we study the behaviour of Hilbert functions under

blowing up R with center I, provided that R is projectively normally flat along I.

Recall that Bl7(i?) denotes the class of homomorphisms R -» Rx of local rings

obtained by blowing up R with center I. If IRX ¥= Rx, then there is a unique

homogeneous prime ideal Q in Gf(R) such that RX/IRX - [G,(R)\,Qy From now on

we will only consider the case that Q D Gr(R)0 = m/I, i.e. the homomorphism

R -> Rx is local. We put s(Rx) = dimGf(R)/Q — 1. Then s(Rx) is the dimension of

the projective variety with homogeneous coordinate ring G,(R)/Q, which is the

same as the transcendence degree of the function field of this variety over k = R/m.

Since this function field is ^-isomorphic to the residue field of i?,, we see that s(Rx)

is the residual transcendence degree of Rx over R.

Theorem (2.6). Let R -» Rx be a local homomorphism in B\f(R) and let s = s(Rx).

Assume that r = 0, i.e. I is m-primary. Then:

(a) H(S+2)[RX/IRX] < Hm[I, R] and

(b) H<S+X)[RX/IRX] =£ Hl0)[R] if I = m.

Proof. This is a special case of the results in [12].

Theorem (2.7). Let R -» Rx be a local homomorphism in Bl7(i?) and let s = s(Rx).

Assume that depth In/I"+X = r for large n. (Recall that r = dim R/I). Then:

(a) H(S+2)[RX/IRX] ^ H(X)[I(x), R] and

(b) H<S+X\RX/IRX] < H<®[R] ifl(x) = m.

In particular, we have:

(a') H(S+X)[RX] < Hm[I(x), R] and

(b') H(S)[RX] < H<®[R] ifl(x) = m.
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Proof. Let us note first that IRX = tRx for some t £ I, and therefore, by

[15, Theorem 1],

H(,)[RX] <H(,+X)[RX/IRX]    forallz^O.

So (a') and (b') follow from (a) and (b), respectively. To prove (a) and (b), we reduce

to Theorem (2.6) by showing that the "origin" of a cylinder over Rx can be viewed as

a point obtained by blowing up R with center I(x).

By Corollary (1.7) and the assumption depth I"/I"+x = r for large n we know

that xx,...,xr is a regular sequence on RX/IRX — Rx/tRx. Let 7, = tRx + xxRx

+ ■■■ +xrRx. Then Rx[xx/t,.. .,xr/t]/IxRx[xx/t,.. .,xr/t] is isomorphic to the

polynomial ring (Rx/Ix)[Xx,...,Xr], Xt corresponding to x/t. In this polynomial

ring, let 9f be the maximal ideal generated by the maximal ideal of Rx/Ix and

Xx,.. .,Xr. Then, up to Rx-isomorphism, there is a unique local ring R2 obtained by

blowing up R, with center 7, and such that

R2/IxR2^(Rx/Ix)[Xx,...,Xr]^.

So obviously, H(0)[R2/IXR2] = H(r\Rx/Ix]. On the other hand, by [15,Theorem 1]

we have H(0)[RX/IRX] = H(0)[Rx/tRx] *s H(r)[Rx/Ix], which gives

H{,)[RX/IRX] s£ H(i)[R2/IxR2]    forall/^0.

Since R[I(x)t~x] = R[It~x][xx/t,... ,xr/t], R2 is obtained by blowing up R with

center 7(x) as well, and I(x)R2 — tR2 — IXR2. Now the result follows from Theorem

(2.6) and the fact that s(R2) = s since Rx and R2 have the same residue field.

Remark. Theorem (2.7) is stronger than the result of Nesselmann [11] in various

respects. Besides the fact that our method gives an estimate for the exceptional

divisor instead of the blowing up itself, we note that our assumption on

depth I"/I"+x is weaker than that of Nesselmann (as was shown in an example in

§1), and we could dispose of the assumption of excellence for R.

For convenience we restate the result in the classical case of a smooth center in

geometric form.

Theorem (2.8). Let X be a locally noetherian scheme and let Y be a regular closed

subscheme. Let -it': X' -» X be the blowing up of X along Y and denote by tt: E -> Y the

restriction of it' to the exceptional divisor. Let y £ Y and x' £ ir~x(y). If tr is flat at

every point ofir~x(y), then

where s is the transcendence degree of k(x') over k(y).
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