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COUNTABLE HOMOGENEOUS TOURNAMENTS
BY

A. H. LACHLAN

Abstract. A tournament Tis called homogeneous just in case every isomorphism of

subtournaments of smaller cardinality can be lifted to an automorphism of T. It is

shown that there are precisely three homogeneous tournaments of power N(). Some

analogous results for 2-tournaments are obtained.

In this paper we characterize countable tournaments which are homogeneous in

the sense of Fraissé [1]. As far as we know, interest in such a characterization dates

from 1976 when Woodrow showed in his dissertation [10] that the only finite

homogeneous tournaments have orders 1 and 3 and that up to isomorphism there

are only two countably infinite homogeneous tournaments which do not embed the

tournament D shown in Figure 1. The next year Woodrow and the author [7]

characterized countable homogeneous graphs. This reawakened the author's interest

in the tournament problem. Independently, Schmerl [9] characterized countable

homogeneous partial orderings and also formulated the question as to which

countable tournaments are homogeneous.

Figure 1

Apart from that of Woodrow mentioned above, the only work relevant to the

problem that we know of is the unpublished proof of R. Morrow that any

homogeneous tournament embedding D must also embed every tournament of order

6. Here we shall show that a homogeneous tournament embedding D embeds every

finite tournament.

Our proof requires labeled tournaments. For n < « an «-tournament is a tourna-

ment in which each vertex is labeled by exactly one of the natural numbers < n. As

a by-product of our characterization of countable homogeneous tournaments we also

find a corresponding characterization for 2-tournaments. The problem for «-tourna-

ments (n > 2) is open.
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432 A. H. LACHLAN

The plan of the paper is as follows. In §1 we develop notation, terminology, and

prove several propositions required later on. In §2 we give Woodrow's characteriza-

tion of countable homogeneous tournaments omitting D and an analogous result for

2-tournaments. In §3, omitting the proofs of some lemmas, we prove the main

theorem which says that apart form those found by Woodrow there is just one

countable homogeneous tournament up to isomorphism. In §§4 and 5 the proposi-

tions, required to complete the proof given in §3, are developed. Finally, in §6 we

characterize countable homogeneous 2-tournaments.

One word of warning: The next section consists mostly of definitions and

notations. The reader is advised to read it quickly and then to use it for reference

while working through the rest of the paper. The summary at the end of §1 will assist

in this regard.

I would like to record my thanks to Ron Morrow and Robert Woodrow for the

discussions we had when the conjecture proved here first came to our notice. My

thanks also to Calvin Foote who helped me revise the paper.

1. Preliminaries. A tournament T is a structure (\T\, ET), where \T\ is a

nonempty set, the universe or vertex set of T, and ET is a binary relation on T such

that

T t= VxVy[xEy - (x ¥* y &yßx) .&. x * y - (xEy V y Ex)].

We call ET the dominance relation of T and if aETb we say that a dominates b. In

diagrams of tournaments the vertices are denoted by points, and if a dominates b

there will be an edge directed from the point representing a to the point representing

b.
The tournament T is vertex transitive if for all a, b E T there exists a E aut T, the

automorphism group of T, such that a(a) = b.

For 1 < n < co, an n-tournament T is a structure (|T|, ET, R^,.. .,Rj~^) such

that (|T|,£T> is a tournament, and Rj,... ,R^~l are pairwise disjoint unary

relations on | T | whose union is | T |. The vertices in R'r are to be thought of as being

labeled by i.

We call T (or T) transitive, not to be confused with " vertex transitive", if ET (or

ET) is transitive.

We use T,U,V,... to denote tournaments and T, U, V,... to denote 2-tourna-

ments. For an indexed family of tournaments (2-tournaments) we use T{j} (T{y|)

to denote the member of the family with index j.

The class of all tournaments (2-tournaments) is denoted by 9" (9" ). The class of all

finite tournaments (2-tournaments) is denoted by 'S (%). By convention, all tourna-

ments and 2-tournaments considered below are countable.

We write T w U to mean that T and U are isomorphic. Our notions of embedding

and substructure (i.e., subtournament) are the usual ones from first-order model

theory. For structures T, U, by T C U we mean that T is a substructure of U. For

sets A, B, by A C B we mean that A is a subset of B. We say that T omits UifT does

not embed U. The cardinality of a set A is denoted \A\. The order or cardinality of a

tournament T is ||r||; similarly, for «-tournaments. In other cases where there is an

obvious extension of a notion, definition, or notation to «-tournaments we may

simply assume it without special mention. We shall write a E T instead of a E| T\.
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If T is finite and a E T then the score pair of a is (m, «), where m is the number

of vertices a dominates and « is the number dominating a. Clearly, m + « + 1 = ||r||.

After Fraissé [1] a tournament T is homogeneous if every isomorphism between

finite substructures of T may be extended to an automorphism of T. The class of

homogeneous tournaments (2-tournaments) is denoted by DC (DC).

A class <S C W is called an amalgamation class if 6E is closed under isomorphism

and sub tournaments, and for all T, U E 6E, agreeing on | T| n| i/|, there exist K E (?

and embeddings of T, U in V which agree on | T\ n | i/|. 6£ is a jf/wig amalgamation

class if, in addition, for all T, U E A agreeing on \T\n\U\, there exists V E A

extending both T and U. Define

0(7*) = (i/Ef: rembeds Í/}.

Fraissé [1] proved a general result which for tournaments may be stated:

l.l.(l)//rEDC, then &(T) is an amalgamation class.

(2) //Scf is an amalgamation class there exists T E DC unique up to isomorphism

such that &(T) = 6.

This theorem is the key to our whole investigation, because we find the possibili-

ties for T E DC by discovering all amalgamation classes of tournaments.

Working from left to right the tournaments depicted in Figure 2 will be denoted

C, L3 and J. For 1 < « < co, L" denotes transitive tournament of order «. The

tournament of order 1 is denoted /. In diagrams of 2-tournaments the vertices will

appear in two boxes; those in the left-hand box are labeled 0 and those in the

right-hand box are labeled 1. The 2-tournaments shown in Figure 3 are denoted F

and G, respectively. Let Q denote the tournament such that \Q\is the set of rational

numbers and EQ is the strict ordering of | Q \. Let Q be an expansion of Q to a

2-tournament such that both the 0-labeled and the 1-labeled vertices are dense in Q.

The back-and-forth argument, which shows that a countable dense linear ordering is

unique up to isomorphism, easily extends to show that Q is unique up to isomor-

phism and that both Q and Q are homogeneous.

Figure 2

Figure 3
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Let I be a tournament of order > 1 and t E T. Then (T,t) denotes the

2-tournament obtained from T by deleting / and labeling u E\T\ — (?) by 0 or 1

according as t dominates or is dominated by u. Conversely, if T is a 2-tournament,

then (T) denotes the tournament obtained from T by deleting the labels and

adjoining a new vertex which dominates the vertices which were labeled 0 in T and is

dominated by those which were labeled 1. Let T be a 2-tournament, then T" denotes

the 2-tournament obtained from T by reversing the dominance relation between

vertices with different labels.

Let P be the tournament such that | P | = | Q | and

p0EPpx = 3«[0 <Pi — p0 ± 2«7T < m\.

A neighbourhood in Pisa subset of | P | of the form

{/> e|P| ■PqEpp&pEppx},

wherep0EPp,; similarly for Q. A set A C| P | is called dense in P if it intersects every

neighbourhood in P; similarly for Q. One can conveniently think of P as consisting

of the points on the unit circle whose polar coordinates are rational, and where

(1, p0) dominates (1, px) if the shortest path along the circumference of the unit

circle from (1, p0) to (1, px) is transcribed anticlockwise. Let + denote the usual

addition operation on the rationals. For a, b E P the mapping p\-+p + b — a

(p E P) is an automorphism of P taking a to b. Thus P is vertex transitive. Let U

denote (P, q)" where q E P. We claim that U is a copy of Q. To see this it is

enough to show that U is transitive and that |U,| is dense in U (i < 2). For

transitivity suppose aEvb and bEvc. Then four cases arise:

(i) a, b, c E U,;

(ii) a, b E U, and c E U, _,;

(iii) a E V¡ and b,c E U,_,;

(iv)a, c E Uj and b EU,_,.

Consider, for example, case (ii) with i = 0. We have aEPb and cEPb, and so in P the

points are arranged as shown in Figure 4. It is clear that cEPa, whence aEvc as

required. The other cases are equally easy. To show density suppose aEvb. We must

find c E U, such that aEvc and cEvb. If b E U,, take c = b — e for any sufficiently

small positive rational e. If b E U, _,, take c = b + e for any rational e < tr such that

it — e is sufficiently small.

Figure 4
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We now establish the homogeneity of P. Let a: A -* B be an isomorphism

between subtournaments A and B of P. Choose a E A. By vertex transitivity there is

an a E aut P such that a(a) = a(a). Then a(A) and 5 are isomorphic via aoT1

which fixes b — o(a). If /? E aut P extends aa"', then ßa E aut P extends aa~]a = a.

We may, therefore, assume that there exists q E A D B such that a(<7) = q. Let /I',

5' be the subtournaments of (P,q)" with universes A - [q], B — (q). Then

at (A — {q}) is an isomorphism of A' onto 5'. Now (P, 47)" , being a copy of Q, is

homogeneous. Let y E aut(P, q)" extend at (A - {q}). Then y U {(q, q)} is the

required automorphism of P extending a.

1.2. Leí q¡ E Q (i < n) be distinct. There exist neighbourhoods A¡(i < n) such that

qi E A¡ (i < «) and if a\ E A¡ (i < n) then q, 1-» a, (i < n) is an isomorphism of

subtournaments; similarly for P.

Now form P from P by partitioning | P | so that both the 0-labeled vertices and the

1-labeled vertices are dense. From 1.2 we see that this determines P uniquely up to

isomorphism and that P E DC.

By a cut in Q we mean A C\Q\ such that 0 ¥= A =£\Q\, A has no greatest

element, and A is closed downwards. By a cut in P we mean A C\P\ satisfying

(i) if a, b E A and aEPb then c E A for all c such that aEPc and cEPb, and

(ii) if a E P then there exist b E A and c $. A such that aEPb and aEPc.

Let R be a countable homogeneous tournament such that &(R) = ÍF, and R be a

countable homogeneous tournament such that &(R) = 3\ From 1.1 R and R are

unique up to isomorphism.

For i < 2 let P, C, D', P', Q', R and L"'' be /-labeled copies of /, C, D, P, Q, R

and L", respectively. If z'0, j,,...,/'A E (0,1} then E(/0/, ■ • • ik) denotes the 2-tourna-

ment with universe {0, \,...,k) in which each vertex dominates those less than it,

and j is /-labeled if and only if i, — i. Clearly every finite transitive 2-tournament is

isomorphic to one of the forms E(/0/, ••■ik). The class of all finite transitive

tournaments (2-tournaments) will be denoted by £ (£).

If T is a tournament, then T denotes the complement of T obtained by reversing

the dominance relation in T, and T(*) denotes the tournament obtained by adjoining

a new vertex which dominates all the others. If t E T then T[t ->] denotes the

restriction of T to the vertices dominated by t, and T[-* t] the restriction of T to the

vertices which dominate /.

If T is a 2-tournament and i < 2, then T, denotes the restriction of T to the

/-labeled vertices. If / E T,, then (T; /) denotes the 2-tournament U defined by

|U0|=|T|_,[i ->]|, |U, |= T,_,-[-» t], and Ev = Er\\\J\.lf the isomorphism type of

(T : t) for t E T,_, is independent of f, then (T : /) denotes a 2-tournament having

that common isomorphism type. By F(T) we denote the tournament obtained from

T by deleting the labels on the vertices. For / < 2, T(/) denotes the 2-tournament

obtained from T by adjoining a new /-labeled vertex which dominates all the other

vertices. T denotes the complement of T obtained by reversing the dominance

relation. By the dual o/T we mean the 2-tournament T obtained from T by switching

the labels 0 and 1. The 2-tournaments T", T and T are examples of variants of T.
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More generally, U is a variant ofT if it can be obtained by a sequence of operations

of the following kinds: switching the labels 0 and 1, reversing the dominance relation

between 0-labeled vertices, reversing the dominance relation between 1-labeled

vertices, reversing the dominance relation between vertices with unlike labels.

Including T itself there are a possible 16 variants of T. We say that U is T up to a

variant if U is isomorphic to one of the variants of T.

The wreath product T[U] is defined by: | T[U]\ = \ T\ X | U\ and

(i0, u0)ET[LI](tx, «,) = [t0Ertx or (t0 = i, & u0Euu])].

Intuitively, T[U] is obtained by replacing each vertex of T by a copy of U. We

define T[U] and T[U] similarly, where each vertex in the composition takes the label

of its labeled component.

Let 6? C ÇF. We say T embeds 6? if T embeds every member of &. If &, % C f, we

say that 6? implies <S, written CÎ => %, if every T E % embedding & also embeds %.

For finite classes we often simply list their members. Thus 6Î => /7 means 6?- =» {{/},

and U, V ̂  (2 means {¿7, V) =*&, etc. These definitions and conventions carry over

to 2-tournaments. Implications between subsets of 'íand íFare also defined. If éE C *%

and ft C 9, then &. =» ® means that 6? => {(T): T E $}, while ® => # means that for

every U E 6? there exists Tef such that $ =» T and (T) embeds (7. It is easy to see

that => is transitive except in the following cases: If 6E =» <$ and iS => 6 or <35 => 6,

then it is not generally true that 6Î » 6 or (£ => 6, respectively.

Let (6P-) denote {(T): T E 6Î}. Part of the transitivity of => lies in the observation

that, if Ä => ®, then (£) => (®). We will use this several times below.

As an example of implication we have

1.3.(1)C,L3=»/.

(2) E(01), E(00) => E(001).

Proof. (1) Let T E DC embed C and L3. From 1.1 &(T) is an amalgamation class

whence T embeds the tournament U shown in Figure 5 which is obtained by

amalgamating L3 and C over a common edge. Whichever way the broken edge is

directed, U ^ J. In diagrams of amalgamations the edges of the tournament or

2-tournament over which we are amalgamating will be drawn more heavily.

(2) Let T E DC embed E(01) and E(00), and for a contradiction argument suppose

T does not embed E(001). Let a E T,. Observe that then there is a unique ¿6T0

dominated by a (see Figure 5). Since T embeds E(00) there are c and d in T0

dominated by and dominating b, respectively. Since T does not embed E(001), c and

d both dominate a. Now there must be an automorphism a of T fixing a and taking

c into d. Clearly, a(b) ¥- b and yet a dominates a(b). This is the desired contradic-

tion.

U T
Figure 5
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If ä C % C fand 6?. =» % then we say that & is a base for %. If T =■ U and U ~ T

then T and U are called equivalent.

From Ramsey's Theorem it follows that for every « there exists a least number

/•(«) such that every T E 5"of order > r(n) embeds L". Two of the consequences of

Ramsey's Theorem which we need are:

1.4. (1) // T E DC embeds every U E 5 which can be partitioned into a singleton and

a transitive tournament, then T embeds every tournament which can be partitioned into

two transitive tournaments.

(2) If T E DC embeds every U which can be partitioned into a 0-labeled singleton and

a 1 -labeled transitive tournament, then T embeds every U which can be partitioned into

a 0-labeled transitive tournament and a \-labeled transitive tournament.

Proof. We shall only prove (1) because it will be clear that exactly the same

method also works for (2). Let T E DC embed any l/Ef which can be partitioned

into a singleton and a transitive tournament. Let V E fand |F| = |X|Ú|y|, where

Ú denotes disjoint union, and X and Y are transitive subtournaments of V. We must

show that T embeds V.

Let HA'll = « < co. Let y0,...,Ym_, be an enumeration without repetitions of all

one-one mappings from \X\ into /*(«). Letp = m + r(n) and a £ \ Y\ X p. For each

/ < r(«) let V{i] be the tournament defined by

| V{i) |= {a) U (| Y\ X p),       V{i) t (| Y\ X p) = Y[L>]

and

a dominates (y, j) in V{i] =[(m <y <p &j = m + i) or

[j < m&i E rng y¡ & Y/'(0 dominates y in Kjj.

Without loss of generality, suppose that Y[LP] is a subtoiirnament of T. Notice

that V{i] is the union of T[L/7] and a singleton. For each / < r(n) choose t¡ E T

such that the mapping which takes a to /, and is the identity on Y[LP], embeds V{i)

in T. The vertices t, (i < /*(«)) are distinct because a dominates (y, m + i) in V{i)

but not in V{j] for any j ¥= i. By choice of r(n) there exists j < m such that

x i-> ty(x) (x E X) is an embedding of X in T. Let x E X and y E Y. By choice of

'y/jO'

fY(Jc) dominates (y, j) inT = a dominates (y, j) in V{yj(x))

and by definition of V{yj(x)}

a dominates (y, j) in V[yj(x)} = yjxyXx) dominates^ in V.

Combining the last two equivalences

ty(x) dominates (y, j) in T = x dominates y in V.

This shows that the map x h> ty(x) (x E X) and y h> (y, j) (y E Y) embeds Kin T

as required.

We must discuss certain operations on tournaments and 2-tournaments which will

be useful in the sequel.
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Letting I C|= {jc, y, z) and Ec = {(x, y),(y, z),(z, x)} we define C[X, Y,Z] by

|C[X,Y,Z]| = ({x} X |X|) U ({y} X |Y|) U ({z} X |Z|),

(a, b) dominates (c, d) if and only if a dominates c or a = c and b dominates d, and

(a, b) is /-labeled if and only if b is /-labeled. We define £>[X,Y,Z,W] similarly,

where |D|= {x, y,z,w) and ED = {(x, y),(x, z),(x,w),(y, z),(z,w),(w, y)).

By [T, U] we denote the tournament obtained by first replacing U by a copy

disjoint from T, if necessary, and then setting \[T, U]\ = \T\ U | <7| and

E^^u^uijrixit/i).

The operations described so far are called replacement operations because the value is

obtained by replacing some vertices of a fixed tournament or 2-tournament by

arguments of the operation. An earlier example was the operation T \-* T(/) for each

/ < 2. However, in formulating the notion of replacement operation we make the

restriction that each argument replaces at most one vertex of the fixed tournament.

Thus, while (T, U)f-> [T, U] is a binary replacement operation, the fixed tournament

being L2, the unary operation T h» [T, T] is not a replacement operation.

We now define some more complex operations on 2-tournaments which will play

a role only in §5. Firstly, ((E(01),T)> is obtained from T by adjoining a copy U of

E(01) and letting each u E U dominate T0 and be dominated by T,. The 2-tourna-

ment ((E(10),T>) is defined similarly. For i < 2, ((C',T>> is the 2-tournament U

defined by letting F be a copy of C disjoint from T, v E V, |U,| = | V\, |U,_,|=|T|,

and

Ev = EyUETU (| V\ X|T0|) U ((I V\ - {»}) X |T, |) U (|T, | X {v}).

We define a kind of inverse of this last operation. Let U E DC embed C. Choose a

copy V of C in U and let t; E V then ((C, U>> "' denotes the tournament T defined

by

|T0|= {u E U,_,: each w E F dominates w},

|T, |= (w E U,_,: eachn- E V — [v] dominates«} — |T0|

and

ET = Evt\T\.

If U E DC embeds ((C, T>), then ((C',U))"' is a homogeneous tournament embed-

ding T.

For i < 2, ((D',T>> is the 2-tournament U defined by letting F be a copy of D

disjoint from T, |U,| = | V\, |U,_,, | = |T|, and

£U = £KU£TU(|F|X|T0|)U(|T,|X|K|).

Finally, for i < 2, (C, T) is the 2-tournament U defined as follows. Let F be a copy

of C disjoint from T, where | V\= {x, y, z) and Ev — {(x, y),(y, z),(z, x)). We set

mHFI.IU.^HTI.and

Ev = Ey U ET U (|T0| X {x, z}) U ({y) X |T0|)

U(|T,|X{x,j})u({z}X|T1|).
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An important property of these operations is

1.5. (1) Let <ï>: f -» f be a replacement operation or any of the mappings

T^((E(01),T)),T^((C,,T)),T^((D„T»,T^(C„T)

just described. //T{0},T{1},...,T{w} =>T, i«e« *(T{0}),...,4KT{m}) =» O(T).

(2) Let ty be an n-ary operation on f which is either a replacement operation or one

of the other operations listed in (1). // fief and éE => *(T{0},... ,T{«}) for all

T{0},...,T{«} G«, then &~ *(T{0},.. .,T{«}) for all T{0},. ..,T{«} such that

£-T{0},...,T{«}.

Proof. (1) Let T{0},...,T{«i} ^T and O: f-* f be an operation of the kind

specified. Let U E DC embed *(T{0}),...,i»(T{m}). We have to show that U

embeds <&(T). The key observation is that

e={Vef:U embeds *(V)}

is an amalgamation class. Consider the operation T \-* T(0) as an example. Fix any

u E U0, then 6= â(\J[u -»]). The homogeneity of U guarantees that U[w -»] is

homogeneous. Hence 6 is an amalgamation class by 1.1(1). By assumption,

T{0},... ,T{w} E 6, and by 1.1(2) it follows that T E 6since T{0},... ,T{m} =» Q.

This is sufficient.

(2) Notice that if ¥ is unary then the result is immediate from (1). If ^ is «-ary

with « > 1, then ^ is a replacement operation. Take the case n = 2 since this is

typical. Fix V' E ($ then O'(T) = ^(V, T) is a unary replacement operation, whence

& => ¥(V', T) for all T such that £ =» T by (1). Now fix V" such that & => V", then

Í»"(T) = ^(T, V") is a unary replacement operation. We have seen that CB =» <t>"(T)

for all T E £. By (1) it follows that £=**"(T) for all T such that #^T. This

suffices.

Another concept we need is that of types. Let A C| T\. A l-type r over A in T is a

1-point extension U of 7Ï A. Let m be the unique vertex of U not in A, then

u E V D Tr /I is said to realize r if the mapping, which is the identity on A and

takes u into v, is an isomorphism; similarly for 2-tournaments. In the case of

2-tournaments we call t i-labeled if u has label i.

Finally, let T, U E DC and &(T), &(U) be strong amalgamation classes. It is easy

to check that

¿B= {V E f : T embeds P(V0) and U embeds F(V, )}

is an amalgamation class. Let F(T, U) denote a homogeneous 2-tournament W such

that £(W) = tf.

We close this section with a list of notations which is adequate for §§2-4 and

most of §5. In §§5 and 6 we will remind the reader where he can find an explanation

of the additional notations which are required in some of the propositions.

notation brief description or diagram

â(T) class of finite tournaments embedded

byT
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0(T)

C'(/<2)

C[X,Y,Z]

class of finite 2-tournaments embedded

byT

D

D' ( / < 2) /-labeled copy of D

D[X,Y,Z,W] fy

E(/0 • • • ik ) transitive 2-tournament of order

k + 1 whose j th vertex dominates all

previous vertices and has label i,

F(T) tournament obtained by deleting

labels from the vertices of T

9
9

<

class of finite tournaments

class of finite 2-tournaments
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T(T,U)

DC

DC

/
I'(/<2)

homogeneous 2-tournament embedding

just those X E 9such that T

embeds F(X0) and <7 embeds F(X,)

class of countable homogeneous

tournaments

class of countable homogeneous

2-tournaments

one-point tournament

/-labeled copy of /

£

£

L"

L"''(/<2)

P

P'

P

Q'
Q

R

R

VI

3"
forT

class of transitive tournaments

class of transitive 2-tournaments

transitive tournament or order «

/-labeled copy of L"

the homogeneous tournament embedding

C and L3 but not D

/-labeled copy of P

2-tournament obtained by labeling

the vertices of P so that | P, |

is dense in P for i < 2

tournament formed by the rationals

with usual ordering

/-labeled copy of Q

2-tournament obtained by labeling

the vertices of Q so that | Q, |

is dense in Q for i < 2

homogeneous tournament embedding

every T E 9

homogeneous 2-tournament embedding

every Te?

class of countable tournaments

class of countable 2-tournaments

obtained from T or T by reversing

the dominance relation
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T obtained from T by switching

the labels 0 and 1

T' an /-labeled copy of T

T, 2-tournament obtained from T

by deleting all (1 — /)-labeled

vertices

T(/) 2-tournament obtained from T

by adjoining a new /-labeled vertex

dominating all vertices in T

T(*) tournament obtained from Tby

adjoining a new vertex dominating all

vertices in T

T[t -» ] or T[r -» ]    obtained from T or T by restricting

to vertices dominated by /

T [ -» t ] or T[ -» / ]    obtained from T or T by restricting

to vertices dominating /

(T) tournament U obtained from F(T)

by adjoining a new vertex u such that

U[u ->] = F(T0) and £/[-» u] = F(T,)

(T, t) 2-tournament U obtained from Pby

deleting Z and letting

m,|=|r[í-]|and|U,|=|r[-»í]|
T" 2-tournament obtained from T by

reversing dominance relation between

vertices with different labels

(T : t) 2-tournament obtained from T and

t E Tj_,; by restricting to | T, | and

giving vertices in Tt[t -»],T,[-» t]

labels 0, 1, respectively

(T : /) a copy of (T : f ) if the isomorphism

type of (T : /) does not depend on

the choice of t E T, _,

T[U], T[<7], T[V]   wreath products

[T,U]

[T,U]

ÇH»)

implication between a set of

tournaments or 2-tournaments and

another such set



COUNTABLE HOMOGENEOUS TOURNAMENTS 443

2. 2-tournaments omitting D° and D1. We shall repeat the classification of

homogeneous tournaments omitting D made by Woodrow [10] and then classify

homogeneous 2-tournaments which omit both D° and D1. We shall require two facts

to be proved in §4:

( 1 ) any homogeneous tournament embedding I? is infinite,

(2) D and D are equivalent.

The former appears in [10] and the latter is an observation made by R. Morrow in

unpublished notes.

2.1. Theorem (Woodrow). If T E DC omits D then T is isomorphic to one of I, C,

P,Q.

Proof. Since any tournament of order > 4 embeds L3. The only finite homoge-

neous tournaments are / and C. Suppose T E DC is infinite and omits D. If T omits C

then T is transitive and by homogeneity we have T » Q. If T embeds C, fix / E T.

Since T omits D and D, (T, t)" is transitive. Denote (T, t)" by U. Since T embeds

L3, U0 and U, have order > 1 whence (U0) « (U,) » Q. From 1.3(1), T embeds /.

Interpreting this appropriately we see that each of U0, U, is dense in the other. Thus

U «; Q. In §1 it was observed that (P, p)"^ Q for any p E P. Therefore T ̂  P,

which completes the proof.

2.2. Theorem. // T E DC omits D° and D1 then up to a variant, T is one of the

following: P,Q,[T0,T,], T(F(T0), F(T,)).

Remark. From 2.1, for / < 2, F(T¡) is isomorphic to one of /, C, P, Q. In fact, all

possibilities are realized except that if T » r(F(T0), FÎT,)) then both T0 and T, must

be infinite.

Proof. Let T E DC omit D° and D1. Without loss of generality suppose that T is

not a variant of [T0,T,]. Then T embeds E(01) and E(10). Hence, T0 and T, have

cardinality > 1. From 1.3(2), T embeds E(001) and, hence, also its variants, e.g.

E(100). Therefore, ||T0|| > 3 and similarly, ||T,|| > 3. From 2.1, T, E {P',Q'} (/ < 2).
Suppose T, « Q1. If T omits F, then each vertex of T0 defines a cut in T,. In this

case T is a variant of Q. Thus we may suppose that T embeds both F and its variant

E(101). It follows that, for each t E T0, both | T,[r -*] | and |T,[^ t] | are dense in T,.

Thus T embeds every U E 9 such that |U0|= 1 and |U, | is transitive. From 1.4(2) it

follows that, if t is a 0-labeled 1-type over A C|T, |, then t is realized by a dense

subset of T0. By 1.2 it follows that T embeds every U E fsuch that U, is embeddable

in T, for / < 2. Hence T « r(F(T0), F(T,)). This completes the case T, » Q1.

Now suppose that T, « P1. Since E(l 10) is a variant of E(001), T, embeds it. If T

omits C'(0), then each vertex of T0 defines a cut in T,. In this case, T is a variant of

P. Thus, without loss of generality, suppose that T embeds both C'(0) and C'(0). It

follows that, for each (GT0, both |T,[z ^]| and |T,[-> i]| are dense in T,. We

proceed as in the case T, = Q1 using the obvious analogue of 1.4(2).

We close this section with a result which will be useful when we come to classify

homogeneous 2-tournaments in §6.
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2.3. Theorem. LetT E %embedE(Q\) andE(10), and i < 2.

(1) If T,,•■« Q', then either (T : /) « Q or T is a variant ofQ.

(2) If T, « P', then either (T : /) » p or T is a variant of P.

Proof. (1) Without loss of generality suppose i = 0. Let t E T,. Since T embeds

E(01) and E(10), T0[f ->] and T0[-> /] are both nonempty. If T0[i ->] and T0H t]

are both dense in T0, then (T : 1) » Q and we are done. Thus suppose, without loss

of generality, that T0[i->] is not dense in T0. There is a neighbourhood of T0

contained in T0[-> /]. By homogeneity no a E T0[/ -»] separates two members of

T0[ -» t ] in the order of T0. Thus, if a E T0[f -> ], either a dominates every member of

T0[^ t], and every b E T0 which dominates a is in T0[? -*], or every member of

T0[-> f] dominates a and every b E T0 dominated by a is in T0[i -»]. Clearly,

T0[i -»] also contains a neighbourhood of T0, whence no b E T0[-> /] can separate

two members of T0[/-»]. It follows that one of T0[i -»] and T0[-> /] is a cut in T0.

From this we see that, with each / E T,, we can associate a unique cut in T0. From

the homogeneity of T, distinct members of T, yield distinct cuts in T0 and the set of

all cuts associated with members of T, is dense in T0. From the homogeneity of T

the dominance relation on T, induced by that on T0 must be either the same as, or

the converse of, that obtained from T; similarly, for the dominance relation between

T0 and T,. Hence, up to a variant, T is Q.

(2) Again suppose i = 0 and let t E T,. The argument is almost the same as in (1).

The only point we check is that if a neighbourhood of T0 is contained in T0[-» t],

then T0[-» i] is a cut in T0. Since in P the complement of a cut is a cut, T0[z -»] is

also a cut. By homogeneity, any neighbourhood of T0 with endpoints in T0[-» t] is

contained in T0[-» t] and so the first condition in the definition of cut is certainly

satisfied. For the second condition, towards a contradiction suppose a E T0, and

that T0[a -» ] is contained in one of T0[ -» /] and T0[/ -* ].

Case l.T0[a -*]CT0[^ t].

Subcase A. a E T0[-> t]. Choose b, c E T0 such that a dominates b, b dominates c,

and c dominates a. Since b E T0[a ->], ¿> E T0[-> t] and so a, b realize the same type

over {t}. Thus T0[¿> ->] C T0[^ t]. Similarly, c E T0[-> t] and T0[c -*] Ç T0[-> ']•

Since T0 does not embed D°,

|T0|Ç|T0[o-]|U|To[6-]|U|T0[c-]|.

Therefore T0 = T0[-> t], which contradicts the embeddability of E(01) in T.

Subcase B. a E T0[/ -* ]. By homogeneity, for any b E T0[z -> ] we have T0[b -* ] C

T0[-> t]. Hence b Í T0[-> a] since aîTJ^ t]. Thus T0[/ ->] = [a). Choose c E

T0[^ a], d E T0[a -*] and a E autT such that a(c) = d and a(t) — t. Since a(t) = t

and |T0[i -*]\= {a}, a(a) = a. Since c dominates a, d = a(c) dominates a = a(a), a

contradiction. Thus Case 1 is impossible.

Case 2. T0[a -»] Ç T0[r -»]. Then T0[i -»] contains a neighbourhood of T0 and so

we can repeat the argument of Case 1 with the dominance relation between T0 and

T, reversed.

This completes the proof that T0[-> /] is a cut in T0 and the proof of the theorem.
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3. Proof of the main theorem. In this section we set out the proof of the principal

result of the paper, omitting the proofs of three lemmas which are deferred because

of their complexity. For the remainder of the paper let

ft = {D°,D',E(01),E(10)}.

The three lemmas to be proved later are

3.1.Z)^ft,

3.2. ft =» T (T E £),

3.3. ft => C[S,T,U] (S,T,U E ft).
Taking these results for granted we proceed as follows.

3.4. //ft => S, T, U, V then ft => Z)[S,T,U, V].

Proof. From 3.3, ft=»[S,T] for all S,TEft. By 1.5(2), ft=>[S,TJ for all
2-tournaments S, T such that ft => S, T. Similarly, ft =■» C[S,T,U] for all 2-tourna-

ments S, T, U implied by ft. The desired conclusion follows at once from the

observation that

D[S,T,U,V]~[S,C[T,U,V]].

3.5. D => V for every KGÎ which can be partitioned into tournaments X, Y such

that X is transitive and Y » D.

Proof. Let F E ^ be the disjoint union of subtournaments X, Y such that X is

transitive and Y « D. Let T E DC embed D. We must show that T embeds V.

Let HA'll = n < co. We now follow the proof of 1.4(1). We recall the definition of

V{i). Let y0,...,7m_1 be an enumeration without repetitions of all one-one map-

pings from | X\ into r(n). Let p = m + r(n) and a £ | Y\ X p. For each i < r(n) let

V{i] be the tournament defined by

| V{i) |= {a) U (| Y\ X p),       V{i) t (| Y\ X p) = Y[LP]

and

a dominates (y, j) in V{i) =[(m <j < p &j = m + i) or

[j < m & i E rng yj & yfl(i) dominates y in V) I.

Notice that there exist X, Y, Z, W E £ such that

(V{i},a)*D[X,Y,Z,W).

Thus ft => (V{i), a) by 3.2 and 3.4, whence ft =» V{i) by definition of => between a

set of 2-tournaments and a set of tournaments. Using 3.1 and transitivity of =» we

have D => V{i) and so T embeds V{i) for each i < r(n). The rest of the proof is the

same as that of 1.4(1).

We now come to the main result.

3.6. Theorem. (1) D => T(T E f ).

(2) Up to isomorphism the only countable homogeneous tournaments are I, C, P, Q

and R.
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Proof. From 1.1 and 2.1 it is enough to prove (1).

Fix Z E DC which embeds D. Let S- be the class of all T E 9 such that Z embeds

every U E 9 which may be partitioned into tournaments V, W with V » T and

W E £. From 3.5, D E &, and (? is clearly closed under isomorphism and subtour-

naments. For a contradiction argument suppose â is not closed under amalgamation,

then we have X, Y E 6?, xE\X\,y E\ Y\ such that

x^y,       \X\-{x)=\Y\-{y),       (X,x)*(Y,y),

Xl(\X\n\Y\) = Yt(\X\n\Y\),

and neither of the tournaments

R= (\X\\J\Y\,EX\J EY\J {(x,y)}),

S=(\X\ö\Y\,ExöEYö{(y,x)})

is in &. There exist extensions R*, S* of R, S, respectively, such that

Ä*r(|Ä*|-|/i|)    and   S*t (|5*|-|5|)

are finite transitive tournaments and neither R* nor S* is embeddable in Z. Without

loss of generality suppose that

(|Ä*|-|/?|)n(|S*|-|S|)= 0.

Let X* be the tournament such that

\X*\=(]R*\-{y})u(\S*\-\S\),

every r E\ R* | — | R | dominates every s E| S* | — | S \, and all other edges are directed

as specified by R* or S*. Let 7* be similarly defined with

|y*|=(|Ä*|-|*Du(|S*|- {*}),

where, again, every r E\R*\—\R\ dominates every í E| 5* | —\S\. Then X* and Y*

are both embeddable in Z because X and Y are both in 6?. Amalgamating X* and Y*

over their common part the amalgamated tournament embeds either R* or S*,

whence Z embeds either R* or S*. From the contradiction we conclude that 6? is an

amalgamation class. Since D E 6? we have T E â for every T implied by D.

From 3.1 and 3.2, D implies every tournament of order four. Let T E ÍFbe of least

order not implied by D. Let the tournament Z of the last paragraph be chosen not

embedding T. Deleting a vertex of T we obtain T~ such that D => 7". From above

T~E&. But T may be partitioned into T~ and a singleton which is trivially

transitive. Therefore Z embeds T. This contradiction completes the proof of the

theorem.

4. A base for the transitive 2-tournaments. In this section we establish some

straightforward implications for 2-tournaments concluding with the result that

{£(0101)} is a base for the class of finite transitive 2-tournaments. Simultaneously,

we establish two implications for tournaments.

4.1. (R. E. Woodrow [10]) V ^L"(n> 1).
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Proof. By Ramsey's Theorem it is sufficient to show that there is no finite T E DC

embedding L3. For proof by contradiction let T E % be finite and of least possible

order embedding I?. By homogeneity each vertex of T has the same score pair

(«,«), where ||r|| = 2« + 1. Clearly, « > 1 since C does not embed L3. For each

/ E T, T[t -»] is homogeneous. Since every tournament of order > 4 embeds L3 we

have n = \\T[t ->]|| < 3. It follows that « = 3 and that T[t -*] « T[-* t] « C. Fix t

and let a be an automorphism of T such that a(T[t -]) = 7[^ /]. Then a(?)

dominates each m E T[ -» /]. Clearly a(t) E T[t -» ] whence a(t) has score pair (4,2).

This contradiction completes the proof.

4.2. (1)E(10),E(01),C =»E(101),F.

(2)E(10),E(01)^E(00),E(11).
(3) D and D are equivalent.

Proof. (1) For proof by contradiction let T E DC embed E(10), E(01) and C but

not E( 101). Amalgamating E(10) and E(01) over a 0-labeled singleton (see Figure 6)

we see that T embeds F.

Amalgamating F and C1 over a common edge (see Figure 7) we see that T embeds

E(101) as required. Reversing the broken edge in Figure 6 and the 1-labeled 3-cycle

in Figure 7 we have the conclusion that E(10), E(01), C1 => F.

(2) Amalgamating E(10) and E(01) over a 1-labeled singleton yields E(10),

E(01) => E(00). Taking the dual we get E(l 1).

(3) From (1) we have

(E(10)),(E(01)),(C'H(E001))

whence D => D. Taking complements we have D => D.

4.3. (1)E(011),E<101)=>E{1011).

(2) D => D(*).

*-<? i
I

f

Figure 6

Figure 7
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Proof. Let T e DC embed E(011) and E(101). For a contradiction argument

suppose T does not embed E(1011). Amalgamating E(011) and E(101) over E(01) we

see that T embeds U shown in Figure 8. Amalgamating E(101) and U over E(01) we

see that T embeds a 2-tournament V shown in Figure 9 where the broken edge cd

may have either direction; we do not know which. Since V embeds L3'1 so does T.

Amalgamating L3J and E(101) over L2,1 we see that T embeds W shown in Figure

10. Notice that W is unchanged if we reverse the bottom edge on the right. Finally,

amalgamating V and W over E(110) we see that T embeds a 2-tournament X

depicted in Figure 11. Since X embeds E(1011) whatever the directions of the broken

edges, we have the desired conclusion.

Figure 8

Figure 9

W

Figure 10
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Figure 11

(2) From (1) we have (E(011)), (E(101)) =* (EÍ1011)) which is L4, D =» £»(*). From

4.1, Z)=>L4 whence D => D(*).

4.4. (1) E(10), E(01), C' => E(010).

(2) E(010), E(101) =» (E{1010) or C1), i.e., er-ery T E % embedding both E{010) a«J

E(101) embeds either E(010) or C1.

Proof. (1) Consider T E DC embedding E(10), E(01) and C If T embeds C° then

T embeds E(010) from 4.2(1). Thus, suppose T does not embed C°. It follows that

T0 « Q°. if T does not embed E(010), then each / E T, determines a cut in T0

because every vertex in T0[/ -»] dominates every vertex in T0[^ t]. By homogeneity

the left section of such a cut has no greatest element, and the right section has no

least element. It follows that T, « Q\ contradicting C' being embeddable in T.

Therefore, T embeds E(010) as required.

(2) Let T E DC embed E(010) and E(101) but neither C nor E(1010). Then
T, « Q1. Amalgamating E(010) and E(101) over E(01) as in Figure 12 we see that T

embeds F. Since T also embeds E(101) it follows easily from the transitivity of T,

that T embeds both the tournaments shown in Figure 13. Amalgamating these

tournaments over L30 we see that T embeds E(1010). This contradiction completes

the proof.

Figure 12
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Figure 13

4.5. E(0101) => E(10101).

Proof. Applying 1.5(1) to 4.4(1) with 4>(T) = [TJ1] (1) we obtain

E(1101),E(1011), D'(1)=»E(10101).

Applying 1.5(1) to 4.4(2) with O(T) = T(l),

E(0101),E(1011) =»(E(10101) orD1).

Applying 1.5(1) to 4.2(2) with <5(T) = T(0)(1),

(*) E(1001),E(0101)=>E(1101).

Also, since E(100) is a variant of E(001), from 1.3(2) we get E(01), E(10) => E<100).

Applying 1.5(1) again,

E(011),E(101)=»E(1001).

Combining this withj*) we have E(0101) =*_E(1101). From 4.3(1) E(0101) =» E(1011).

From 4.2(3), D1 =» D1, whence D'(l) =* D'(l) by 1.5(1) with 4>(T) = T(l). From

4.3(2), D1 =» D'(l), whence D1 => ÖV). The first two implications of the proof now

yield

E(0101),D'=»E(10101)   and   E(0101) =»(E(10101) or D1).

The desired conclusion follows immediately.

4.6. E(0101)=>E(a)(o E<u,2).

Proof. We proceed by induction on the length of a. Suppose E(0101) =» E(t) for

some t E<u2. Applying 1.5(1), E(01010) => E(rn 0). From 4.5 we have

E(0101) =»E(1010) =>E(01010).

Thus E(0101) => E(Tn 0) and similarly, E(0101) => E(t° 1). This completes the proof.

5. Verification of the main lemmas. For 3.1 we must show that D =>ft. Since

(E(01)) « L3 and (E(10)) « C, D =» E(01), E(10) trivially. From 4.3(2), D =» /)(*) «

(D°) and so D =» D°. From 4.2(3), D => D. By the analogue of 1.5(1) for tournaments

D(*) => D(*), whence D -» D(*) « (D1) by transitivity. This completes the proof.

For 3.2 we must show that ft => T (T E £). In 1.3(2) reverse the arrows between

vertices having different labels and then take the dual to get

E(01),E(11)=>E(011).

Combining this with 4.2(2) we see that ft =>E(011). Also from 4.2(1) we have

ft ^> E(101). From 4.4(1) and 1.5(1) with Í>(T) = T(l),

E(101),E(011),D' -E(0101).
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Combining these implications ft => E(0101) and so, from 4.6, ft implies every

transitive 2-tournament.

The verification of 3.3 will occupy the remainder of this section and requires

thirteen auxiliary propositions. One obvious, but nonetheless useful, observation is

that if ft => T then ft =» U for every variant U of T.

5.1. If T E 9 may be partitioned into two transitive tournaments then, D =» T.

Proof. From 3.1 and 3.2, D =» (T) (T E £). From this it is clear that 5.1 is true

when one side of the partition is a singleton. By 1.4(1) the general conclusion

follows.

5.2. //T E %embeds E(01) and E(10), then either T is a variant of either P or Q, or

T embeds every L E £.

Proof. Let T satisfy the hypothesis. By homogeneity, T0 and T, are both infinite,

because if T, is finite then a non trivial equivalence relation can be defined on T,-_,,

which is impossible. If T embeds both D° and D1 the conclusion is immediate from

3.2. Otherwise, by 2.1 there exists i < 2 such that T, » P' or T) « Q'. Suppose that T

is neither a variant of P nor a variant of Q. From 2.3, (T : /) is isomorphic to either

P or Q. Therefore, T embeds every 2-tournament which can be partitioned into an

(i — l)-labeled singleton and an /-labeled transitive tournament. By 1.4(2), switching

labels if necessary, T embeds every L E £.

5.3. IfVE§,i< 2, imil < 2, and U,_j E £, then ft => U.

Proof. Since ft is invariant under switching labels, we can suppose / = 0. From

1.4(2) we can suppose ||U0|| = 1. Let T E DC embed ft. We have to show that (T : 1)

embeds £. Since T embeds D1, by 5.1, F(TX) embeds every tournament which can be

partitioned into two transitive tournaments. Hence (T : 1) is neither a variant of P

nor of Q. By 4.2(1), T embeds E( 101) and F, whence (T : 1) embeds E(01) and E(10).

By 5.2, (T : 1) embeds £ as required.

5.4. //ft =» T, then ft => T(/) (i < 2).

Proof. From 1.5(2) it suffices to show that ft =» T(/) (i < 2) for each T E ft.

From 4.3(2), ft => D'(/), and from 3.2, ft =* E(01/), E(10/). It remains to show that

ft => D1 ~'(i). Let T E DC embed ft and, for proof by contradiction, suppose T does

not embed D'(0). Consider the 2-tournament U shown in Figure 14 where the

direction of the edge ab is not yet specified. By 3.2, T embeds each transitive

2-tournament. Hence, T embeds \Jt {a, d,e, f). Since T also embeds Uf

{c, d, e, f) « D', T embeds U t {a, c, d,e, f] by amalgamation. If the edge ca were

directed the other way we should have D'(0). Since Uf {b, c, d, e, f) » Ui

(c7, c, d,e, /}, it is also embeddable in T. Amalgamating Uf {b,c,d,e, f) and

U t [a, c, d,e, f) we see that U is embeddable in T provided the edge ab is suitably

directed. Let V be obtained from U by reversing the direction of the edges cd, de,

and replacing d by g. Since V, is transitive V is embeddable in T by 5.3. Amalgamat-

ing U and V we see that either cdg or deg is a copy of C1 and so T embeds D'(0) by

restricting to {b, c, d, f, g) or {a, d, e, f, g), respectively.
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Figure 14

Using 5.4 and the same method of proof as for 5.4 we obtain

5.5.///<2, U Ef, |U,| = {a} and ft =» (U : a), then ft => U'.

Our next aim is to show that ft =>[C',C1-']. At this point the reader should

review the definitions of ((C',T)> and ((C',U>>"' found in §1. As a preliminary,

define

6= (WEf:ft =»((C'',W»,/<2}.

5.6. £ Cß.

Proof. Let T e DC embed ft, and U denote «C, T» "' E DC. We must show that

U embeds every transitive 2-tournament.

Claim 1. F(U) embeds every W E 9 which can be partitioned into two transitive

subtournaments.

To see this, let W E 9 be partitionable into two transitive subtournaments and

W1-' be a (1 - /)-labeled copy of W. By 5.1 T embeds W1"' since it embeds D1 '.

By 5.4, T embeds W'"'(/)(/)• Amalgamating W'"'(/)(/) and C over a common edge

we see that U embeds some X such that F(X) = W.

Claim 2. U embeds E(01) and E(10).

To see this suppose without loss of generality that i — 0, and let V be as in Figure

L5. By 5.5, X = Vr (| V| - [a]) is implied by ft since (U : b) « F. Since V*

X(l), ft =» V. Hence T embeds V, and U embeds E(01). Reversing the edge ba of V

we have a variant, whence U also embeds E(01).

From Claim 1, U is neither a variant of P nor of Q. From Claim 2 and 5.2, U

embeds every W E £.

5.7. ft=*[C',C'_I](/<2).
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Figure 15

Proof. We follow the same line as in 5.4. Suppose / = 0. Let T E DC embed ft

and, for proof by contradiction, suppose T does not embed [C°, C1]. Observe that T

embeds the tournament U presented in Figure 16 where the broken edge is directed

one way or the other, we do not know which. To see this we argue as follows. Let

the restrictions of U to | U| -{a, b) and | U | - {a, c] be denoted by X and Y.

Since X « C'(0)(0) and Y ~C°(1)(1), X and Y are embedded in T by 5.4. Now Z =

Ur (|U| ~{a}) is obtained by amalgamation of X and Y over their common part.

If the edge be were directed the other way we should have [C°,C']. Also W =

U r (| U | - {b}) being isomorphic to Z is also embeddable in T. By amalgamation of

Z and W, if the edge ab is suitably directed, then T embeds U. T also embeds the

tournament S shown in Figure 17 where again the broken edge is directed one way

or the other; we do not know which.

The tournaments obtained from S by deleting a and b, respectively, are embedded

in T by 5.6. Whichever way the broken edge is directed in S, the tournament V

depicted in Figure 18 is embedded in S and hence in T where the edge ab is directed

the same way as in U. Amalgamating U and V over the common subtournament

with universe {a, b,...,f) we see that T embeds [C°,C1] as required.

Figure 16
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Figure 17

Figure 18

5.8. //ft =» U, V then ft => [U, V].

Proof. By 1.5(2) it is sufficient to show that ft => [U, V] for all U, V E ft. From

5.1, D => [D, D], whence ft =* [D\ D] (/ < 2). From 5.7, ft => [C°, C1]. Hence from

5.4, ft =» [D°, C1] « [C°, C'](0). Since [C°, D1] is a variant of [D°, C1], ft ^ [C°, D1].

By 5.4,ft =* [D°,D'] » [C°,D'](0). Similarly, ft =» [D',D0]. From 3.2,ft =* [U, V] for

U, V E (E(01),E(10)}. Each tournament of the form [U, V], where one of U, V is in

(E(01),E(10)} and the other in {D°,D'}, either has the form D'(j)(k) or is the

complement of D'(j)(k), where / E (0,1} = {/, k). By 5.4 each such tournament is

implied by ft. This completes the proof.

We can now strengthen 5.5 to

5.9. //T 6 9, i < 2, | T,|= {a, b) and ft =» (T : a), (T : b), then ft =» T.

Proof. Let U be a copy of T disjoint from T except that, in U, b plays the role of

a in T and a plays the role of b. Obtain V from U by reversing the edge ab. Let W be

the unique 2-tournament such that |W| = |T| U|V|, Wr|T|= T, Wf|V|= V and all

other edges are directed from | T | to | V |. Let S E DC embed ft, and X, Y be obtained
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from W by deleting b, a, respectively. Since (X : a) w [(T : a), (V : a)] and (V : a) *

(T : b) we have ft =» X by 5.5 and 5.8. Similarly, ft => Y. Thus S embeds X and Y.
By amalgamation, S embeds either W or the tournament obtained from W by

reversing the edge ab. Hence, S embeds either T or U, which completes the proof.

Before reading the rest of the section the reader is advised to study the definitions

of «E(01),T», «E(10),T», «D',T» and (C',T) (/ < 2) to be found in §1.

5.10. //ft => U, then ft => «D',U» (/ < 2).

Proof. By 1.5(2) it is enough to show that ft =» <<D',U)> for each U E ft. Now

ft =* «D',D>» (/, / < 2) by 5.8, and ft «• «D',E(01)>>, <<D',E(10)» by 5.9 as
required.

In the same kind of way we easily obtain

5.11. //ft =*U then ft =» «E(01),U», «E(10),U».

Another result along the same lines is

5.12. //ft =» U then ft => (C',U) (i < 2).

Figure 19

Figure 20
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Proof. Following the same line as in 5.10 it is enough to show that ft =» (C, U)

for all U E {E(01), E(10), D°, D1}. We have ft => (C, DJ) (/ < 2) by application of

5.10, and ft =» (C, E(01)), (C, E(10)) from 5.9.

The last result we need before checking 3.3 is

5.13. ft =>C[U,V,W] for c«^U,V,W E (E(01),E{10)}.

Proof. From 5.13, ft => U the 2-tournament shown in Figure 19, because U can

be written (C',F).

Figure 21
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Figure 22

Let T E DC embed ft and for proof by contradiction suppose T does not embed

C[E(10)]. Then T embeds V the 2-tournament shown in Figure 20. We see this by

amalgamation with respect to the vertices a, b. Notice that if the edge ab were

reversed then V would become C[E(10)]. Also, the 2-tournaments obtained from V

by deleting a, b are easily seen to be implied by ft by application of 5.9.

Amalgamating U and V over their common part we see that T embeds C[E(10)],

whence ft =» C[E(10)]. To obtain C[E(10)] from the amalgamated tournament,

delete a or b according as the edge cd is directed upwards or downwards. By

reversing the edge de we see that ft =» C[E(01),E(10),E(10)] and these two cases are

clearly sufficient.

We can now prove Lemma 3.3. From the last proposition it is enough to show that

ft =»C[U,V,W] whenever U E {D°,D'} and V, W E {D°,D',E(01),E(10)}. Rather

than treat every single case, we consider five cases which are representative. We shall

show that ft implies each of the five 2-tournaments sketched in Figure 21. The first

one, C[D°, E(10), E(10)], is reduced to the first two 2-tournaments, pictured in

Figure 22, by application of 5.9. In turn, those 2-tournaments are reduced to ones

implied by ft by 5.5 and 5.9, respectively. All the cases in which both V, W E

(E(01), E(10)} can be treated similarly. The second 2-tournament in Figure 21,

C[D',D',E(10)], is reduced to the third one in Figure 22 by application of 5.5, and

that 2-tournament is seen to be implied by ft by application of 5.10. This argument

is good whenever just one of V and W is in (E(01), E(10)}. The third 2-tournament
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in Figure 21 is reduced to [D°,D'] by 5.11, and ft =* [D°,D'] from 5.8. The fourth

2-tournament in Figure 21 is C[D', D°, E(10)]. Reversing all edges in the left box we

see that the lower left vertex may be deleted by 5.4. The remainder is implied by ft

from 5.10. The last 2-tournament in Figure 21, C[D',D0,D°], is reduced to [D°,D']

by 5.10. This completes the verification of Lemma 3.3.

6. Homogeneous 2-tournaments. We shall show that the machinery developed

above is sufficient to show that ft is a base for 9. This enables us to complete the

classification of homogeneous 2-tournaments begun in 2.2.

As a preliminary, consider the binary operation H on 9 defined as follows. For

convenience suppose U, Vef are disjoint and that a is a new vertex. Define

E(U,V) = Twhere|T0| = |U|U{û},|T,| = |V|,and£Tis

Ev U Ey U (|U| X|V|) U ({a) X (|U0| U|V0|)) U ((|U, | U|V, |) X {a}).

From the propositions of §5 it is not hard to verify that ft => E(U, V) for all U,

V E ft. We consider three particular cases as illustrations, leaving the rest to the

reader. Firstly, E(E(01),D°) « [L^D1], which is implied by ft from 5.8. Secondly,

E(E(01),D'), shown in Figure 23, has the form C[Io,Io,D'](0) and so is implied by

ft from 3.3 and 5.4. Finally, ¿(E(01),E(10)), shown in Figure 24, has the form X(0)

where X is a variant of G(l). Hence, ft «=> H(E(01), E(10)) by 4.2(1) and 5.4.

D

Figure 23 Figure 24

Since the principle enunciated in 1.5 applies also to the operation H we have

6.1. //ft => U, V then ft =» S(U,V).

Our aim is to show that ft is a base for f. To this end let T E DC embed ft. Let &

denote the class

(U6Í: (VW E^)(V«<to)

[if there exists a partition {V, V'} of W

such that V « Io and V « U[ L" ], then T embeds W]}.

By an argument similar to that made in 3.6, <& is an amalgamation class. Further, in

3.6 it was shown that D => T for all 7Gf. Since T embeds D°, T embeds every

0-labeled 2-tournament, whence D° E &. To see that D1 E GL, it is enough to show

that ft => W for every W which can be partitioned into V and V such that V«I°

and V'^D'[L"]. From 5.5 it suffices to prove that ft =-£»[W,X,Y,Z] for all

W,X,Y,Z E £. This fact is immediate from 3.2 and 3.4. Therefore D1 E &. Taking
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U, V to be arbitrary transitive 2-tournaments in 6.1 we see that E(10) E &. By

symmetry, E(01) E ($ also. We have shown that ft C &.

For proof by contradiction let U E 9be a 2-tournament of least order not implied

by ft. Choose u E U0 and let U" be obtained from U by deleting u. Then ft => U~

and so U" E & since <£ is an amalgamation class. Since U can be partitioned into U"

and a copy of Io, T embeds U. But T is an arbitrary homgeneous 2-tournament

embedding ft. Therefore, ft => U which establishes

6.2. ft is abase for 9.

A final technical result is required.

6.3. 7/U E 9and ||U0|| = 1, then E(01), E(10), D1 =»U.

Proof. Let T E DC embed E(01),E(10) and D1. We have to show that (T: 1)

embeds every U E 9. It is clear that (T : 1) E DC. Thus, by 6.2 it is enough to show

that (T : 1) embeds ft. The following seven claims establish this:

(i) T embeds F and F" .

(ii) (T : 1) embeds E(01) and E(10).

(iii) (T : 1) embeds every U E £.

(iv) T embeds every U E 9such that U0, U, E £.

(v) (T:l) embeds C° and C.

(vi) If TembedsUef, thenTembedsU(l).

(vii)(T: 1) embeds D° and D1.

Proofs of (i) - (vii). (i) By 5.2, T embeds F" since F" E £. Since

(E(01), E(10), D1} is closed under X h> X" , T also embeds F « F" ".

(ii) is immediate from (i).

(iii) From 5.1, T embeds every 1-labeled tournament which may be partitioned

into two transitive tournaments. Therefore, (T: 1) is a variant of neither P nor Q.

By (ii) and 5.2, (T : 1) embeds every U E £.

(iv) follows from (iii) and 1.4(2).

(v) Since {E(01),E(10),D'} is closed under XwX", it is enough to show that

(T : 1) embeds C° or, equivalently, that T embeds C'(0).

Figure 25
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This may be seen by examining the 2-tournament U, shown in Figure 25, whose

explanation is as follows. Firstly, UT {a,c,e} is embeddable in T by (iv), and

U t {c, d, e) is embeddable since D1 is. Amalgamating U r {a, c, e) and U r {c, d, e]

we see that U í {a, c, d, e] is embeddable. For if the edge da were reversed we should

be done. Now U r {b, c, d, e), being isomorphic to U r {a, c, d, e), is also embedda-

ble. By amalgamation T embeds Ur [a, b, c, d, e} provided the edge ab is suitably

directed. Regardless of the direction of ab, the tournament abdef is embedded in T

by (iv). Amalgamating U t {a, b, c, d, e) and U t {a, b, d, ef) we see that T embeds

U provided the edge cf is suitably directed. Whichever way cf is directed, U embeds

C'(0), and so we are done.

(vi) Since U h» U(l) is a replacement operation, by 1.5(2) it is enough to show that

T embeds U(l) for all U E (E(01), E(10), D1}. This is apparent from (iv) and 4.3(2).

(vii) Since (E(01),E(10), D1} is closed under the operation X -> X" , it is enough

to show that (T : 1) embeds D1 or, equivalently, that T embeds C'(0)" (1). From (vi)

it suffices to show that C'(0)~ is embedded in T which is clear from (v).

From (ii) and (vii), (T : 1) embeds ft, so we are done.

We can now establish the following classification of homogeneous 2-tournaments.

Let E denote the empty 2-tournament.

6.4. Theorem. //T E DC, then up to a variant, T is one of the following:

(*) P,Q,[T0,Tj,r(F(T0),F(T,)).

The possibilities for T, are E, I', C, P', Q' and R' (/ < 2). The only constraints are

that one of T0 and T, be nonempty and that both be infinite if T » r(F(T0), F(T,)).

Proof. If T embeds neither D° nor D1 we have the result by 2.2. If either of E(01)

or E(10) is not embedded in T we have the result by 3.6. If T embeds ft we have the

result by 6.2. This leaves the case in which T embeds both E(01) and E(10) and one

of D° and D1 but not the other. Without loss of generality, assume T embeds E(01),

E(10)andD'butnotD°.

C/a/ml.T0~P°orT0~Q0.

Proof. Since T, embeds D1, T, is certainly infinite. Were T0 finite, there would be

distinct u, v E T, such that (T : u) = (T : v). By homogeneity (T : u) = (T : v) for

all u, v E T,. Since T embeds both E(01) and E(10), this contradicts homogeneity.

Therefore, T0 is infinite and the claim follows by 2.1.

Claim 2. If a E|T0| and B is a finite subset of |T, |, there exists a dense subset

A C| T01 such that every a' E A realizes the same 1-type over B as a does.

Proof. We proceed by induction on | B \. If | B |= 0 the result is obvious. Suppose

the claim holds for B and that b £|T, | — B. We will prove the claim for B U {b}.

Let U be the subtournament of T such that

|U0|= {te\T0\:tp(t\B) = tp(a\B)inT}

and

|U,|= {tE\Tx\: tp(t\B) = tp(b\B) inT).

Since T E DC so is U. Since the claim holds for B, | U01 is a dense subset of | T01 and

so U0 « T0. By 6.3, U embeds both E(01) and E(10). Since T embeds D1, T, « R1
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and, hence, U, « R1 also. By 2.3, (U : 0) ~ Q or (U : 0) ~ P according as T0 is Q° or

P°. This means that both U0[o ->] and U,[^ b] are dense in U0 and hence in T0.

This confirms the claim for B U {b} in place of B.

This completes the proof of the claim.

Returning to the proof of the theorem, from 6.3, given finite B C | T, | every

possible 0-labeled 1-type over B is realized in T. Further, by 6.2 each such 1-type is

realized by a dense subset of |T0|. It follows by 1.2 that T embeds every finite V

such that V0 is embeddable in T0. Thus T is r[F(T0), F(T,)], which completes the

proof of the theorem.

It seems extremely likely that the results obtained in this paper can be extended to

«-tournaments for any fixed «, 2 < « < co. In particular, we conjecture that, if ft

contains an /-labeled copy of D for each i < « and a copy of every tournament

having exactly one vertex with each label, then ft is a basis for the class of finite

«-tournaments.
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