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DEFORMATION AND LINKAGE OF GORENSTEIN ALGEBRAS

BY

ANDREW R. KUSTIN AND MATTHEW MILLER1

Abstract. General double linkage of Gorenstein algebras is defined. Rigidity,

genericity, and regularity up to codimension six all pass across general double

linkage. Rigid strongly unobstructed codimension four Gorenstein algebras which lie

in different Herzog classes are produced.

Introduction. We begin by reviewing the classical structure theorems. Let P =

k\Xx,..., Xm], A = P/I, and F be the minimal resolution of A by free P-modules.

(1) If A has codimension 1 and I is unmixed, then F is given by 0 -» P -+P for

some /in P.

(2) (Hilbert, Burch [7], Schaps [28]) If A has codimension 2 and is Cohen-Macaulay,

then F is given by

,  X x
0 -, />»-! ^px^P

where X is an n X (n — 1) matrix, x, = (-\)'+xA¡(X) and A¡(X) is the determinant

formed by omitting the ith row from X.

(3) (Buchsbaum and Eisenbud [4]) If A has codimension 3 and its Gorenstein,

then F is given by

Q^p\p»ip"^p

where X is an n X n alternating matrix, x, = (-l)'+1Pf,(A'), and Pf,-(^) denotes the

pfaffian of the alternating submatrix of X formed by omitting row and column i.

In these structure theorems, as the codimension of A increases so does the number

of conditions on A. It is reasonable to suspect that a structure theorem for

codimension four Gorenstein algebras A will require that an additional hypothesis

be imposed on A. We observe that in each case (a) there is a structure theorem, (b)

all deformations are unobstructed (see Herzog [13]), and (c) each algebra A is in the

linkage class of a complete intersection (see Peskine and Szpiro [27] and Watanabe

[30]). Historically these three facts were found independently. With hindsight we

now see that (b) follows from (c), and (a) follows in turn from (b). In his thesis
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Buchweitz [5] has shown that if A is a reduced algebra which is in the linkage class of

a complete intersection, then A is "strongly unobstructed". Herzog [13] has shown

how to obtain the structure theorem for "the class of A" provided A is "strongly

unobstructed". From these observations, it appears that the correct continuation of

the list of structure theorems should involve those codimension four Gorenstein

algebras which are in the linkage class of a complete intersection. This paper is

mainly concerned with such algebras. Since it is known that not all codimension four

Gorenstein algebras are in the linkage class of a complete intersection (see Huneke

[18, Example 2.5]), we are imposing a real restriction. Whether a more general

structure theorem exists is open to question, and would certainly require different

techniques.

In [23] we proposed a technique for constructing "big" Gorenstein ideals from

"small" ones (size being measured by number of generators). We have since seen

that the big from small construction may be viewed as linkage, or more generally,

what we have come to call linkage by Gorenstein ideals. In §1 we define linkage by

Gorenstein ideals and prove the elementary facts about it. In §2 we establish the

connection between linkage by Gorenstein ideals and the big from small construc-

tion. §§3-7 are concerned only with ordinary linkage by complete intersections,

especially in the context of general double links (Definition 2.5). In §3 we iterate the

big from small construction to produce codimension four Gorenstein /c-algebras

which we have called A(l, t) and B(t). §§4-7 are devoted primarly to proving

results about these algebras. Generally, such results read: "if the Gorenstein algebra

A has property ty, then the general double link of A also has *$."

If A and B are complete local /c-algebras, then Herzog [13] writes A ~ B if there is

a third such algebra C containing regular sequences x and y such that A s C/(x)

and B = C/(y). This relation becomes an equivalence when the algebras involved

are "strongly unobstructed"; we have called the equivalence classes "Herzog classes".

The calculation of four resolution invariants (Definition 7.6) allows us to conclude

that the algebras A(l, t) and B(t) are in distinct Herzog classes.

In §8 we exhibit a codimension four Gorenstein algebra that is not in the linkage

class of a complete intersection in order to show that linkage by Gorenstein ideals

does not preserve the deformation-theoretic properties that ordinary linkage pre-

serves.

Notation and conventions. Throughout this paper A: is a field (often algebraically

closed), all rings are commutative and noetherian, and g is a positive integer, usually

at least 3. If Y is a matrix containing entries y¡, that are indeterminates, then k\Y\

means A:[{^i7-}]. The symbol a or [a] represents a row vector and (a) is the ideal

generated by the entries of a. In particular, [c + va] is the row vector [c, +

vax,...,cn + va„].

Let I be a proper ideal of the ring R with finite projective dimension. The grade of

/ is the length of a maximal Jî-sequence contained in I. The codimension of I (or the

codimension of R/I) is dim R — dim R/I. If R is Cohen-Macaulay then the grade

of / is equal to the height of I; if R is also local, then both concepts coincide with the

codimension of I. The ideal / is called perfect if grade / = pdR( R/I ). A perfect ideal
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I of grade g is a Gorenstein ideal if ExtgR(R/I, R) is a cyclic R/I-modu\e. It

follows from Bass [3, Proposition 5.1] that if I is a Gorenstein ideal in a Gorenstein

ring R, then R/I is also a Gorenstein ring.

A differential, graded, commutative algebra (DG) structure on a complex of free

Ä-modules

is a product map F ®R F -» F with:

(1) xtXj E Fi+J,

(2) d(x¡Xj) = (dxjxj + (-lyxidXj,

(3)XiXj = (-l)'7x7x,,and

(4) x,x, = 0 if i is odd

for x, £ F¡ and Xj G F¡. Note that multiplication by F0 = R makes F an .R-algebra. If

F is a resolution, then by Buchsbaum and Eisenbud [4, Proposition 1.1], F has a DG

structure which is homotopy associative. There are several situations in which the

resolution F is known to have an associative DG structure, see e.g. [4, 22]; but on the

other hand for each g s* 6 Avramov [2] has produced an example of a grade g

Gorenstein ideal in a Gorenstein local ring R such that the minimal free resolution

of R/I does not admit an associative DG structure. While this issue is not critical in

the present work, we would like to know if the class of Gorenstein algebras studied

here also has " well-behaved" DG structures.

Question. Let A be a Gorenstein quotient of R = k\Xx,... ,X„j. Suppose that A is

the linkage class of a complete intersection. Does the minimal free resolution of A

admit an associative DG structure?

Let R be a local ring with residue field k, let I be an ideal in R, and let F be a free

resolution of R/I. Two of the invariants used in §7 involve the homology algebra

A, = Tor¿(R/I, k). For a complete treatment of the algebra structure on A, see [8,

XI, §§1-4]. For our purposes it suffices to say that any comparison map from the

complex F ®RF to the resolution F which covers the multiplication map (R/I)

®R(R/I) -» R/I induces the algebra structure on A,. In particular, any (not

necessarily associative) DG structure on F induces the algebra structure on A,.

We will have many occasions to use the technique that Höchster has called

"general grade reduction". The main result is

Proposition A. Let a be a 1 X « vector which generates a grade g ideal in a

noetherian ring R and let X be an n X m matrix of indeterminates.

(1) If m < g, then aX is a regular sequence in R[X] or R\X\.

(2) If R is a domain and m< g — 1, then (aX) is a prime ideal in R[X] or RfXj.

Proof. The results for (aX) C R[X] may be found in many places, for example

Höchster and Eagon [17, Propositions 21 and 22] or Höchster [15]. Statement (1) is

also true for Rl X} because the inclusion map R[X] -» Rl Xj is flat. Statement (2) is

true in Rl Xj because the prime ideal (aA') is homogeneous in R[X].    ■
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Deformation theory supplies some of our most useful tools. We recall the basic

definitions and results. Artin [1] is an excellent reference. For this discussion k is an

algebraically closed field and k' = k[e]/(e2) is the ring of dual numbers.

Definition. Let A be a finite dimensional local A:-algebra (note that A/mA = k)

and suppose B is a /c-algebra. An (infinitesimal) deformation of B to A is a flat

/1-algebra B' such that B' ®Ak = B. If an algebra B' is flat over A = kle{,... ,ej

and B' ®Ak s ß, we say that B' is a (formal) deformation of B to A.

Proposition B. Let P = klXx,...,Xq}andB = P/J.

(\)IfO:kle],...,es}^B is a k-algebra map sending e, to b¡, then b— [bx,...,bs]is

a regular B-sequence if and only if B is a deformation of B/(b) to k\ex,..., e^].

(2) Let P' = P ®kk'. Suppose J' is an ideal in P' such that (P'/J') ®kk = B. Let

F' be a presentation of P'/J' by free P'-modules. Then P'/J' is a deformation of B to

k' if and only ifF' ®k-k is a free presentation of B.

(3) If B = P/J has a presentation

Pm —* pn—*p

and \m(£d2) C / = \m(dx)for a map £: P" -> P, then P'/J' is a deformation of B to

k', where J' = lm(di + e£).

Proof. For (1) see Hartshome [11], or argue directly using the local criterion for

flatness [26, Theorem 49]. For (2) and (3) see [1].    ■

Definition. A deformation B' of B to A is trivial if there is an ^-algebra

isomorphism 6: B ®k A -* B' such that 6 induces the identity on the special fiber,

i.e., 0 ® \k = lß. We say B is rigid if every infinitesimal deformation is trivial.

In fact, it suffices to consider the first order deformations to k'. The following is a

useful test criterion for rigidity.

Proposition C. Let P = k I Xx,..., Xq\ and B = P/I. Let

d-,        i/|
Pm —» P" —> P

be a fixed minimal presentation of B, and let % = (df/dXj)nXq be the Jacobian matrix

for dx =[/,,...,/,]. Suppose £ P" -* P represents a deformation of B to k' as in (3)

above. The following conditions are equivalent.

( 1 ) The deformation represented by £ is trivial.

(2) There is a k'-algebra automorphism of P' which sends J — lm(dx) to J' =

lm(d\ + ei;), and which induces the identity on P = P' ®k'k.

(3) There exist maps f: Pq - P and g: P" - P" such that £=ß' + dxg; i.e., |' is

in the column space of°y, modulo J.

Furthermore, the algebra B is rigid if every £: P" -> P as in Proposition B(3) satisfies

these conditions.    ■

Our final result is part of the folklore of deformation theory and can be

established by using Taylor's theorem.
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Proposition D. If A is a rigid k-algebra and B is a formal deformation of A, then

B=A{Yx„..,Ysl    M

1. Linkage by Gorenstein ideals. The starting point of the theory of algebraic

linkage is the following theorem found in Peskine and Szpiro [27, Propositions 1.3

and 2.6] or Buchsbaum and Eisenbud [4, Propositions 5.1 and 5.2].

Theorem 1.1. Let I be a perfect ideal of grade g in a Gorenstein local ring R and let

K be an ideal properly contained in I which is generated by a length g R-sequence. If

J = K:I, then:

(\)J is a perfect ideal of grade g, and

(2) K:J = I.
Moreover, if F and G are minimal free resolutions of R/I and R/K, respectively,

and $: G -» F is any map induced by the inclusion K C I, then the mapping cone of the

dual ofy¡/ is a free resolution of R/J. In particular:

(3) if I and a Gorenstein ideal, then J — (K, w)for some w, and

(4) if I is minimally generated by (K, w), for some w, then J is a Gorenstein ideal.

m

We note that in pathological instances, the ideal J in (3) might not actually be an

almost complete intersection. For example, if K = (X2) and I — (X), then J =

(K,X) = (X).

Theorem 1.2. The conclusions of Theorem 1.1 remain valid if K is only assumed to

be a grade g Gorenstein ideal properly contained in I.

Proof. Results (1) and (2) follow from [27, Proposition 1.3]. The proof that the

mapping cone of the dual of ^ resolves R/J is essentially contained in [20,

Proposition 1.1]. Finally, (3) and (4) follow from the mapping cone construction of

the resolution of R/J exactly as in the proof of [4, Proposition 5.2].    ■

Remark. Golod [10] has proved that (1) and (2) hold if I is perfect of grade g in a

commutative noetherian ring R, and K is a perfect ideal of grade g properly

contained in /. If K is a Gorenstein ideal and R is local, then (3) and (4) also follow.

Since we are interested here in the factor rings (rather than just homological

properties of the ideals) we shall retain the Gorenstein hypothesis on R.

Theorem 1.2 motivates the following definitions. Throughout this paper we retain

the traditional meaning for the term "linked", namely "linked by a complete

intersection".

Definition 1.3. Let I, J and K be perfect ideals of the same grade in a Gorenstein

local ring R with K properly contained in each of / and J,K: I = J, and K: J = I.

(1) If A" is generated by a regular Ä-sequence then / and J are (algebraically)

linked by K.

(2) If AT is a Gorenstein ideal, then / and J are linked by the Gorenstein ideal K.

Definition 1.4. Two ideals I0 and / are in the same linkage class if there are ideals

/,,...,/„ with I„ — I and I¡ linked to 7/+, for 0 < z < n — 1. If n — 2 we say I0 and /

are doubly linked.
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Definition 15. An algebra A is in the linkage class of a complete intersection if A

can be written as R/I, where R is a regular local ring and I is in the same linkage

class as an ideal generated by a regular R-sequence. (Note that if A = R/I — R'/T,

where both R and R' are formal power series rings over a field k, then I is in the

linkage class of an ideal generated by a regular sequence if and only if the same

holds for /'.)

2. The "big from small" construction as linkage by Gorenstein ideals. Throughout

this section we assume R is a Gorenstein local ring and a is a 1 X « matrix whose

entries minimally generate a grade g Gorenstein ideal of R. (Nothing of interest

occurs unless g > 3.) The n X m matrix X is composed of elements from R and the

ideal generated by the entries of the 1 X m matrix b = aX minimally generate a

grade g — 1 Gorenstein ideal of R. The minimal resolutions of R/(a) and R/(b) by

free Ä-modules are denoted by F and G, respectively. Buchsbaum and Eisenbud [4]

observed that F may be given the structure of a (not necessarily associative) DG

algebra and that the multiplication map F¡ ® F ¡ -* F' = R is a perfect pairing.

Hence, if e,,... ,en is a basis for Fx and g > 3, then we can choose a basis /,,...,/„

for Fg^, so that

(2.1) ejj = 8u.

As a consequence, F has the form

F.O^R^R" ^->R"^R.

Let b" denote the last map of G. If g — 1 > 3 we may assume that the vectors b' and

b are equal. In any case they generate the same ideal of R. We take c to denote any

1 X n matrix which fits into the following comparison of minimal resolutions:

b" bG 0-*R-+-^>Rm-*R

(2-2) i le' ix

F     0     ^     R      ^     R"      ^       ...      _     Ä«      i     *

Let v be an indeterminate and K be the ideal generated by the entries of the vector

[b, c + va]. The main result of [23] is that K is a grade g Gorenstein ideal in R[v]

(and hence also in Ä[t>]). The main result of this section is that K is obtained from

(a) as a double link by Gorenstein ideals.

Theorem 2.1. Let R, a, b, c be as described above (see diagram (2.2)). Then the

ideal K = (b,c + va) is doubly linked to (a) in R\v\ by Gorenstein ideals.

Proof. The ideals (b) and (0) are Gorenstein, hence unmixed, and they have grade

less than the grade of (a); thus there is an element y in (a) which is regular on both R

and R/(b). It follows that (b, y) is a grade g Gorenstein ideal. A minimal resolution

K of R/(b, y) may be obtained by tensoring the minimal resolution of R/(b) in (2.2)

with the resolution 0 -» R ->/?. We can extend the comparison map of (2.2) on the
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complementary summand of G in K to obtain:

R
b"

R" R

(2-3)
K:     0

F:     0

R

agl

R

[b'.v]'

0
Li J

R'

ag_,4

R"

ill]

Rm+i      M

a, I

R"

R

R

Observe that the first m columns of a, are the matrix X and c' is the last column

ofag_,.

If / = (b, y): (a), then by the construction of Theorem 1.2, / = (b, y, w) where

w — a . The element w + vy of Rlv} is regular on /?Ii>]/(b) because y is regular on

R/(b); hence (b, w + vy) is a grade g Gorenstein ideal of R[u]. If K = (b, w + vy):

J, then K is obtained from (a) as a double link by Gorenstein ideals:

(h,y) (b, w + vy)

It remains to show that K = (b, c + va).

The lower right-hand commutative square of (2.3) shows that

(2.4) wa¡=yc¡   mod(b)

for all z since ctg — w and the last column of ag_, is equal to c'. Thus .y(c(- + va¡) —

a,(w + vy) is in (b). Consequently, (c, + va¡)y is in (b, w + vy), and (b,c + va) is

contained in (b, w + vy): y = K. On the other hand, suppose z E. K; so zy —

s(w + vy) is in (b) for some s. Then sw is in (b, y), and since (a) = (b, y): w by

Theorem 1.2, s = 2í,a, and zy — 2s¡(a¡w + a¡vy) is in (b). It follows that z is in

(b, c + va) since (b, y) is a regular sequence.    ■

While this theorem is useful in the form we have stated, especially for constructing

explicit examples, it is too restrictive when we come to consider linkage classes of

^-algebras. We would like, at the very least, to base the construction of K on the

ideal / = (a), rather than on a particular set of generators a and resolution F. In fact,

we ultimately would like to construct a well-defined A:-algebra B = R\v\/K starting

from a A-algebra A = R/I, but without having B depend on the chosen presentation

of A. We cannot, however, change all the data with impunity.
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Remark 2.2. (a) If a and F are fixed, then the construction of K = (b,c + va)

depends on the choice of c in (2.2). If c' is any other choice for c, then by the

homotopy equivalence of comparison maps

(2.5) c' = c + ra + b<t>

for a suitaole matrix <p and constant r. The Ä-algebra automorphism of R[v] which

sends v to (v + r) carries the ideal (b,c + ua) to (b, c' + üa). The analogous

statement is false in Rlvj, as the following example shows.

Let R = k\Ax, A2, A3\, a = [Ax, A2, A3], b = [A2, A2,], b' = \-A\, A\],

X =

0

¿2

0

A =

0

A,

0
-A, 0

Either c' = [0,0, AXA2] or c" [Ax, A2, A3 + AXA2] may be used for c in:

b" „       b
R R- R

R

W lx

A
R> R R

The ideal (b, c' + va) in RfvJ is minimally generated by (A\

vA3), the five maximal order pfaffians of

A\, vAx, vA2,

0

v

0

-A,

0

-o

0

Ax

0

0

0

-Ax

0

-Ai

A,

0

A,

0

-A,

0

0
-A2

Ax

0

AXA2 +

The ideal (b,c" + t>a) in R[vj is

(A2x,A22,(v+ l)Ax,(v + l)A2,AxA2 + (v+ 1)A3).

Since v + 1 is a unit this ideal is actually generated by the regular sequence Ax, A2,

(b) Suppose a' is another minimal set of generators for I = (a) and F' is a minimal

free resolution of R/I satisfying (2.1) with first map a' and last map a". If ^: F -» F'

is an isomorphism that lifts the identity in degree 0, and we set c" = \¡/ ,c' and

u = \pg, then the Ä-automorphism of RlvJ given by sending t; to u']v induces an

Ä-isomorphism from Rlvj/(b,c + va) to Rlv}/(b,c' + va').

Note that in this context if F' differs from F only at the internal maps (i.e. a' = a)

and c" satisfies (2.2) with F' in place of F, then

(2.6) c' = et// + /-a + b<¡>

where t/V = \p'x is invertible, ua = a\p, <j> is a matrix, « is a unit, and r is a constant.

Henceforth we shall allow this harmless indeterminacy in F whenever we refer to

diagram (2.2).
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If we link by complete intersections, then we can specify how to choose c so that

the construction of Rlv}/K is canonical. To this end, observe that if />,,... ,bg_, are

elements of R, then K(b), the Koszul complex on b, is an exterior algebra. By [4], F

has a (not necessarily associative) DG structure. Select e,,..., e, and e,,...,en

bases for Kx and F,, respectively. It is easy to see that the map a: K(b) ~* F, defined

for all 1 </,< ■••</;<*-1 by

a(ehej2 " ' ej) = 2 e.]{ei2('" (eir)--m))'x(i\'-'-'h'J\>-'-Jr)<
l</|</2<- ■ •  <7r«7I

is a map of complexes, where X(ix,.. .,ir; /',,... ,¿) denotes the determinant of the

submatrix of X formed by the rows ix,...,ir and column jx,...,jr. Under this

definition and the pairing (2.1), c' = [c,,... ,c„] is given by

(2-7) c, = e,a(ex ■■■eg_i).

If we impose a rather minimal hypothesis on the linking matrix X, then any vector c'

which completes (2.2) and one other condition gives rise to the same algebra

RlvJ/K.

Proposition 2.3. In addition to the general hypotheses of this section, assume that b

is a regular sequence and that the entries xw, x2/,... ,xni of one of the columns of X

generate an ideal I with the property that (a) is not contained in (b) + I. Let c be

defined by (2.7) and c' be any other vector which satisfies (2.2) and is contained in I.

Then Rlvj/(b,c + va) is isomorphic to Rlv}/(b,c' + va) as an R-algebra.

Remark. Our typical application is in the situation that (a) C R, and the nonzero

entries of one column of X indeterminates Xx,...,Xr over R. We replace R by

R{ Xx,..., Xr\ and take / = (Z„...,Xr). If (a) C (b) + I, then by setting all X, equal

to 0 we would have (a) C (b), a contradiction to grade(a) = g.

Proof. Here G = K is the Koszul resolution of R/(b). By (2.6), c' = c\p = z-a + b<J>,

where \p is an invertible matrix, a\p = ua for some unit u, and <i> is a matrix. Thus

ip = ul + d2\jj' for some matrix \¡/'. Duality of resolutions of Gorenstein algebras

implies cd2 = b6 for some 0; thus c' = uc + ra + bd' for some 0'. If r were a unit,

then (a) would be contained in (b) + I since (c') C I by hypothesis and (c) C I by

expansion of each X((j): \,...,g — 1) down the z'th column. We conclude r is in m^

and the i?-algebra isomorphism of Rlvj defined by sending v to (t> + r)u~] carries

(b, c + va) to (b, c' + va).    ■

Remark 2.4. We now assume that X is an n X (g — 1) matrix of indeterminates

and that R = SlXj, where S is a Gorenstein local ring. Suppose that a and a' are

minimal generating sets for a codimension g Gorenstein ideal I in S and that the

respective R-free minimal resolutions F and F' of R/IR have the form exhibited in

(2.2). Suppose that c and c' are vectors which complete (2.2) and which have all their

entries in the ideal (x]i,...,xni) for some fixed, but arbitrary, i. By Proposition A

both b = aX and b' = a'X are regular sequences in R. Therefore we conclude that

Rlv}/(b,c + va) and /?[u]/(b',c' + va') are isomorphic 5-algebras. The argument

is straightforward and uses Proposition 2.3 twice. This remark motivates the follow-

ing definition.
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Definition 2.5. Let A = R/I, where I is a Gorenstein ideal of grade g, and R is a

Gorenstein local ring. Assume that g > 3. Let a be a 1 X « matrix which minimally

generates I; let X be an n X (g — 1) matrix of indeterminates; and let c be a 1 X n

vector that completes (2.2) with (c) contained in one of the ideals (x,,,... ,xnj). Let v

be an indeterminate. We call B — RlX, v\/(aX,c + va) the general double link of

A.
By the preceding results, B is a codimension g Gorenstein quotient of RlX, v}

that depends up to Ä-isomorphism only on A. If A is itself only defined up to

^-algebra isomorphism, the same is true of B. If A is in the linkage class of a

complete intersection so is B. One advantage of algebras obtained as general double

links is that they can be given a natural grading.

Proposition 2.6. Adopt the same notation as in Definition 2.5. Give RlX, vj a

grading by deg R = 0, deg x¡¡ = 1, and deg v = g — 1. Then the general double link

of the R-algebra A is a quotient of RlX, t>] by a homogeneous ideal.

Proof. Let F be the minimal free resolution of A over R, K be the Koszul

resolution (with exterior algebra structure) of the complete intersection

RlX, v]/(aX), and a: K -* F ®R RlX, v] be the complex map as in the discussion

prior to Proposition 2.3. Each product e¡(e¡(e^ ■ • • (e¡ _ ))) of (2.7) is in R and has

degree 0. Each X(ix,.. .,i ,; 1,... ,g — 1) is a form of degree g — 1 in the x/y. Since

each entry of the vector a is in R, we see that each entry of the vector c + va is a

form of degree g — 1 and each entry of the operator a AT is a form of degree 1. Thus

the ideal (ai,c + ua) is homogeneous.    ■

Proposition 2.7. Let t > 3 be an odd integer, Y be a r X t alternating matrix with

indeterminate entries, I be the ideal in klYj generated by the maximal order pfaffians

of Y, and A = klYj/I. Then A is obtained from a complete intersection by a series of

general double links.

Proof. The proof is by induction on t. If t = 3, then A = k is a complete

intersection. Suppose that the statement is true for t. Let Y¿, Yjjk and YiJklm be the

pfaffians of Y (of order t— 1, t — 3, t — 5, respectively) as defined in [24]. Let

y = [Yj,..,, YT], X be a t X 2 matrix of indeterminates, b = [bt, b2] = yX, and c be

the 1 X t matrix with ca = -2,<yi/,;T,ya, where dtj is the minor of X using rows z

and/ It is straightforward to check that

(2-8)

R R2        -     R

le' IX

>' Y y
0     -    R     -     RT -» RT        -»     R

is a commutative diagram and (c) is contained in (xn, x2,,. ..,xTl). We conclude

that B = klY, X, t>]/(b,c + va) is indeed the general double link of the ii|lYl-alge-

braA.



DEFORMATION AND LINKAGE OF GORENSTEIN ALGEBRAS 511

Let M be the (t + 2) X (t + 2) alternating matrix

0

o

-x,

M =

1t2 ~at:

We claim that B = k\M\/K, where K is generated by the maximal order (i.e.,

t + 1) pfaffians M, of M. This is a straightforward computation using the expansion

formulas of [24, Lemma 1.2].    ■

In §6 we shall study how estimation of local number of generators can be passed

over a double link. The most interesting situation occurs when (a)p becomes a

complete intersection. We fix all notation as in Theorem 2.1 and let 5 = Rlvj.

Suppose P is a prime of S that contains both K and J. Let p = P n R and a' be a

1 X g vector whose elements minimally generate Jp. Let a E R\!p and Ube a gX n

matrix with entries in R such that aa = a'U. Set A" = UX; then ab = ctaX = a'X'

generates a complete intersection inside J0.

Lemma 2.8 (Notation as described above). Either KP is a complete intersection,

or there is a 1 X g vector e with entries in Rp such that KP = (b, e + va!) in SP and

eX' = ßbfor some ß E Rv.

Proof. As in the proof of Theorem 2.1, choose y in J that is regular on R/(b),

and let I — (b, y): J. There is an element w in R such that / = (b, y, w) and K =

(b, w + vy): I. If Ip is a complete intersection, then KP has at most g + 1 generators;

consequently, it must be a complete intersection by Kunz [19]. We assume that Ip is

not a complete intersection. Using the exterior algebra structures, we define a map 8

of free ^-resolutions with the first g — 1 columns of 0, given by X':

0

0

l w'

R,

lab. >•]'

(a')'

Rg

"«-i

Äf

I»,

[ab, v]

R,

RgJxt> /v,

If the last column of 8 x is denoted (c')', then c'X' = 0. Now 7P = (b, j, w') in Rv

by Theorem 1.2, and since w is not in (b, y)p, we have w = u(w' + ry + y) for some

m, /•, y in Rv with zz a unit and y in (b)p. If we replace w' by w" = w' + ry, and c' by

c" = c' + ra', then the diagram still commutes. The lower row can be mapped

isomorphically to another resolution of Rv/Jv

0^ R,
(a')'       «"V

Rî   - Bg^Rv,

in effect replacing w" by uw" = w — uy and c" by e = izc". Observe that eA" = ßb,

where ß = ura is in R     It is clear that KP = (ab, uw" + vy):  IP;  and since
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uw"a'¡ =j>e,mod(ab) the last part of the proof of Theorem 2.1 also demonstrates

thatKP = (b,e + va').    ■

Remarks. (1) The same argument works even if Jv is not a complete intersection,

provided the resolution has an associative DG structure.

(2) The result can be viewed as showing that the phenomenon of Remark 2.2(a) is

typical (if £ = m R and (a) is already a complete intersection).

3. The /c-algebras A(l, t) and B(r). Throughout this section k is a fixed field with

characteristic not equal to 2. The characterization assumption is made only to

guarantee that minimal free resolutions of codimension four Gorenstein /c-algebras

admit associative DG structures. We iterate the "big from small" construction of

[23] to define codimension four Gorenstein /c-algebras A(l, t) and B(r) and we

produce their minimal free resolutions. In the notation "/ " represents the number of

general double links and "t" refers to the generic codimension three Gorenstein

algebra with which we start.

Fix an odd integer t > 3 and let Y be the t X t alternating matrix with inde-

terminate entries y¡¡ for i < f. Let J be the ideal generated by the maximal order

pfaffians Pf,(T), 1 *£ i; < t, of Y together with one more indeterminate w in the ring

R(0, t) = klY, w], and let ^4(0, t) be the codimension four Gorenstein algebra

R(0, t)/J (see [4, Proposition 6.1]). Suppose that A(l, r) and R(1,t) have been

defined, and that A(l, t) = R(l, t)/I where / is minimally generated by n elements.

Let R(l + 1, t) = R(l, t)\X, v\ where v is an indeterminate and A'is an n X (g — 1)

matrix of indeterminates. Let A(l + 1, t) be the general double link of the R(l, r)-al-

gebra A(l, t) as found in Definition 2.5.

To define B(t), let R = R(0, t), and let F be a minimal free resolution of A(0, t)

in which a = [T,,..., YT, w], where Y, = (-1)'+1 Pf,(T). Let X be the (t + 1) X 3

matrix

(3.1) X =

1

0

lT+l     1

0
'22

1t+1 2

0
l23

kT+l   3

where the x¡¡ are indeterminates. As usual b = aX and we take I = (b, c + va) to be

the ideal in R(t) = RlX, t>] described prior to Proposition 2.3. Define B(t) to be

R(t)/I.
Note that A(l, t) = R(l, r)/I is not well defined as an R(l, T)-algebra because

there can be several different choices for / = (b, c + t;a) corresponding to different

choices for c. Nonetheless, by Remark 2.4 the zc-algebra A(l, t) is well defined,

independent of the particular presentation of A(l — 1, t) = R(l — 1, r)/(a) or DG

structure on its minimal free resolution. In contrast, because of the asymmetry in X

given by (3.1), the algebra B(t) does depend on the particular vector a, though by

virtue of Proposition 2.3 not on the particular DG structure on the minimal free

resolution of R(0, r)/(a).
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Proposition 3.1. Let I s* 0 and t > 3 be integers with t odd.

(1) 77te k-algebra A(l,r) (respectively B(t)) is well defined, Gorenstein, and in the

linkage class of a complete intersection. As a quotient of R — R(1,t) (respectively

R(r)), it has codimension four.

(2) The minimal resolution of A(l,r) (respectively B(t)) by free R-modules admits

an associative DG structure.

(3) Let 9 be a property of local k-algebras. Assume that k has 9* and that ?P is

preserved by general double link. Then each algebra A(1,t) has 9.

Proof. (1) It is clear that .4(0, r) is well defined, and the other properties have

been noted above and in Proposition 2.7. The remarks following Definition 2.5 show

that A(l, t) have the required properties for / > 1.

Now consider the algebra B(t). We first verify that b is a regular sequence. By

Proposition A

•■t+I  2 UT+1    3

generates a codimension two prime ideal. This ideal does not contain a, + aT+1xT+1 ,

= y, + wxT+x ,. By adjoining this element and making a change of variables to

eliminate x]2 and x,3, we see that (b) is generated by a regular sequence of length 3.

By Theorem 2.1, the ideal (b, c + va) is Gorenstein, codimension four, and in the

same linkage class as (a). By Proposition 2.3 the /c-algebra B(t) depends only on a

and not on the choice of a DG structure on F.

(2) Let A = A(l, t) (respectively B(t)) and write A = R/I with R = R(l, t)

(respectively R(t)). Since 1/2 E R and grade 1 = 4, the main theorem of [22]

guarantees that the minimal free resolution of A admits an associative DG structure.

(3) The algebra A(0,3) is k. By Proposition 2.7, the algebra A(0, t + 2) is the

general double link of the R(0, T)/(w)-algebra ,4(0, t); and by definition A(l + 1, t)

is the general double link of the R(l, T)-algebra A(l, t).

Examples 3.2. (1) Let a = [Ax, A2, A3, A4] be a vector of indeterminates, X be a

4X3 matrix of indeterminates, and v be another indeterminate. Then R = R(l,3)

= kla, X, vj is a power series ring in 17 variables. The vector c is computed by

completing the following map of exterior algebras

tí
R R1 R' R

IX ||

a' .      sA' ,       A .a
R     -     RA     -*     R6     -     R4      -     R

with

S

0

-b, 0

-b,

by

0

0

-A, 0
-A, 0

0

0

0
-A,

0 0

A4 0

0 A4

2 3



514 A. R. KUSTIN AND MATTHEW MILLER

and 5 = [?3o3]- According to (2.7), c, = (-1)'+1A,.(X). The ideal (aA",c) was first

studied by Herzog in [12] and was named a "Herzog ideal" by Huneke in [18]. The

algebra A(l,3) = R(\, 3)/(a A', c + va) is the versal deformation of k\a, X}/(aX, c).

(2) The algebras A(\, r) and their minimal free resolutions have been given in [24,

Theorem 2.1 and 20, §4] where a = 3 in the notation of that paper.

(3) It is not difficult to check that R(3) = R(0,5)[[x4]] and B(3) = A(0,5)Ix41].

(4) In [24, Example 4.2] we considered algebras, which we shall here denote B'(r),

that turn out to be essentially the B( t ). In [24] we used (after a change of variables)

(3-2) X =

1

kT+l    1

0
V22

vt+1  2

0
x23

1 t + 1  3

whereas here in constructing B(t) we have used X as in (3.1) with x-, = 0 for

j — 2,...,t. So it is not surprising that B'(t) s B(t)Ix2],...,xt]j as /c-algebras. It is

often easier to prove properties for B'(t) than for B(t) due to the simpler block

decomposition of X. The claimed isomorphism is a consequence of the following

slightly more general result.

Lemma 3.3. Let a be a 1 X n matrix which minimally generates a grade g Gorenstein

ideal in a Gorenstein local k-algebra R. Let X' = [x2,...,x„] and Z = (z¡j), with

2 ^ i < n and 2 =£y =£ g — I, be matrices of indeterminates. Let X\ = [x2,... ,xr] and

[xr+„... ,xn]for r fixed, 1 < r *s n. Set S = Rl X, Z], T = RlX2, Z],A

M =
1 0

z\
M' =

1

A,

0

b = a M, b' = a M', and assume that b and b' are regular sequences. Use (2.7) to define

c (respectively c') as the last map from the Koszul resolution of S/(b) (resp. T/(b')) to

F® S (resp. F ® T). Let A = 5[ul/(b,c + ua) and B = 7lt>]]/(b',c' + va). If

there is a k-algebra automorphism 8 of RlX\J such that 8(ax) = a, + J,r¡=2aixj and

8(üj) = üjforj = 2,...,n, then A and ß[A,] are isomorphic k-algebras.

Proof. Let a' = 8(a) and observe that these vectors generate the same ideal in 5.

In fact, a = a'N and M' = NM where A' is the n X n invertible matrix

zV

1

-*,

0

0

If we take \px = N, \pg_x = (A7-1)', and the other \pi = id, then as in Remark 2.2 we

have A = Slvj/(b,c + va) = Slvj/(b,d + ua') where d = cN'\ Note that d and c

satisfy the hypothesis of Proposition 2.3. We can extend 8 to an automorphism of S

by taking it to be the identity on A2 and Z. Then 8~](b) = 8'\a'M') = aM' = b'

and thus A = Slv}/(b', 8~\d) + va) ~ 5lul/(b',c' + ua) by Proposition 2.3. The

last algebra is precisely B ® T{ A,] = 5[ Aj.    ■
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In the application r = t, and 8 is the automorphism of klY, w, x21,... ,xTl] given

by fixing w and the xn and sending the alternating matrix Y to NYN', where

N =

1 0 ■••0

't-1

One can check that 0(YX) = YX + Ti=2 YtxiX, and 8(Yj) = Yj for 2 <j < r.

The rest of this section is devoted to expressing the minimal resolution of

A(l + 1, t) in terms of the minimal resolution of A(l, t). Lemma 3.4 is a fact about

resolutions of any codimension four local Gorenstein algebra. The result is implicit

in [21 and 22]. We present the most direct proof.

Lemma 3.4. Let A

Gorenstein ring R. Let

R/I be a codimension four Gorenstein quotient of a local

F:0 ^R^F, R

be a (not necessarily associative) DG algebra which is a minimal free resolution of A. If

ex,...,e„is a basis for Fx, andfx ,.-.,fm is a basis for F2, then there is a basis g,,..., g„

for F3, and an invertible symmetric matrix s such that:

(\)dA = d\.
(2) d3 = sd'2.

(3) If p = 2 p,ei E Fx and q = 2 q,g, E F3 are viewed as column vectors, then

P<1 = 2 p¡q, = p'q.
(4) If p and q in F2 are viewed as column vectors with respect to the basis /,,... ,/m,

then pq = -p's']q.

Proof. The existence of the basis g,,... ,g„ and assertions (1) and (3) follow from

[4] as discussed at the beginning of §2. Since the multiplication F2 ® F2 -> R is a

perfect pairing there is a basis /,',... ,f'm for F2 such that ff! = -8,j. Iff = 2s,7jf,

then the change of basis matrix s = (s ¡A is clearly in vertible and symmetric. Both (2)

and (4) follow by direct computation.    ■

Proposition 3.5. Let S be a commutative ring and let

tí b ,       b
0

(3.3) lc' 1AÍ I X

0
sA' .      .        A

S"      _»     s2"~2     ->     S"

be a commutative diagram with exact rows, where s is an invertible symmetric matrix,

B is alternating, cX = 0, and M's~lM = 0. Let T = S[v] where v is an indeterminate,

and let F be

d*
0- T^T 71 + 3 -271 + 4 -77 + 3
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with i/, = [b, c + ua], dA = d[.

vl3    B    M's

-X    0
's-]

A
and   d-.

0

/

0

d'2.

Then F and F ®TSlvj are both acyclic.

Proof. Apply Theorem 1.3 of [23] to the commutative diagram

Ü

0

I

S
I -1

5

I

S"
X'

I

S2„-:

iM's-

53

1

S"
le

S

where the remaining maps are indicated in (3.3). Since all the vertical composition

maps are zero, we can take all A, = 0 in the cited theorem. The complex F ®S[V] Slvj

is acyclic because F is, and the inclusion 5[u]^5[[u]is flat.    ■

We now record the minimal resolution of A(l + 1, t) in terms of the minimal

resolution of A(l, t). Let F be an associative DG algebra which is a minimal

resolution of A(l, t) by free ^-modules for R = R(l, t). By Lemma 3.4 we can select

bases so that there is a symmetric invertible matrix s, and F has the form exhibited

in the lower row of (3.3). Let X be an n X 3 matrix of indeterminates, b = a A",

S = Rl A], and K be the Koszul resolution of S/(b), with bases chosen so that

B

0

0

0

If a: K ®R S is a map of associative DG algebras represented by the matrices A, M

and c', then since KA = 0 and the multiplication on F satisfies (3) and (4) of Lemma

3.4, we see that cA= 0 and M's~]M = 0. It follows that Proposition 3.5 gives a

resolution of A(l + 1, t) by free 5 lu] = R(l + 1, r)-modules. Each entry of M is in

(Xjjj1 and each entry of c is in (x, )3. Hence all the matrices involved have all entries

in the maximal ideal of R(l + 1, t), and the resolution is minimal.

The identical construction applied to A(0, r) with X as in (3.1) gives a resolution

of B( t ). The resolution is not minimal because one entry of d2 and one entry of d3

are units. By induction on / we have established

Corollary 3.6. (1) If A(l, t) = R(l, r)/J, then p(J) = 31 + T + 1.

(2) IfB(T) = R(r)/U, then p(J) = 3 + t.

4. Preservation of rigidity under linkage. We show that rigidity is preserved under

"general" linkage (Theorem 4.2), and consequently that the "most general" double

link of a rigid Gorenstein algebra is still rigid (Remark 4.3.). Note this is not the

general double link of Definition 2.5. Our goal, achieved at the end of §5, is to show

that the algebras A(l, r) and B(t) are rigid. The following result shows that
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infinitesimal deformation passes over a linkage. We fix an algebraically closed field

k. Let k' — k[e]/(e2) be the ring of dual numbers, and for a Zc-algebra R, let

R' = R®kk'.

Lemma 4.1. Let R be a Gorenstein local k-algebra, J a perfect grade g ideal of R,

and z C J a length g regular sequence. If I is linked to J by z and R'/J' is a

deformation of R/J to k', then there is a length g regular sequence i! in R' and a

deformation R'/I' of R/I such that T is linked to J' by i! and R'/(z') is a deformation

ofR/(z).

Proof. Let d be a vector whose entries minimally generate J and let a, be a matrix

with z = da,. Let G and F be the minimal resolutions of R/(z) and R/J (respec-

tively) by free Ä-modules. Since / is linked to J by z, we have / = (z): J and by

Theorem 1.1a minimal resolution of R/I is obtained by taking the mapping cone M

of the dual of a comparison map:

G      •••      -»     G,      -     R

la I a,

F       •■•      -      F,       t     R

Since R'/J' is a deformation of R/J, there is a row vector £ with entries in R so

that J' is generated by d + e£, and there is a resolution F' of R'/J' by free

Ä'-modules with F' ®k>k = F. Let z' = (d + e£)a,, and let /' = (z'): J'. It is clear

that /' is linked to J' by z' and that R'/(z') is a deformation of R/(z). We must show

that R'/I' is a deformation of R/I. Let G' be a resolution of R'/(z') by free

Ä'-modules which lifts the resolution G of the complete intersection R/(z). Let a':

G '-.F'

-     G\        *-*      R'

1«,

d + FÍ
...      ->     F{        -.       R'

be a map of resolutions which lifts a: G -» F where G¡ = G, ®R R' and F[ = F¡ ®R R'.

The mapping cone M' of the dual of a' is a resolution of R'/I' and M' ®k-k = M. It

follows that R'/I' is a deformation of R/I.    ■

Theorem 4.2. Let A be a collection of indeterminates and a be a 1 X n matrix which

generates a perfect grade g ideal of S = klAj. Suppose S /(a) is a rigid k-algebra. Let

X be the n X g matrix

where Y is an (n — t) X g matrix of indeterminates and 0 *£ i < g. Assume that

z = aX is a regular sequence in R = 51Y]. 7/7 « linked to I = (a) Ä ¿y (z) /« /?, i/ze«

/?// w a r/'gz'i/ k-algebra.
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Proof. Suppose R'/J' is a first order deformation of R/J to k'. By Lemma 4.1

there is a regular sequence z' and a deformation R'/I' of R/I such that 7' is linked

to J' over (z'). Since 5/(a) is rigid, so is R/I = (5/(a))[7] and hence R'/I' must

represent a trivial deformation; that is, there is an isomorphism of /c'-algebras 8:

R/I ®k k' -» R'/I' that is the identity on the fiber e = 0. We view 8 as a /c'-auto-

morphism of R' = k'lA, Y] such that 8((a)R') = 7' and f?|e=0 is the identity on

klA, 7] (see Proposition C). Therefore, if we ignore 8(Y), there is a /c'-algebra map

6: S' -> /?' which has the properties:

(1) for each 5 £ 5, there is an r E R with 0(s) = s + er;

(2) the image a' = a + e£2 = 0(a) of the vector a generates the ideal I'.

Let

Sm^S"-*S

be a presentation. Since (z') c (a'), there are matrices M and AT with entries in R

such that z' = a'(Af + eM'). Since z' = z + e|, and a' = a + e£2, we see that

a(M — A") = 0; thus M differs from X by z727Y, for some matrix N. On the other

hand, |2 represents a deformation of R/I; hence è,2d2N = aN' for some W, and we

may modify M' in order to assume M = X. Thus we have z' = a'( A" + eM') where

AT has entries in R; and there is an invertible matrix U with entries in R' such that

z'U
0

T+eFJ

for some matrix Y'. Certainly (z') = (z'U) as ideals (but not as row vectors). The

extension of 6 to R' — i?' which sends j»,- ■ toyu + ey¡¡ also sends (a) to (a'), (z) to (z')

and J = (z: a) to (z': a') = J'. Therefore, R'/J' is a trivial deformation of R/J, and

we have shown that R/J is rigid.    ■

As an immediate application of the theorem, we recover the rigidity of "special"

almost complete intersections proved by Herzog [13, Satz 3.4d] and De Carli and

Gabelli [9]. In this context n = g, a = [Ax,... ,Ag], t = 0, and J is the almost

complete intersection (a A', det A").

Remark 4.3. Take 5, a, Y, X, z and J as in Theorem 4.2. Assume also that (a) is a

Gorenstein ideal. Then by Theorem 1.2 we may assume J = ( w, z) for some w in

51T]. If u|,..., vg are new indeterminates and

[w,z]
• u„

is a regular sequence, then Theorems 4.2 and 1.2 guarantee that R/K is a rigid

Gorenstein /c-algebra, where K = (e): / and R = 5[T, u,,... ,u ].

In the next section we show that with one additional hypothesis, most of the

indeterminates u, and some of the indeterminates y¡¡ are redundant.

5. The algebras A(l, r) and B(r) are rigid. Throughout this section A denotes a

finite collection of indeterminates, k is an algebraically closed field, 5 = k[A\, and a

is a 1 X n matrix that minimally generates a grade g Gorenstein ideal in 5. We
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assume that 5/(a) is rigid. Let X be an n X (g — 1) matrix of form

0

Y

where 0 « i « g — 1 and Y is an (n — t) X (g — \) matrix of indeterminates.

Assume that b = a A' is a regular sequence in R = 51 A"]. (If i = 0 this is true by

Proposition A.) Denote the minimal free resolutions of R/(a) and R/(b) by F and G,

respectively. Define a comparison map a: G -> F as described just before (2.7). The

matrix c of (2.7) completes diagram (2.2). Let I

indeterminate.

(b, c + vga), where vg is an

Theorem 5.1. With the notation and hypotheses made above, the algebra R\vg\/I is

rigid.

Proof. In Theorem 4.2 the matrix X has an extra column; in the case i = 0 this

makes a A the "most general" regular sequence of length g in (a). The present

construction of I lacks these extra variables, so we simply adjoin

[0,...,0, Z,,...,Zn_,]' to X as the last column, and we set y = 11Z[at+iZ¡. By

hypothesis b is a regular sequence in (a), so grade(a)/(b) = 1. By Proposition A, we

have a regular sequence b, 2"=, a¡T¡, where the T: are indeterminates. Observe that

1 n.T.•j j2 ajTj- 2 b/Tj= 2 a,+t\Tj+t
7=1 7=1 <=' \ 7=1 /

is a regular element in (a) on RlT}/(b). After a change of variables it is clear that b,

y is a regular sequence in (a) on Ä[Z]. By Theorem 4.2 we conclude that RlZj/J is

rigid, where J = (b, y): (a). If we apply — ®RRlZ] to diagram (2.2), then by

Theorem 2.1 there is an element w in RlZ} such that IR\Z, ug] has the form

(b, w + vgy): y in RlZ, u ]. In fact, J = (b, y, w) and w = ag as in (2.3). In that

diagram the map a from K = K(b, y) to F is the natural extension of our original

map a: G -» F. In particular,

w
I «£/,<•

4ei2{---(eig)---))M(ix,...,ig;l,...,g)

where

M

Z\

Now let u,,..., u._, be new indeterminates and

e= [b, w, y]
■ u„

If e' = [bx + vxy,... ,Z7g_, + vg_xy], then [e', y] generates an ideal of height g in a

local ring and hence is a regular sequence. The polynomial w + vgy is regular on

(RlZ, u„...,ug_,]/(e'))[ug] and by flatness still regular on RlZ,Vj/(e'). (Here

V= {«,,...,»}.) Since e is thus a regular sequence, Theorem 4.2 implies that

RlZ, Vi/I' is rigid, where I' = (e): J.
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To show that B = Rlvq\/I is rigid, it will suffice to show that

5[i>„...,t>g_,,Z] ̂ Riz,vyr.

Define an 5[Z, Fj-algebra automorphism 8 of RlZ, V} by setting 8(yij) = yu +

ZtVj. Observe that 8(y) = y and 6(b¡) = b¡ + yv¡ = e¡ for 1 < z < g - 1. Also 8(M)

differs from M only by column operations; hence 8(w) = w. Consequently,

8(I)=8[{b,w + vgy):y]=(e):y = I'.    ■

Corollary 5.2. The general double link of a rigid Gorenstein algebra is rigid. In

particular each A(l, r) is rigid.

Proof. The first assertion is simply Theorem 5.1 with t = 0. The rigidity of A(l, t)

follows from this fact together with Proposition 3.1(3).    ■

Corollary 5.3. Each algebra B(r) is rigid.

Proof. Since B'(t) = B(t)Ix2X,.. . ,xTl] (see Example 3.2) it suffices to show that

B'(t) is rigid. Since A(0, t) is rigid, and A as in (3.2) has the requisite form for

application of Theorem 5.1, we conclude that B'(t) is rigid.    ■

6. Regularity conditions. In this section we show that the algebras A(1,t) and B(t)

are regular in codimension six. Since these algebras are local and Gorenstein, they

are consequently normal domains. Our technique is to show that in the presence of

rigidity the complete intersection locus and the regular locus coincide. The following

condition on the local number of generators of an ideal 7 in a ring R is central to the

discussion.

(LG,) V-(Jv) ^ rnax{g,ht £ — i)    for all primes £ containing 7.

If 7 is a grade g ideal in a Cohen-Macaulay ring R and 7 satisfies (LG,), then

A = R/J is a complete intersection at all primes of height at most i. We indicate

how the property (LG,) for i *£ 4 and a somewhat weaker one for i < 6 pass across

various kinds of double links, including the general double link. The section

concludes with several results concerning graded algebras associated to R and 7 in

the context that A = R/J is in the linkage class of a complete intersection. As usual

we fix g > 3 and k an algebraically closed field.

The following theorem is of interest in a wider context than this section. It is

known (see Ulrich [29, §4]) that if R = S/I is reduced (with 5 regular local as

below), then Rv is regular if and only if Rv is a rigid complete intersection. We

remove the hypothesis that R be reduced, but we impose the additional assumption

that R be Gorenstein. The proof—but not the statement—of this result is contained

in [20, §10], where, however, the unnecessarily strong hypothesis of an associative

DG structure is imposed. For the sake of completeness we reproduce the brief

argument.

Theorem 6.1. Let S - k[Xx,...,Xm](X) or klXx,...,Xm\ and let I be a grade g

Gorenstein ideal in 5. Assume that 5/7 is a rigid k-algebra. If P is a prime ideal

containing I such that (S/1)P is a complete intersection, then (S/I)P is regular.



DEFORMATION AND LINKAGE OF GORENSTEIN ALGEBRAS 521

Proof. By [4] any minimal free resolution of 5/7

d2     rf,

F:0^S->Fg_x^ ••• ->F,^S

may be given a homotopy associative DG algebra structure. We may assume that Fx

has a free basis {x,,...,x„} such that IP = (dx],...,dxg)P. We claim that the

element x,(x2( • • • (xg))) of Fg = S is not in P. By passing to SP we have F = K © H,

where K = A(2 5x,) is the Koszul resolution. The DG algebra on F may be

restricted to give a DG algebra on K; both this algebra and the exterior algebra

induce the same algebra on K ®S(S/P)P. Thus x, A • • • Axg = x,(x2 • • • (xg) • ■ ■ )

modulo P. The exterior product is a unit in Kg = Sp; so therefore is x,(x2( • ■ • (xg))).

By the homotopy associativity, any other association of the elements x,,..., xg

differs from x,(x2( • • • (xg))) by an element of 7, and thus is not in P. Let f:

Fx -» F = S be the map which sends x to

x(x,(x2(.--(x,(.-.(xg)))))).

The differential property shows that the image of fd2 is in 7 and thus/ represents a

first order deformation of 5/7. Rigidity implies that for each i the image of //

modulo / is in the column space of j-, the Jacobian of dx. But we have already

established that in (S/P)P

f(xi) = [0,...,ui,0,...,0, *,...,*]

with u¡ a unit in the z'th component for 1 < i ' < g. Thus rank(^) > g at P and

(S/I)P is regular by [26, §29].    ■

Corollary 6.2. Let K be a grade g Gorenstein ideal in S = k[Xx,. ..,Xm](X) or

klXx,...,Xm\. If S/K is rigid and K satisfies (LG,), the S/K is a normal domain.

Proof. The condition 52 holds since S/K is Gorenstein. The condition Rx follows

from Theorem 6.1. Hence S/K is a normal ring, and it is a domain since it is local.

■

The following result will enable us to pass the condition (LG4) from A(l, t) to

A(l+\,T).

Theorem 6.3. Let a be a \ X n vector which minimally generates a grade g

Gorenstein ideal J in a Gorenstein local ring R. Let X be an n X (g — 1) matrix of

indeterminates and c be a 1 X n vector as in diagram (2.2). Let K = (aX,c + va) be

the grade g Gorenstein ideal doubly linked to (a) in S = RlX, u], as in Theorem 2.1.

Let i be an integer, 0 «S i < 4, and assume that J satisfies (LG,) in R. Then K satisfies

(LG,) z'zz 5.

Proof. By Proposition A we know b = a A" is a regular sequence of length g — 1

in Rl A]. We can choose an element y in 7 so that y is regular on Rl A]/(b). Let

7 = (b, y): J. By the proof of Theorem 2.1, particularly (2.4), there exists an element

w in Rl A"] such that / = (b, y, w), K - (b, w + vy): I, and

(6.1) wa,=yc,   mod(b)



522 A. R. KUSTIN AND MATTHEW MILLER

for 0 < z «s h. Let P be a prime in 5 that contains K. If P does not contain I, then

KP = (b, w + vy)P is a complete intersection. We assume P contains 7 but does not

contain 7. Then IP = (b, y)P is a complete intersection. Since KP is linked to IP in

SP, we know p(KP) *¿ g + 1. But KP is a codimension g Gorenstein ideal, so

p(KP) = g by Kunz [19]. We assume, henceforth, that P Z) I + J + K, and we let

£ = P n R, noting that £ D 7. Let i = ju(7p). By (LG,) we have

(6.2) g ^ í < max(g, ht £ - i) « max(g, ht P - i].

After possibly reindexing and by introducing a common denominator, we may

assume there is an element a E JR\£ such that a' = [a,,...,a,] generates 7P and

a = a'^lor't/] for some /X(n-i) matrix U with entries in /?. Let c' = [cx,...,ct].

By (6.1)

ja[c,+ i +vai+x,...,c„ + van] =(w + vy)a[a,+ ],...,an]

= (w + vy)a'U =y(c' + va')U

modulo (b). Since (b, y) is a regular sequence we conclude Ka = (b,c' + ua')a and

hence

(6.3) p(KP)^g-l + t.

Let X' be the i X (g - 1) matrix [a7, | Í7]X. Then

(6.4) ab = aaA"=a'A".

Let Ir( A") be the ideal in 5 generated by the r X r minors of A".

Claim 1. If P contains Ir(X'), then ht P > ht £ + (i - r + l)(g - z-).

View //A") as an ideal in ÄJA"]. Observe that the entries X[¡ of X' are

algebraically independent over Äa/£. In fact, (Ä„/£)[X'iJf Xlk] = (Ra/p)[X], where

1 *£,j,k< g — 1, 1 < z < i, and i + 1 < / < n. By the theory of determinantal ideals

[17, Theorem 1, Corollary 4], (Ir(X') + £)/£ is a prime ideal of height (t - r + 1)

X(g - r) in (*„/£)[*], so ht £ + (i - r + l)(g - r) < ht(7r(A") + £). The map

R[X]a -* RlX, u]a = 5 is flat, so ht P 3= ht(P n /?[*]„) > ht(7/A") + £), which
establishes the claim.

Claim 2. If P does not contain Ir(X'), then p(KP) < g — 1 + i — r.

Some r X z- minor of A" lies outside of P. After possibly reindexing, we may

assume the upper left-hand minor of A" is not in P. If we multiply (6.4) by w + vy

and use (6.1) together with the fact that (b, y) is a regular sequence, then we see that

each entry of (c' + ua')A" is in (b)P. Hence we can solve for c\ + va\,...,c'r + va'r

(in SP) in terms of c'r+] + va'r+x,...,c', + va't, and b. It follows that

KP = (b,c'r+] +va'r+x,...,c¡ + va',)P

and ^(Kp)^: g — 1 + i — r, as claimed.

Estimation of p(KP ) now boils down to a case analysis. There are three possibili-

ties:

(i) ht £ - z < ht P - i < g = i.

(ii) ht £ - z < g = i < ht P - i.

(iii) g < i « ht £ - i < ht P - z.
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In each case one finds an index r such that P contains 7r+1(A") but not 7r(A"') and

applies the claims established above. Since A" is i X (g — 1), such an index must

exist in the range 0 < r =£ g — 1. To see why the restriction i < 4 is needed, consider

case (ii) with 1 «s r «£ g - 3. From the two claims we obtain ht P > ht £ +

(g- r)(g~r- l)and

p(KP) < 2g - 1 - r «s 2g - 1 - r + (g - r)(g - r - 2) - 3

= g+ (g~r)(g-r- l)-4

« ht p + (g - r)(g - r - 1) - 4 *S ht P - i.

The other arguments are similar. In a few cases one obtains only p(KP) < g + 1,

but by Kunz's theorem this implies p(KP) = g.    ■

As noted above if K satisfies (LG,) then KP is a complete intersection at primes P

such that ht P =s g + /'. This formally weaker property (which, however, is all we

need for application of Theorem 6.1) is preserved over double link as in Theorem 6.3

up through i < 6. In fact, we can show this for the more general matrix X that

appears in §5 and the construction of B(t).

Theorem 6.4. Let a be a 1 X n vector which minimally generates a grade g

Gorenstein ideal J in a Gorenstein local ring R. Let Y be an (n — i) X (g — 1) matrix

of indeterminates, 0 «s i «s g — 1,

X =
0

and c be a vector as in (2.2). Assume that b = aA' is a regular sequence. Let

K = (b,c + ua) in S — RlY, v\, and i be an integer with 0 < i < 6. IfJv is a complete

intersection for all primes £ of R containing J with ht £ =£ g + i, then KP is a complete

intersection for all primes P of S containing K with ht P =£ g + z.

Proof. Suppose P is a prime of 5 containing K with ht P *£ g + i. As in the proof

of Theorem 6.3 we need only consider the case that £ = P n R contains 7. Then

ht £ < g + i and 7P is generated by g of the elements of a. Let us form a minimal

generating set by taking as many possible, say /, from {a,,...,a,} and the other

m — g — l from {af+1,...,a„}. After reindexing we have 7„ = (a')p where a' =

[a„...,a„ ai+,,...,ar+m] and ay G ((a,,...,a,) + £7)p for; = /+ l,...,i. Hence

there exists a £ /?\£ and matrices I/,-, with entries in Ä for all i and entries of U2 in

£, such that aa = a'(7 for

U =
ai,

0 u
0

«7„

^3

i/4

Let X' = C/A". By Lemma 2.8 there is a 1 X g vector e with entries in R' =

RlXlPnRlx] such that KP = (b,e + ua') and eX' = ßb for some ß E R'. If ß + av

is not in P, then (e + ua')A" = (ß + <xv)b implies that KP — (e + ua') is a complete

intersection. Henceforth we assume ß + av is in P.

Claim. If / + 1 «s r *s g and P contains Ir( X'), then

ht P > ht £ + 1 + (g - r + l)(g - r).
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}      m

}     n — t — m

then Ir(X') = arIr_,([Y3,Y5]) modulo (£, T,, Y2, Y4, Y6). This ideal has height

(m - (r - I) + \)(g - 1 - / - (r - I) + 1) = (g - r + l)(g - r) in

(Ra/p)[Y3, Y5] by the same arguments as before. Since ß + av is in P but not in

(P n R[X]a)Sa, the estimate of Claim 1 above can be improved by + 1.

If P actually contains I 2(Xr), then ht P > ht £ + 7 s* g + 7, contrary to the

hypothesis that ht P < g + 6. Some (g — 2) X (g — 2) minor of X' therefore be-

comes invertible in SP, and we can use the equation (e + ua')A" = (ß + av)b to

solve for g — 2 of the e¡ + va'¡ in terms of the remaining two entries and b. Thus

p(KP) < g + 1, but once again by Kunz we conclude KP is a complete intersection.

■

Corollary 6.5. (1) Let A — R/J be a codimension g Gorenstein quotient of a power

series ring R over k. Let S = RlX, u] and B = S/K be the general double link of A as

in Definition 2.5. Assume that A is a rigid domain regular in codimension i for i *£ 6.

Then B is a rigid domain regular in codimension i. In particular, the algebras A(l, t)

satisfy (R6).

(2) Each algebra B(t) satisfies (i?6).

Proof. (1) Apply Corollary 5.2 and Theorems 6.4 and 6.1 to B, and Proposition

3.1 to A(l, t).

(2) Since B'(t) — B(r)lx2l,.. .,xT]J (see Example 3.2) it suffices to show that

B'(t) satisfies (Ä6). Now B'(t) is constructed from A(0, t) by using X as in

Theorem 6.4 with i = 1; since A(0, t) satisfies (R6) it is a complete intersection at

primes of height at most six, and so therefore is B'(t). By Corollary 5.3, B'(t) is

rigid. Application of Theorem 6.1 concludes the proof.    ■

Remark. In light of Proposition 2.7 this result includes [4, Proposition 6.1] when

g = 3. For / = 1 it recovers, and improves, our Theorem 2.7 and following remarks

in [24].

For our final application of Theorem 6.3 we recall several definitions. The

symmetric algebra of an Ä-module M is denoted SymR(M). The Rees algebra of an

ideal 7 is <&(/) = R © 7 © I2 © • • • and gr,(R) = ®I"/I"+X is the associated

graded algebra. If a generates I, then H¡(I; R) denotes the homology of the Koszul

complex on the given generators of I. If H ¡(I; R) is a Cohen-Macaulay Ä-module

for one generating set Of 7, then it is a Cohen-Macaulay module for any generating

set.

Corollary 6.6. If R = R(l, t) and A = A(l, t) = R/I, then:

(1) The R-algebras SymR / and '31(7) are Cohen-Macaulay and isomorphic.

(2) The A-algebras SymA(I/I2) and gr,(R) are isomorphic Gorenstein normal

domains.

If we partition X compatibly with U,

x-

I, 0

0 /,_

T,      Y

0

0
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(3) The Koszul homology modules H ¡(I; R) are Cohen-Macaulay for all i > 0.

(4) The symbolic power Pk) is equal to Ik for all k 2* 1.

Proof. Inasmuch as each A is a domain in the linkage class of a complete

intersection and / satisfies (LG4), the first three assertions are a direct application of

Huneke's version [18, Theorems 1.16, 1.18 and 1.14] of a theorem due to Herzog,

Simis and Vasconcelos [14]. The last statement follows from (2).    ■

7. Resolution invariants; classification of A(l, t) and B(t) into distinct Herzog

classes. Let k be an algebraically closed field and P be a power series ring klXj in

finitely many indeterminates Xx,...,Xm (we do not fix m). In this section we

consider only algebras of form A = P/I and we denote the collection of all such by

(&. Following Herzog [13], we write B~A if there is an algebra C in 6E which

contains regular sequences x and y such that A = C/(\) and B = C/(y). This

relation is preserved under power series extension (BlYx,..., Tj ~2?), specializa-

tion by a regular sequence (B ~ B/(z)); and if 8: fc|[e1,...,ej->5'isa formal

deformation of B, then by Proposition B we conclude that B' ~ B since B =

^'/(regular sequence).

Herzog [13] showed that ~ is an equivalence relation on a certain subclass §

consisting of the "strongly unobstructed algebras" in &. An algebra B = P/I is in S

if B is Cohen-Macaulay, reduced, and I®PKB is a Cohen-Macaulay ß-module,

where KB is the canonical module of B. We write B E [A] if A and B are in § and

B ~ A. We call [A] a Herzog class.

Proposition 7.1. If A = P/I is reduced and in the linkage class of a complete

intersection, then A is in S. In particular, each algebra A(l, t) and B(t) is in S.

Proof. By hypothesis, A is Cohen-Macaulay. If £ is a minimal prime of A, then

since A is reduced, Avis regular and hence a complete intersection. In other words A

is a generic complete intersection. Buchweitz [5, 6.2.11] has shown that under these

conditions Tor("(A, KA) = I ®PKA is a Cohen-Macaulay A -module.    ■

If B is in S, then T2(B/k, B) - 0 (see Herzog [13, Satz 1.4]). In particular, any

first order deformation of B is unobstructed and may be extended to give an analytic

deformation k{Tx,.. ,,Tsl -> B' of B with B' in §. If £„.. .,£s generate T\B/k, B)

as a 5-module and B' is obtained from B by deforming in the directions £,,...,£s,

then B' is a rigid /c-algebra in [B]. (See the proof of Herzog [13, Satz 2.3(b)] and

recall that B' ~ B since B = ^'/(regular sequence).) The following lemma enables us

to show that there is a distinguished representative of a class [B], the so-called

"generic" algebra for [B]. Recall that the embedding dimension of A is defined to be

p(mA) = dim^m^/m^) and the embedding codimension, emb.cod. A, is defined to

be p(mA) — dim A. If p(mA) - m, then A can be written as P/I with dim P - m

and ht / = emb. cod. A.

Lemma 7.2. Let A and B be rigid algebras in S. If B E [A] and s = dim B - dim A

^0,thenB=AlYx,...,YsJ.

Proof. See the proof of 2.3(d) in Herzog [13].    ■
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Definition 7.3. If A is a rigid algebra in § of smallest embedding dimension

among all the rigid algebrasen [^4], then A is called generic for the class [.4].

The reason for the terminology is that any other algebra in [A] is a "specializa-

tion" of A, in a sense made precise in the following proposition. The last two points

are needed because it is the derivation property which we prove is preserved under

suitable linkage, rather than the generic property per se.

Proposition 7.4. Let A and B be rigid algebras in [A].

(1) If A is generic, then B = AfYx,..., YJ.

(2) 7/,4 is generic and C is any other algebra in [A], then C = AlYx,..., Y,\/(regular

sequence).

(3) If the image of every k-derivation d: A -» A is contained inmA, then A is generic.

(4) If char k = 0 and A is generic, then the image of every k-derivation d: A -> A is

contained in mA.

Proof. Statement (1) follows from the definition and Lemma 7.2.

(2) By the discussion following Proposition 7.1 there is a rigid algebra C that

specializes to C by a regular sequence. Apply (1) to C.

(3) If A is not generic, then there is a rigid algebra C in [A] with smaller

embedding dimension. By the lemma A = C[ Y,,..., Yj. The image of the derivation

3/3 Y, is not contained in m^.

(4) If d: A -> A is a /c-derivation with d(z) a unit for some z E A, then by Lipman

[25, Theorem 2], there is a subring A' C A such that A = A\z\. Then A' is a rigid

algebra in [A] with smaller embedding dimension than A. Consequently, A is not

generic.    ■

Remark 7.5. If A = P/I then there is a natural inclusion Derk(A, A) =•»

Derk(P, A). Since A is a finitely generated ^-module we have:

(1) Given a,,..., am in/I, there is a /c-derivation d: P -» A with d(p) = 23/za,/3A,.

(2) If d: P - A is a /-derivation with d(X,) = a„ then d(p) = 2 3/>a,/3A",,

(3) A derivation d E Derk(A, A) is in mA Derk(P, A) if and only if the image of d

is contained in m^.

(4) Any derivation d E Derk(A, A) can be viewed as a derivation D: P -» P such

that D(I) CI.

From our point of view, however, the generic algebra of a class may not in and of

itself be the appropriate object to study. We are interested in classifying algebras of

fixed codimension g; i.e. algebras of form P/I with ht 7 = g (and especially

Gorenstein algebras with g = 4). The generic algebra for all complete intersections,

for instance, is simply k, which lacks the structure (e.g. finite free resolution together

with associated invariants) that a particular presentation P/I — k carries.

Definition 7.6. Suppose A is in & and emb. cod. A «£ g. Write A - P/I with

ht I — g. Let A. be the graded /c-algebra Yor¿(A, k). Then define

8X(A) — dimkKxKx,   82(A) — dim^ A,A2,

80(A) = p(I) = dimk(l/rr.PI),   v(A) = p{(l/I2)*).
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Here p(M) is the minimal number of generators of the /"-module M, and -* =

Hom,,(-, A). None of these definitions depends on the particular representation

P/I as long as ht / — g.

The following lemma enables us to compute these invariants for all algebras in a

given class if we can compute them for a particular algebra in that class.

Lemma 7.7. Let B be an algebra in § with emb. cod. B «s g. Then [B] has a generic

algebra A with emb. cod. A = a =s g. There are power series rings P = k [ A,,..., Xm ]

and R = klTx,...,T\ containing ideals I and J, respectively, such that A =P/I,

B = R/J, and ht / = ht 7 = g. Moreover, there is a local k-algebra map P -» R such

that B = R ®PA.

Proof. By the discussion following Propositions 7.1 and 7.4 we know there is a

generic algebra A and B = Al Y,,..., Yj/(z) where Y,,..., Y, are indeterminates and

z = Zy,... ,z. is a regular sequence. Then

a = emb.cod. A = emb.cod. A\YX,..., YJ *£ emb.cod. B «S g

and A = P'/T, where P' = klXx,...,Xj, ht I' = a, and 7' C (A")2. Thus we can

write/I = P/I with P = k\ A,,... ,Am], 7 = (/', Xn+X,,. .,Xm), and m - n = g- a.

Set R' = P'l Y,,..., YJ. Let us suppose (after possibly reindexing) that z,,... ,zr are

in (m^, Y,,..., Y,)2 and that zr+],...,zp begin a minimal generating set for

(mA,Yx,...,Yt). Lift all z, to Z, in R'. Then m^ has a minimal set of generators

(Zr+1,. . . ,Z , 71,,. . . ,7)} where n + t = p — r+l. Observe that B =

R!/(!', Z,,...,Z.) can be re-expressed as Ar|[7,1,...,r,]/7', and this is a minimal

presentation since p(mB) = I. It follows that ht 7' = emb. cod. B = r + a. If R =

klTx,. ,.,Tql with q = g-r-a + l, then 5 = R/(J', Tl+.,Tq) is the desired

presentation B = R/J. It is straightforward to define a map of /c-algebras such that

J = IRandB = R®PA.    ■

Conversely, it is easy to see that if A = P/I is Cohen-Macaulay, B = R/J with

ht I = ht 7, and there is a map P -> R such that 5 - R ®PA, then £ ~ A.

Theorem 7.8. If B is S and emb. cod. B =s g, i^e« S,(£) = 8,(/l), ó\(5) = 52(/4),

ô0(5) = 80(A), and v(B) — v(A), where A is generic for [B].

Proof. By the lemma we may assume that A = P/I and B = R/J = R ®PA with

ht 7 = ht I = g. Let F be a minimal free resolution of A over P. Since A is perfect,

the change of rings is local, and ht 7 = ht /, Hochster's theorem on generic

specialization [16, Proposition 6.14] implies that R ®PF is a minimal free resolution

of B over/?. Hence

Tor¿(A,k) = F®Pk = (F ®PR) ®Rk = Tor¿(B, k).

Consequently, St(A) = 8X(B), 82(A) = 82(B), and 80(A) = 80(B).

To prove the last assertion we note that B is reduced, hence satisfies R0, and

hence is a generic complete intersection. It follows that 7/72 is free of rank g at the

minimal primes of B, and so rank(7/72)* = g. The same observations hold for A

and /; the result follows immediately then form Herzog [13, Satz 2.3e].    ■

The »»-invariant has a particularly simple and attractive interpretation.
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Proposition 7.9. Let A = P/I be generic and suppose ht I = g. If char k =£ 0,

assume that the image of every k-derivation A -> A is contained in mA. Then

v(A) = dim P. In particular v(A) = e0(A), the embedding dimension of A, if

emb. cod. A = g.

Remark. If char k = 0 the derivation hypothesis is automatic by Proposition 7.4.

Proof. Applying Hom^-, A) to the exact sequence

//72 - Qp/k ®PA - QA/k - 0,

we obtain an exact sequence

0 - Derk(A, A) - Derk(P, A) - {i/I2)* - T\A/k, A) -* 0.

Since A is rigid, T\A/k, A) = 0, and we are done by Remark 7.5 and Nakayama's

lemma.    ■

The invariant 5, is more subtle. Let F be a minimal free resolution of A over P

with differential d, and let e,,... ,en be a basis for Fx. An element (ae,)^ — (def)ei

in Fx (with i ¥=j) is called a Koszul relation. Each of these is in Im(a"2). For a proof

of the following result see [24].

Proposition 7.10. If A = P/I with ht 7 = g, then 8X(A) is the maximum number

of Koszul relations that can be used in a minimal generating set for lm(d2), i.e. that

can be taken as columns in a matrix representation of d2.

Since we will not actually need to use 82 to distinguish the algebras discussed in

this section we omit the details of its computation. As it is sufficient to compute the

four resolution invariants for the generic algebra of a class, we must be able to

identify the generic algebra. The following result shows that the property of being

generic is preserved under general double link.

Theorem 7.11. Let R = k\Zx,... ,Zp\, A be a codimension g Gorenstein quotient of

R, and B be the special double link of A. Assume that A is generic and that

\m(ß) C mA for every k-derivation ß: A -> A. Then B is generic and Im(yS) C mBfor

every k-derivation ß: B -» B.

Proof. By definition there is a 1 X n matrix a with entries in R, an n X (g — 1)

matrix of indeterminates A", and an indeterminate u such that A — R/(a) and

B = P/K, where P = RlX, v\ and K = (aA",c + ua). If P is graded as in Proposi-

tion 2.6, then each entry of a A' has degree 1 and each entry of c + ua has degree

g — 1. If/ G P, then we write/ = 2 /,,, where/(() is a form of degree i.

By Corollary 5.2, B is rigid. By Proposition 7.4 and Remark 7.5 it suffices to show

that if ß: P - P is a ¿-derivation with ß(K) C K, then Im(/î) C mP. Since g > 3, it

is clear that/0) = 0 andf(]) 6 (aA") if/ G K.

Let ()8a,.)(0) = r„ (ßxu)m = rip and (ßxu\X) be the linear form pt] in R\X\.

Since /?2a,x,y = 2(/?a,)x,y + 2a,(/3x,7) is in K, we have (/}2a,x/y)(1) = 1r¡xi} +

2 djPjj in (aX). It follows that each r¡ is in (a).

Define ß': R =* P —p -** R using the natural inclusion and projection. This is a

derivation and /5'(a,) = z*,, so ß'(a) C (a) and hence ß' induces a /c-derivation

A -» A. By hypothesis, Im(/5') C mR. Hence Im(/8|R) C mP.
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To show lm(ß) C m,,, we will show that ßxtj and ßv are in mP. Let

d2 a
... _ pm^pn _^p

be the start of a minimal free resolution of A. Since 0 = (/62a,x,7)(0) = 2a,r(: it

follows that [rXj,... ,rnj]' is in the column space of d2 for each index7. Thus all rtJ

are in mR and ß(xij) are in mP. Finally,

ß(cl + val) = ßc, + vßa, + (ßv)ai

is in K C ( A', u). Since c, is an /?-linear combination of maximal order minors of X

and g - 1 s* 2, we have /?c, G (A") and (ßv)a, E (X, v). It follows that (ßv)0ai = 0

for all z and consequently ßv E (X, u) C m P.    ■

We turn now to the classification of codimension four Gorenstein algebras. For

the remainder of this section g = 4.

Corollary 7.12. Each algebra A = A(l, t) is generic. If ß: A -> A is a k-deriva-

tion, then Im(jß) C m^.

Proof. Apply Proposition 3.1(3), and Theorem 7.11. The statement is clearly true

fork.

Once again, because the B(t) are not general double links, we take a direct

computational approach.

Lemma 7.13. Let R be a power series ring over k and a be a 1 X n vector which

minimally generates a grade g > 4 Gorenstein ideal in R. For any r, 0 < r =£ n — 1, let

X and Z be r X 1 and (n — 1) X (g — 2) matrices with indeterminate entries, P =

RlX,Z,v\,andb = aMfor

M

1

0

LA

0

Assume that b is a regular sequence and that c in (2.2) is obtained by a map of

associative DG algebras. Let K = (b,c + ua). Suppose that lm(ß') C mR for every

k-derivation ß': R -> R such that ß'(a) C (a). Then ß(RlZ,v\) C mP for every

k-derivation ß: P -» P such that ß(K) C K.

Proof. Let 5 = R{XJ. Assign degrees in P as follows: deg 5 = 0, degz,7 = 1,

deg u = g — 2. Then deg />, = 0, deg 6- = 1 for 2 < 7 < g — 1, and deg(c, + va¡) —

g- 2 for 1 «/<«. If/is in K, then/(0) G (¿>,)5 and^„ G (bx{zi}), b2,...,bg__x)S.

Let ß' be the composition derivation R «* P ->/> -*» R. The proof is completed by

showing that ß'(a) C (a) and consequently ß(R) C £,,, ß(v) E mP, and jS(z,7) G

m p. One uses degree arguments exactly as in the proof of Theorem 7.11 above.    ■

Corollary 7.14. Each algebra B - B(r) with r > 5 is generic. If ß: B -> B is a

k-derivation, then Im(/S) C mfi.

Proof. By Corollary 5.3 we know that B is rigid. By Proposition 7.4 it suffices to

prove the derivation property. Recall that B(t) has the form P/K in the lemma,
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where n = t + 1, r = 1, and a, = Y¡ are maximal pfaffians of a t X t alternating

matrix Y for 1 < z < t. It only remains to verify that ß(xT+]) G mP. Since /3, = Y,

+ aT+]xT+1 is in #, (/3/3|)(0) = t^s for some i G 5; hence

V = (/3Y,)(0) + aT+,(0xT+i)(O) = (/3aT+1)(0)xT+1.

Since r> 5 each Y, is at least quadratic in the y^, so ßYx is in (y¡j)S. Then

0 = aT+](ßxT+])m   modulo (yu,xT+]).

In the construction of B(r) the element aT+1 is independent of the other inde-

terminates and, in particular, not a zero divisor on (y¡¡,xT+i). Consequently,

(/3xT+1)(0) is in ms and hence ßxr+x is in mP.    ■

Theorem 7.15. If A G [A(l, t)] with l>0,andr>3 odd, then

6     ifl = 0andr=3,

(1) 8¡(A) = It     ifl=0andr>5,
3    ifl>\;

(2) S0(/1) = 3/ + t+1;

(3) v(A) = v(A(l - 1, t)) + 380(^(/ - 1, t)) + 1

= t(t - l)/2 + 3/(t + 1) + / + 1 + 91(1 - l)/2.

If B E [B(t)] with t ^ 5 odd, then 8X(B) = 3, 80(B) = t + 3, and v(B) =

t(t — l)/2 + 3 + 2t. Consequently, the Herzog classes of these algebras A(l,r) and

B(t) are distinct. (Note B(3) E [A(0,5)] by Example 3.2.)

Remark. The algebras ,4(2,3), B(l) and A(0,9) all have resolutions

0 -> p -* pw -» f18 -» f10 -» /•

(a different P in each case). Yet none of the resolutions can be obtained from the

others under a change of rings homomorphism.

Proof. By Theorem 7.8 each of these invariants takes the same value for all

algebras in a given Herzog class, so we may as well assume A = A(l, t) and

B = B(t). The invariants 80(A) and 80(B) are calculated in Corollary 3.6. Since

A(l, t) = R(l, t)/I with ht I — 4, we may apply Proposition 7.9 and Corollary 7.12

to see that v(A(l, t)) = dim R(l, t). If / = 0, then R(0, t) = Ac[ Y, w], where Y

consists of t(t — l)/2 indeterminates; hence v(A(0, t)) = t(t — l)/2 + 1. Assume

inductively that (4) holds for A(l, r). Then R(l + 1, t) = R(l, t)[ A, u], where A

consists of 380(/4(/, t)) indeterminates. Hence

v(A(l+ 1,t)) = dim/?(/+ l,T) = r(X(/,T)) + 3«0(/i(/, t)) + 1

and the explicit formula is readily verified using (3). We compute v(B(t)) similarly.

Next we calculate 8X(A). If A =,4(0,3), then A is resolved by a free exterior

algebra A*(/?4), so 8{(A) = 6. If A = A(0, t) for t > 5, then the minimal free

resolution of A begins

d, dx
\pT +

»2t _^ 7>t+ 1     > p
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with a", = [y,w] = [Y,,..., YT,w] and

Y
0

m7
-y

where Y is a t X t alternating matrix of indeterminates and Y, = Pf,( Y). Clearly, the

last t columns of a"2 represent Koszul relations, so 8X(A) > t by Proposition 7.10,

and (e,e,

mF2 for 1
+ i 1 t} is part of a basis for F2. Each of the other products e,-e- is in

z, ; < t because Y[YUJ,..., YUJ]' = Yje¡ - Yie¡ (see [24, Lemma 1.2]).

Since t s* 5, each lower order pfaffian Yhj is in tnR. It follows that 8X(A) = t.

The calculations prior to Corollary 3.6 show that if A = A(l, t) with l>\, then

the minimal presentation of A is

p2n + A _^ pfi _^ p

with P = R(l, t), a", = [b, c + ua] and

u/
-A"

B
0

where R2" 2 ->R" ^R is a minimal presentation of ̂ (/ - 1, t) with« = R(l - 1,t).

As in Proposition 2.6 we give P = RlX,vl a grading by assigning degR — 0,

degx,7 = 1, and degu = 3. Then the degree of each entry of A/V is 2 and the

degree of each entry of c is 3. The vector b is equal to a A" and each entry has degree

1. The columns of

B

0

-b, 0

-lh 0

represent Koszul relations on dx, so 8¡(A) > 3.

Suppose y is in p2n+4, and d2y is a linear combination Koszul relations including

at least one that involves an entry from c + ua. Write

Vo + 1i

with A0, pQ in R3, A,, ft, in (A", v)P3, tj0 in R2"~2 and tj, in (X, v)P2"'2. By degree

considerations we have 73ju.0 = 0, At]0 = 0, and each entry of v\0 is in u(a). It

follows that y is in mPP2n+4 and hence 8X(A) = 3.

We are not able to grade R = R(r) in order to calculate 8X(B) for B = B(t) with

t > 5; thus we are forced to actually calculate the efe¡. Fortunately the multiplica-

tion table for a minimal free resolution F of A(Q, t) has been recorded in [24,

Theorem 4.1]. In order to get a minimal presentation G2 -» G, -> /? of B from F we

split off e4 from F, as well as a rank 2 summand of .F2. In Example 4.2 of [24] it is

observed that exe2, exe3, exeT+A is the start of a basis for G2. All other products eiej

are in mG2 because the lower order pfaffians Yijk are nonunits since t > 5. Thus

8,(5) = 3.
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To finish the proof, suppose that A(l, t) - A(T, t'). Since S0(^(/, t)) =

80(A(T, t')), we see that t' = t + 3(1 - /'). On the other hand,

v(A(l, t)) - v(A(T, t + 3(1- I'))) =1-1'.

Thus / = /' and t = t'. The B(t) with t 3= 5 can be distinguished from one another

by <50 and from the A(T, t') by ô0, 8X, and v jointly.    ■

Remark. One can also use ô2 to distinguish B = B(t) with t > 5 from A = A(l, t')

with / > 1 and t' ^ 3 since S2(£) = 4 whereas 82(/i) = 3.

8. Deformation and linkage by Gorenstein ideals: observations and questions. In §1

we defined linkage by Gorenstein ideals and showed that it has the same elementary

properties as ordinary linkage. In Theorem 2.1 we showed that the big from small

construction of [23] can be interpreted as double linkage by Gorenstein ideals.

Nevertheless, in the remaining sections we have concentrated exclusively on ordinary

linkage. In this section we record differences between Gorenstein and ordinary

linkage—they are dramatic and reveal why we have concentrated on ordinary

linkage.

One of the main facts connecting linkage and deformaton theory is Buchweitz's

result (the linchpin of our Proposition 7.1). If A = klXx,...,Xm\/I is a reduced

algebra which is in the linkage class of a complete intersection, then T2(A/k, A) = 0,

i.e. A is unobstructed. This result fails if we replace "linkage" by "linkage by

Gorenstein". Let A = klT\ T1, T\ T9, T10] and write A = R/I, where R =

klX, Y, Z, W, £/] -> A is the coordinate map sending X to T6, etc. Let a = [ X, -Y,

Z, U] and b = [YZ - WX, Z2 - WY, Y2 - ZA", Í7Z - A"3, WU - A"2Y]. Observe

that b consists of the maximal order pfaffians of

0 -U -A2 Z -Y
U 0 0 -Y A

A2 0 0 -W Z
-Z Y W       0 0

. Y -A -Z       0 0 .

and that (b) is a grade 3 Gorenstein ideal contained in (a) that is not generated by a

regular sequence. If we apply the construction of Theorem 2.1 to (b) C (a) and set

v = U, then 7 = (b, c + ua). Using the formulas given by Buchweitz [6], it is not

difficult to calculate dimk T\A/k, A) = 15, dim T2(A/k, A) = 5, and to give

explicit bases. We find that the formal moduli space of A is Spécule,,...,£|5l/£),

where £ is generated by the 4X4 pfaffians of an alternating 5X5 matix in ten of

the e,'s. In contrast, if B is a reduced /c-algebra in the linkage class of a complete

intersection, then the formal moduli space of B is smooth.

There are at least two other situations in which deformation properties of linkage

by Gorenstein ideals may differ from the corresponding properties of ordinary

linkage. Lemma 4.1 shows that infinitesimal deformation passes over linkage by a

regular sequence (z). We do not know, and would like to know, if this result remains

true when (z) is allowed to be a Gorenstein ideal. In the same vein, Theorem 4.2

shows that rigidity of R/I is preserved under linkage by the "most general" regular

sequence (z) contained in /. It is not clear what the "most general" a-generated
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Gorenstein ideal in I should be. Even if this issue can be resolved, there is reason to

suspect that rigidity is not preserved under linkage by Gorenstein ideals.
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