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NONDEGENERATE SYMMETRIC BILINEAR FORMS

ON FINITE ABELIAN 2-GROUPS
BY

RICK MIRANDA1

Abstract. Let St2 be the semigroup of isomorphism classes of finite abelian

2-groups with a nondegenerate symmetric bilinear form having values in Q/Z.

Generators for 3B2 were given by C. T. C. Wall and the known relations among these

generators were proved to be complete by A. Kawauchi and S. Kojima. In this

article we describe a normal form for such bilinear forms, expressed in terms of

Wall's generators, and as a by-product we obtain a simpler proof of the complete-

ness of the known relations.

1. Introduction. Let G be a finite abelian group. A symmetric bilinear form on G is

a map b: G x G -» Q/Z such that b(x, y) = b(y, x) and b(x, -) is a group

homomorphism from G to Q/Z for every x and y in G. The form b is nondegenerate

if b(x, -) is not the trivial homomorphism for x # 0. Let Se be the semigroup of

isomorphism classes of nondegenerate symmetric bilinear forms on finite abelian

groups, under orthogonal direct sum. It is not hard to see that any such form will

split orthogonally into forms on the Sylow /»-subgroups, so 3& is canonically

isomorphic to © 38p, where 38p is the semigroup of such forms on finite abelian

/»-groups.

Wall [2] has shown that if p is odd, 38 is generated by forms on cyclic groups. If

G = Z/pr, he denotes by Ap, the form b with b(\, 1) = \/pr, and by B , the form b

with b(\, 1) = n/pr with n a nonsquare mod p. Wall's theorem is that 38 is

generated by {Ap,, Bp,; r > 1} with the relations 2Ap, = 2Bpr for each r when/7 is

odd.
The generators and relations for p = 2 are quite a bit more complicated and in his

paper Wall only gave the following set of generators of 382:

Ar onZ/2r,r>\;b(\,\) = \/Y,

Br onZ/2\r>2;b(\,\) =-\/2r,

Cr onZ/2r, r> 3; ¿(1,1) = 5/2',

Dr onZ/2r, r> 3; ¿(1,1) = -5/2\

Er    on Z/2r x Z/2r, r > 1 ; b(e,„ e})
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on Z/2'X Z/2', z-^ 2;b(e„ej) =
1/2'" !    ifi=j,

1/2'      if/*;,

where {ex, e2} generate Z/2' X Z/2' in the last two cases.

The remaining problem is to determine all the relations among the above

generators for 382, which Wall declined to do in his article. This problem was solved

completely by Kawauchi and Kojima [1], who not only proved that a certain list of

relations was complete, but also gave a complete system of invariants which

distinguished between any two nonisomorphic forms.

It is the purpose of this article to present a proof of Kawauchi and Kojima's

theorem which is simpler and more straightforward than the original. As a by-prod-

uct, a normal form for any nondegenerate symmetric bilinear form on a finite

abelian 2-group is obtained and an algorithm is presented to put an arbitrary form

into the normal form.

Since I will be only concerned with 2-groups in this article, I will use the notation

Ar for Ar, and similarly for the other forms; in addition, I will introduce the forms

Bx = Cx = Dx (= Ax), C2 (= A2), D2 (= B2) and Fx (= Ex) for convenience.

Finally, I will use the word form to denote a nondegenerate symmetric bilinear form.

The main theorem can now be stated.

Theorem 1.1 [1, Theorem 0.1]. The semigroup B2 is generated by {Ar, Br, Cr, Dr,

Er, Fr; r > 1} and any relation among them is generated by the relations in the

following table.

Table 1.2

Relations among the generators of B2

(0)

(I)

(II)

(III)

(IV)

•4,

A 2

»2

E,

= Q
(V)

A, + D, = B, + C,

Ar + Br= Cr + Dr

2Ar = 2C,

2Br = !Dr

Ar + Er = 2Ar + B,

B, + E, = Ar + 2Br

Cr+ E,= 2Cr + D,

Dr+ Er= C, + 2D,

A, + Fr = 3£>r

B,+ Fr = 3C,

C, + Fr = 3Br

D, + F, = 3Ar
2E, = IF,

(VI)

(VII)

(VIII)

Ar_l + Ar

A,_! + B,

A,_, + Cr

Cr_, +Ar

Cr-i + B,

C,-i + cr

C,~l  + Dr

A,_x + Er
B,-i + E,

Cr-l + Er

A-l + Er

E,_l + Ar

£r_, + B,

E,_x + C,

£7-1 + Dr

Ar_2 + Ar

Ar_2 + Br

¿r-l

¿r

Br.

Br

Br

B.

-- £),_! + Dr

■- Br_¡ + A,

-- Z)r_i + B,

+ Cr

-1 + A
+ A,
+ B,

+ c,
+ Fr

+ F
+ K
+ F,

(IX)

Dr

'■ Br-

'  ®r-

=  Cr_

-- Dr_
-A,-

-- Fr_

- Fr-X +

-- Fr_, +.
' F-i + -

■ Ç--2 + Cr

-- Cr_2 + D,

+ C, = Cr_2 + Ar

i + D, = Cr_2 + B,

+ Ar = Dr_2+ C,

+ Br = D,_2 + Dr

+ C, = Dr_2 + A,

+ D, = Dr_2 + Br

V-i + Cr

-  Dr
-A,

B,

4Ar

1A,
= 4Br = 4C, = 4Dr

+ C, = 3Br + D.
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The relations in (IX) are consequences of those in (I), (II) and (III), so I have put

them last; they are useful in determining the normal forms for homogeneous groups.

The reader may verify that the relations in Table 1.2 do hold; it is our intent only

to verify their completeness.

2. The signature invariants. Let G be a finite abelian 2-group. Let Gk = [x e

G\2kx = 0}; Gk is a subgroup of G, G0 = (0), Gk ç Gk + X for every k, and Gk = G

for k sufficiently large. Define pk(G) = Gk/(Gk_x + 2Gk+x). This group is either 0

or is a 2-group with exponent 1; if G = ®k(Z/2k)r{k\ then pk(G) = (Z/2)r(k). Let

b be a form on G. Then b induces a form bk on pk(G), defined by

bk(x,y) = 2k'1b(x,y),

where x and y are in Gk and x, y are their images in pk(G).

Using the relation Ax + Ex = 3AX, one can easily see that any form b on (Z/2)A' is

isomorphic to either NAX or (N/2)EX, the latter occurring only if N is even. These

are nonisomorphic: every element x of (N/2)EX satisfies b(x, x) = 0, which is not

the case for NAX. We will say that b is of type A or of type E, respectively.

Let b be a form on an arbitrary 2-group G and assume that bk is of type E. In this

case the function qk: G/Gk -* Q/Z defined by qk(x) = 2k~lb(x, x) is well defined,

where x is any preimage in G of x in G/Gk. Let

M xeC/G,

Lemma 2.1. Ifbk is of type E, then Sk(b) is a complex eighth root of unity.

Proof. See [1, Lemma 2.1 and Corollary 2.1].

Kawauchi and Kojima's signature invariant can now be defined. Let Z8 = Z/8 U

{oo} be the semigroup with 9 elements 0,...,7, oo whose operation is defined by

addition mod 8 within Z/8 and z'+oo = oo + z'=oo + oo = oo.

Definition 2.2. Let b be a form on G. If bk is of type E, let ak(b) be the element

of Z/8 such that Sk(b) = exp(iriak(b)/4). If bk is of type ,4, let ak(b) = oo.

Hence ak(b) is an element of Z8 for any k.

Lemma 2.3. (1) Ifb and b' are forms on G and G', respectively, then (b, b') is a form

on G © G' andok(b, b') = ak(b) + ak(b')for every k.

(2) IfG = V/2r)N and bis a form on G, then ok(b) = Ofor k > r.

(3) ok(Ak) = ok(Bk) = ok(Ck) = ak(Dk) = oo and ok(Ek) = ok(Fk) = 0 for k >

1.

(4) ok_x(Ak) = ak_x(Ck)=l, ok_x(Bk) = ok.x(Dk) = l, ok_x(Ek) = 0, and

ok.x(Fk) = 4fork>2.

(5) ok_2(Ak) = 1, ok_2(Bk) = 7, ok_2(Ck) = 5, ak_2(Dk) = 3,and ok_2(Ek) =

ok_2(Fk) = 0fork>3.

Proof. See [1, Lemma 2.1 and Corollary 2.2].
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3. Normal forms for homogeneous groups. The group G is homogeneous if G =

(Z/2')N; r is the exponent of G and TV is the rank of G. In this section I will present

normal forms for forms on homogeneous 2-groups, which differ from those given in

[1].
Definition 3.1. Let b be a form on a homogeneous 2-group. The form b is of type

A if it is isomorphic to NAr. It is of type B if the form can be written in terms of Ar

and Br. It is of type C if it can be written in terms of Ar and Cr. It is of type D if it

can be written in terms of Ar, Br, Cr and Dr. It is of type E if it is isomorphic to MEr,

where 2 M is the rank of the group, and it is of type F if it can be written in terms of

Er and Fr.

This terminology agrees with the previously introduced notion of type for expo-

nent-one groups. It is easy to see (using the relations (II) and (III) of Table 1.2) that

every form on a homogeneous group has a type. However, some forms may be of

more than one type. (For example, every form of type E is of type F.)

In Table 3.2 the desired normal forms for forms on homogeneous 2-groups are

given, together with their types and the three most useful signature invariants.

Table 3.2

Normal forms for forms on homogeneous 2-groups of exponent r and rank N

exponent r   rank N normal form a,     ar_}       or_2     type

1

1

2

2

2

2
2
2

/•Si 3

N > 1

A" even

N > 1

N > 1

N > 2

N > 3

A^ven

A'even

1

2

3
N » 1

N > 2

N » 3

N >4

N > 1

N » 1

N > 2

N > 3

A1 even

iVeven

+ B2

+ 2B
+ 35-

NAx
(N/2)E,

NA2

(N-l)A2

(N-2)A2

(N-Z)A2

(N/2)E2
((AT/2)-l)£:

D,

Br+ D,
2B, + D,
(Ar - \)A, + C,

(N - 2)Ar + B,

(N - 3)A, + 2B,
(N - 4)Ar + 3flr

AM,

(N - \)Ar + Br

(N - 2)Ar + 2B,

(N - 3)Ar + 3Br

(N/2)Er

((/V/2)-l)£r +

+ F,

+ cr

+ cr

+ c.

oo

0

x

oc

oc

X

0
0

X

X

X

X

X

X

X

X

X

X

X

0

0

A'

Ai + 6

N + 4

iV + 2

0
4

7

6

5

N
N + 6

N + 4

A- + 2

/V
A1 + 6

N + 4

N + 2

0

4

3
2

1

A/ + 4

N + 2

N

N + 6

A7

N + 6

N + 4

N + 2

0

0

.4

£

/I

S
B

B

E

I

D

D

D
C
D

D
D

A

B

B
B
E
F

That any form may be brought to one of the above forms is an immediate

consequence of the relations (0), (I), (II), (III), (IV) and (IX). An inspection of the

above signature invariants shows that the normal forms above are all distinct.

4. Normal forms for forms on an arbitrary 2-group. Given a form b on an arbitrary

finite abelian 2-group G, we may write b = ®b(r), where b(r) is a form on a

homogeneous 2-group of exponent r. Each b(r) may be independently put into a
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normal form as in the previous section, using the relations (O)-(IV). In this section I

will describe how to use the relations (V), (VI), (VII) and (VIII) to put the entire

form b into a normal form. For what follows, I will say that the trivial group is of

type 0.

The algorithm to put b(r) into normal form works inductively from above. The

key step is to put b(r) into normal form by using the relations of Table 1.2 and to

do so without affecting b(s), unless s = r - 2 or r - I. Of course, if b(r) is of type

0, there is nothing to do, so I will assume that this is not the case.

Table 4.1 gives an algorithm for the first step in this process. The first three

columns contain the type of pr_2(G), pr_x(G) and pr(G), and should be regarded as

the input to the algorithm. In the fourth column is the type in which b(r) may be

put, using the relations in the fifth column (together with the relations (O)-(IV)).

Table 4.1

P,-2(G)        P,-i(G)      Pr(G)      typeofft(r)       relations used

0, A.otE       0or£ E F

O.A.otE A E E                      (VI)

0or£ 0 A D

A 0 A B                     (VIH)

0or£ £ A B                      (VII)

A E A B (VII) or (VIII)
0or£ A A C                       (V)

A A A A (V) and (VIII)

The verification of Table 4.1 is easy, given the following observation. Note that

Pk(Ak) - Pk(Bk) - P*(Cft) = Pk(Dk) = Ax and pk(Ek) = pk(Fk) = Ex. Therefore,

if pk(G) is of type A there must exist a summand in b(k) of the form Ak, Bk, Ck or

Dk in any decomposition of b and b(k). Similarly, if p^(G) is of type E, b(k) must

be of type F (i.e., every summand is Ek or Fk) in every decomposition of b and b(k).

Using this remark, I will check Table 4.1 in one representative case, leaving the

rest to the reader. Let us examine the second line of the table, where pr(G) is of type

E and pr_x(G) is of type A. By the above, b(r - 1) must contain one of

Ar_x, Br x, Cr_, or Dr_x as a direct summand. Moreover, by Table 3.2, b(r) may be

put in the form MEr or (M - \)Er + Fr, where 2M is the rank of b(r). If

b(r) = MEr, there is nothing to do; b(r) is already of type E. If b(r) = (M - \)Er

+ Fr, then as the table indicates, we may use one of the relations of (VI) to change

the Fr to an Er since one of Ar_x, Br_x, Cr_j, or Dr x is present. This verifies the

second line of Table 4.1 and illustrates the general argument.

If one decrees that p_2(G) and p_x(G) are of type A, then Table 4.1 applies where

r = I and r = 2, also.

We will say that an expression for b in terms of the generators Ar, Br, Cr, Dr, Er

andFr is in intermediate normal form if each b(r) is in one of the normal forms of

Table 3.2 and the type of b(r) is consistent with the types of pr~2(G), pr_x(G) and

Pr(G) as determined by Table 4.1.

This is only an intermediate normal form because there is one other set of

relations which can be deduced from those in (V) and which can be further applied.
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The situation in which they come to play is that of the second-to-last line of Table

4.1, i.e., pr(G) and pr_x(G) are of type A and pr_2(G) is of type 0 or type E. In this

case one can use the relations of (V) to change B/s and D/s to A/s and C/s in b(r)

and achieve a type C form for b(r). Note that then b(r) must equal NAr or

( JV - l)Ar + Cr by Table 3.2; this is a consequence of the relation 2Cr = 2Ar.

It is possible in certain circumstances to put b(r) into type A form in this case,

i.e., change the Cr to an Ar. For this one uses the following set of relations:

(X) 2Ar_x + Cr = Br_x + Dr_x + Ar

2Cr_x + Cr = Br^x + Dr_x + Ar

Ar_x + Cr_x + Cr = 2Br_x + Ar

2Br_x + Cr = Ar_x + Cr_x+Ar

2Dr_x + Cr = Ar_x + Cr_x + Ar

Br_x + Dr_x + Cr = 2Ar_x+Ar.

Each of these relations can be obtained from two of the relations in (V), used

successively. For example, 2Ar_x + Cr = Ar_x + Dr_x + Br = Br_x + Dr x + Ar. I

will leave the rest to the reader. Using these relations, we have the following.

Lemma 4.2. Assume b is in intermediate form with pr(G) and pr-X(G) of type A, and

Pr-2(G) of type 0 or type E. Then b(r) may be put into type A form, i.e., b(r) = NAr,

if either:

(a) the rank ofb(r - 1) > 3, or

(b) the rank ofb(r - 1) = 2 and ar_2(b(r - 1)) + 0, i.e., b(r - 1) is one of the six

types 2Ar_x,Ar_x + Cr_x, 2Cr_x, 2Br_x, Br_x + Dr  x, or 2Dr_x.

Proof. Part (b) follows from the relation of (X) and a computation of pr_2 for the

10 possible rank-two type D exponent r - 1 forms. To prove (a), it suffices to show

that if the rank of b(r — 1) > 3, then one of the six types which can be used in (X)

must occur in b(r - 1). Since b(r - 1) is in normal form, this follows from an

inspection of Table 3.2.   Q.E.D.

Definition 4.3. An expression for b is in normal form if it is in intermediate form

and if the hypotheses of Lemma 4.2 are satisfied for b for any r, then b(r) is in type

A form.

By Table 4.1 and Lemma 4.2, every form on a finite abelian 2-group G may be put

into a normal form by using the relations of (O)-(VIII). The main result can now be

proved.

Theorem 4.4. Let G be a finite abelian 2-group. Let b be a nondegenerate symmetric

bilinear form on G. Then b has only one expression as a direct sum of the generators of

382 which is in normal form.

Proof. Let N(r) be the rank of pr(G), so that G = ®(Z/2r)N(r). I will show that

the numbers N(r) and the elements ar(b) e Z8 determine the normal form for b.

The normal form will be developed by descending induction on r; since N(r) = 0
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for r large enough, the induction may begin without any analysis. Let us then assume

that for k > r, it has been shown that there is only one expression for b in exponent

k, which is in normal form. It will suffice to show that the normal form expression

for the exponent r piece of b is determined. There are several cases to consider. Write

ar for ar(b) for every r > 1 and b(r) for the exponent r piece of b. We may assume

N(r)>l.
Case 1. ar ¥= oo. Here, by Table 3.2, the normal form for the exponent z* piece of b

is written in terms of Er and Fr, so pr(G) is of type E. If ar_x(G) = oo, then pr_x(G)

is of type A and Table 4.1 requires b(r) to be of type E, which forces b(r) =

(N(r)/2)Er. If ar_x(G) # oo, then pr_x(G) is of type 0 or type E, so that any

expression for b(r — 1) must be of type F, and the contribution to or_x from

b(r - 1) is zero by Table 3.2. Since b(k) is determined for k > r, ar_x determines

b(r) in this case; the two possibilities (N(r)/2)Er and ((N(r)/2) - \)Er + Fr have

ar_x differing by 4.

Case 2. ar = oo. By Table 3.2, the normal form expression for b(r) is written in

terms of Ar, Br,Cr and Dr, so that pr(G) is of type A. There are several subcases to

consider.

Case 2A. ar_2 = ar_x = oo. Here, by Table 4.1, b(r) is of type A so that

b(r) = N(r)Ar is its normal form.

Case 2B. ar_2 = oo, ar_x =/= oo. In this case pr_2(G) is of type,4 and pr_x(G) is of

type 0 or E, so that by Table 4.1 the normal form for b(r) is of type B and is, in

fact, b(r) = (N(r) - i)Ar + iBr for some i between 0 and 3. Again the contribution

from b(r - 1) to ar_x is zero, and by Table 3.2 ar_x distinguishes between the above

four possibilities, so b(r) is determined.

Case 2C. or_2 # oo, ar_x ¥= oo. If N(r - 1) = 0 so that pr_x(G) is of type 0, then

(since in this case pr_2(G) is of type 0 or E), Table 4.1 implies that nothing can be

done to alter b(r), and any of the normal forms of Table 3.2 are possible. In this

case there is no contribution to either ar_2 or ar_x from b(r — 2) and b(r - 1);

moreover, by Table 3.2, these invariants distinguish between all of the normal forms

with ar = oo. Hence b(r) is determined.

If N(r - 1) > 1, then pr_x(G) is of type E, so by Table 4.1 the normal form for

b(r) is of type B. Here the argument is as in Case 2B; ar_x distinguishes between the

four possibilities for b(r), so it is determined.

Case 2D. af_2 ¥= oo, ar_x = oo. In this case pr_2(G) is of type 0 or E and pr_x(G)

is of type A, so by Table 4.1 the intermediate normal form for b(r) is of type C. Put

b(r - 1) into a normal form. If N(r - 1) > 3 or N(r - 1) = 2 and ar_2(b(r - 1))

¥" 0, then Lemma 4.2 applies and the normal form for b(r) is of type A, so that

b(r) = N(r)Ar. Assume N(r - 1) = 2 but or_2(b(r - 1)) = 0. Then there is no

contribution to ar_2 from either b(r - 2) or b(r - 1); since the two possibilities

N(r)Ar and (V(z-) - \)Ar + Cr are distinguished by or_2 by Table 3.2, b(r) is

determined. Finally, assume N(r - 1) = 1. Again there is no contribution to ar_2

from b(r - 2). The two possibilities for b(r) yield a difference of 4 in af_2; if they

are both possible, then this difference of 4 must be offset by a difference of 4

contributed from b(r - 1). However, N(r - 1) = 1, so that the possibilities for

b(r - 1) are Ar_x, Br_x, Cr_x or Dr_x and by Lemma 2.3(4), their contributions to
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ar_2 are either 1 or 7. Hence a difference of 4 cannot be contributed by b(r - 1),

and b(r) is again determined.   Q.E.D.

Corollary 4.5 [1, Theorem 4.1]. Any two forms b and b' with the same signature

invariants ar and ranks N(r)for every exponent r are isomorphic.

Proof. From the proof of the previous theorem, the normal forms for b and b' are

determined by the invariants ar and the rank N(r). Since these normal forms are

identical, b and b' are isomorphic.   Q.E.D.

Corollary 4.6. The relations of Table 1.2 are complete.

Proof. Assume there is a relation of the form b = b', where b and b' are expressed

in terms of the given generators for 382. By using the relations of Table 1.2, both b

and b' may be brought to normal form. By Theorem 4.4, these normal forms must be

identical. By reversing this procedure, the relation b = b' is obtained from those of

Table 1.2.   Q.E.D.
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